用户名: 密码: 验证码:
锚泊起重船刚柔耦合动力学建模及其动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
起重船是海洋工程设施建设必不可少的工程船舶。起重船在海上作业或是航行由于受到海浪的作用,会引起船体运动。船体的运动不仅影响船上人员的舒适性,而且直接影响到起吊作业的效率和安全性。因此,分析起重船动态特性及其影响因素,并将之应用于起重船的设计和作业中是十分必要的。国内外学者对船舶在海浪上的运动响应进行了深入的研究,但因为起重船的船型、起吊机械的特殊性,对该系统的理论研究还较缺乏。
     随着海洋开发事业的发展,起重船为提高作业效率、降低环境对作业的影响,起重量越来越大,运行速度越来越快,其整体动态特性表现出一些新的特征,主要表现在:(1)吊臂柔性对系统的动力学特性有影响;(2)吊重与船舶之间存在双向耦合作用。本文在此背景下对该问题进行了深入的探讨,取得以下研究成果:
     (1)将锚泊起重船臂架和吊索看作弹性体,基于柔性多体动力学,针对锚泊起重船首次建立了系统刚柔混合动力学模型,分析了模型的影响因素,详细讨论了刚柔混合弹性模型与刚体模型、平面模型间的相互转换方法,模型具有良好的通用性。研究了吊物系统采用单摆及球摆模型造成的系统计算差异,确定吊物系统采用空间球摆模型更符合实际情况;探讨了船舶与吊重双向耦合作用的条件;
     (2)对吊物系统动力响应及吊索中的动张力响应进行了详细研究,发现单纯的面内激励会导致吊重面外的较大摆动;在特征频率附近,吊索中的动张力急剧增大;使用Melnikov函数确定了吊重混沌振动的参数阈值,根据相图、Poincare映射图和Lyapunov指数方法对吊物系统中出现的混沌现象进行了分析,确定了吊物系统发生混沌的影响因素是激励幅值、激励频率和吊索长度,提出了通过合理选择系统参数避开发生混沌的区域的方法。
     (3)依据有限单元法建立起锚泊系统非线性动力学方程,通过悬链线方程确定初始位置,通过静力分析求得静平衡位置,在此基础上对系统动态特性进行了分析,计算结果表明,采用多项式模拟锚泊力的作用是合理的。在此基础上设计了一套凸轮机构来模拟锚泊系统对船舶的作用,以便在进行实验时代替锚索来模拟锚泊系统作用。
     (4)采用自由度缩减的DC增益方法实现吊臂模态的选择,减小了系统动力学计算的规模,并对模态截断的精度进行了详细分析。在此基础上建立了起重船吊臂的弹性动力学模型,为刚柔耦合整体模型的建立及其动态特性分析奠定了基础。
     (5)建立了刚柔耦合锚泊起重船虚拟样机模型,为动态特性的研究提供了可靠的研究平台就设计参数(锚索刚度、吊臂质量、吊臂柔度)对系统特性的影响和典型工况(吊重跌落、起臂工况以及离地起升)下系统的响应特性进行了全面详细的分析。发现船舶运动幅值和吊重摆角并不总是随着锚索刚度的增加而减小;吊臂质量对船舶运动的影响与其绝对质量密切相关,与其相对于船的相对质量无关。
     最后,研制了船舶运动模拟实验平台,编制了相应的数据采集软件和平台运动控制程序,通过该平台可以模拟船舶的纵荡、垂荡运动,在该平台上进行了吊重振动试验,分析吊重摆振特性,验证了理论计算的正确性。
Floating cranes play an important role in the operation of offshore engineering. During the operation or sail in the sea, wave-induced ship motions may cause the hoisted cargo to pendulate, so the crane payload pendulations became dangerous large and the operation had to be suspend. In order to avoid the loss during the operation, we should pay much attention to the dynamics of the floating crane. Although the issue of ship dynamics has been addressed extensively in a large number of recent researches, we still lack of full study on this problem because of the particularity of the floating crane.
     In order to save times during working in the sea, large ship-mounted crane appeared recently. The large crane ships are different from those small crane ships, the load is heavier and the operation speed is higher, so they have some new different features: (1) the flexibility of the boom can affect the dynamics of the crane-ship; (2) the dynamics of load and ship are coupled with each other. Aiming to the features in this dissertation, the whole crane-ship dynamics modeling theory and method are studied and the corresponding simulations are performed, and the main contributions of the research include:
     (1) The boom and rope are taken as elastic bodies, governing equations for the dynamic response of a crane-ship coupled with the pendulum motion of the payload are derived based on Lagrange's equations. The presented flexible dynamics model has good versatility. The planar pendulum and sphere pendulum models are used to model the load system, and the difference of these two models are studied. The coupling of the ship and load are also studied.
     (2) A nonlinear three-dimensional lifting load system dynamic model was set up based on the general form of Lagrange's equation, the dynamic response of the cargo was studied using numerical methods. The result demonstrates that the dynamic response of the cargo depends on the length of cable, reeling and unreeling speed and wave frequency, and the in-plane angle have coupling with the out-of-plane angle. Melnikov function are used to ascertain the key parameters that chaotic motions appeared in the system, and the chaotic vibration is studied using phase portraits, Poincare maps and maximum Lyapunov exponents. The method to avoid chaos is proposed.
     (3) Governing equations of mooring system are derived based on finite element method, the motion equation is solved by Wilson method to obtain the dynamic response of the mooring cable, the result demonstrate that the force of the mooring system can be approximated by a polynomial. A special mechanism has been developed to model the nonlinear behavior of real mooring systems, which can be used in experiment. The profile of the cam was defined and a solid model was designed in design software.
     (4) The boom is taken as flexible bodies and modeled based on finite element method, in order to avoid time consuming solution of equations in complex structures dynamics analysis, Dc gains of the individual modes of vibration were used as the criterion of modal truncation, the relative importance of the contributions of each of the individual modes was obtained and a small state space model was defined. The reduced model can accurately describe the pertinent dynamics of original system, and then the flexible model of the boom is established, which can be used for the rigid-flexible coupling model.
     5) A Virtual prototype model of the mooring crane-ship is established based on finite element method and flexible multi-body theory. Basic crane maneuvers, such as cable reeling and unreeling and load falling off, are taken into consideration, the analysis reveals how the dynamics of the crane-ship affected by those key parameters of the system. The influences of the flexibility of the boom are also taken into consideration.
     At last, we built an experimental setup, the platform used is capable of producting arbitrarily prescribed, independent surge and heave motions. The dynamic test of the load system is carried out. The comparison between test and simulation shows that the dynamics model presented in this dissertation is correct and feasible.
引文
[1]鹿守本.海洋资源与可持续发展.北京中国科学技术出版社,1999.
    [2]宋金明.崛起的海洋资源开发.山东科学技术出版社,1999.
    [3]M.Patel,D.Brown,J.Witz.Operability Analysis for a Monohull Crane Vessel.Naval Engineering Journal,1994,106(3):256-263.
    [4]T.Vaughers.Joint Logistics Over the Shore Operation.Naval Engineers Journal,1994,106(3):256-263.
    [5]P J.Rawston,G.J.Blight.Prediction of Weather Fowntime for Derrick Barges.Proceeding of the 10~(th) Annual Offshore Technology Conference,1978.
    [6]张志明,徐丹铮等.大型起重船船型开发的若干技术问题初探.船舶,2005,(1):10-15.
    [7]刘振辉,谭卫卫,谭家华.超大型海洋工程起重系统发展现状.中国海洋平台,2006,4(2):1-5.
    [8]王忠复,黄继昌等.工程船.北京:国防工业出版社,1984.
    [9]N.Nojiri,T.Sasaki.Motion Characteristics of Crane Vessels in Lifting Operation.Proceeding of the 15~(th) Annual Offshore Technology Conference,OTC 4603,1983.
    [10]T.E.Schellin,T.Jiang,S.D.Scharma.Crane Ship Response to Wave Groups.Journal of Offshore Mechanics and Arctic Engineering,1991,113:211-218.
    [11]王学亮.大型起重船在海浪中的运动响应.天津:天津大学,2002.
    [12]M.M.Idres,K.S.Youssef,A.H.Nayfeh.A Nonlinear 8-DOF Coupled Crane-Ship Dynamic Model.44~(th) AIAA/ASME/ASCE/AHS Structural Dynamic and Materials Confere,2003.
    [13]Ellermann Katrin,Kreuzer Edwin,Markiewicz Marian.Nonlinear primary resonances of a floating crane.Meccanica,2003,38(1):5-18.
    [14]Ellermann Katrin,Edwin Kreuzer,Markiewicz Marian.Nonlinear dynamics of floating cranes.Nonlinear Dynamics,2002,27(2):107-183.
    [15]M.A.Yousef,D.Soffker.Planar cargo control of elastic ship cranes with the "maryland rigging" system.Journal of Vibration and Control,2007,(13):241-267.
    [16]李跃,沈庆,陈徐均.波浪环境中作业起重船悬吊载荷的摆振分析.建筑机械,2003,(8):55-61.
    [17]陈徐均,沈庆,崔维成.浮基多刚体系统动力分析.工程力学,2002,(10):193-143.
    [18]Katrin Ellermann.Dynamics of a Moored Barge under Periodic and Randomly Disturbed Excitation.Ocean Engineering(S0029-8018),2005,32(11/12):1420-1430.
    [19]M.D.Todd,S.T.Vohra,F.Leban.Dynamical Measurements of Ship Crane Load Pendulation.Oceans 97 MTS/IEEE Conference Proceedings,1997:1230-1236.
    [20]M.Eissa,A.F.El-Bassiouny.Analytical and numerical solutions of a non-linear ship rolling motion.Applied Mathematics and Computation,2003,134(2-3):243-270.
    [21]S.Surendran,J.Venkata Ramana Reddy.Numerical simulation of ship stability for dynamic environment.Ocean Engineering,2003,30(10):1305-1317
    [22]S.Surendran,S.K.Lee,J.Venkata Ramana Reddy,Gyoungwoo Lee.Non-linear roll dynamics of a Ro-Ro ship in waves.2005,32(14-15):1818-1828.
    [23]Jesse Rebello de Souza,Claudio Gomes Fernandes.Nonlinear dynamics of an archetypal model of ships motions in tandem.Applied Mathematics and Computation,2005,164(2):649-665.
    [24]Mahfouz,B.Ayman.Identification of the nonlinear ship rolling motion equation using the measured response at sea.Ocean Engineering,2004,31(17-18):2139-2156.
    [25]M.Falzarano,S.W.Shaw,A.W.Troesh.Application of Global Methods for Analyzing Dynamical Systems to Ship Rolling Motion and Capsizing.International Journal of Bifurcation and Chaos,1992,2(1):101-115.
    [26]唐友刚,田凯强.船舶参数激励非线性运动升沉、纵摇、横摇耦合关系的研究.中国造船,2000,41(3):23-27.
    [27]袁远,成志军等.船舶在波浪中运动的六自由度非线性耦合方程.上海交通大学学报,2001,35(4):541-543.
    [28]欧阳茹荃,朱继懋.船舶横摇运动的非线性振动与混沌.水动力学研究与进展,1999,14(3):334-340.
    [29]R.J.Henry,Z.N.Masoud,A.H.Nayfeh,D.T.Mook.Cargo pendulation reduction of ship-mounted cranes via boom-luff angle actuation.Journal of Vibration and Control,2001,7(8):1253-1264.
    [30]C.M.Chin,A.H.Nayfeh,E Abdel-Rahman.Nonlinear Dynamics of a Boom Crane.Journal of Vibration and Control,2000.
    [31]C.M.Chin,A.H.Nayfeh,D.T.Mook.Dynamics and control of ship-mounted cranes.Journal of Vibration and Control,2001,7(6):891-904.
    [32]A.H.Nayfeh.《摄动方法》.上海:上海科学技术出版社,1984.
    [33]Z.N.Masoud,A.H.Nayfeh,D.T.Mook.Cargo Pendulation Reduction of Ship-Mounted Cranes.Nonlinear Dynamics,2004,35(3):299-311.
    [34]R.M.Ghigliazza,P.Holmes.On the dynamics of cranes or spherical pendula with moving supports.International Journal of Non-Linear Mechanics,2002,37(7):1211-1221.
    [35]董艳秋,韩光.起重船吊物系统在波浪中的动力响应.中国造船,1993,(1):63-71.
    [36]马巍.锚泊系统非线性动力学分析.上海:上海交通大学,1989.
    [37]陈小红.锚泊线动力响应的理论与试验分析.上海:上海交通大学,1994.
    [38]杨建民,肖龙飞,盛振邦.海洋工程水动力学试验研究.上海:上海交通大学出版社,2008.
    [39]John W.Leonard,Wilfred W.Recker.Nonlinear Dynamics of Cables with Low Initial Tension.Journal of the Engineering Mechanics Division,1972.
    [40]Leonard,Y.L.Hwang,Nonlinear Dynamic Analysis of Mooring Lines.OMAE,1986.
    [41]Shan Huang.Dynamic Analysis of Three-Dimensional Marine Cables.Ocean Engineering,1994,6(21):587-605.
    [42]A.P.Shashikala,R.Sundaravadivelu,C.Ganapathy.Dynamic of A Moored Barge under Regular and Random Waves.Ocean Engineering,1997,5(40):401-430.
    [43]A.SARKAR,R.EATOCK TAYLOR.Dynamics of mooring cables in random seas.Journal of Fluids and Structures,2002,16(2):193-212.
    [44]Jason I Gobat,Mark A Grosenbaugh.A simple model for heave-induced dynamic tension in catenary moorings.Applied Ocean Research,2001,23:159-174.
    [45]聂孟喜,王旭升等.风、浪、流联合作用下系统系泊力的时域计算方法.清华大学学报,2004,44(9):1214-1217.
    [46]G.F.Clauss,M.Vannahme,K.Ellermann,E.Kreuzer.Subharmonic oscillations of moored floating cranes.Proceedings of the Annual Offshore Technology Conference,2000,2:429-436.
    [47]张纬康,杜度.单点系泊船舶的动态分岔特性研究.水动力学研究与进展A辑,2004,19(4):423-433.
    [48]J.Wittenburg.Dynamics of System of Rigid Body谢传锋译,多刚体系统动力学.北京:北京航空学院出版社,1986.
    [49]R.K.Cavin,A.R.Dusto.Hamilton's Principle:Finite-element methods and flexible body dynamics.AIAA J.,1984,15(12):1684-1690.
    [50]S.C.Wu,E.J.Haug.Geometric non-linear substructuring for dynamics of flexible mechanical systems.International Journal for Numerical Methods in Engineering,1988,26:2211-2226.
    [51]W.Schiehlen.Multibody System Dynamics:Roots and Perspectives.Multibody System Dynamics,1997,1:149-188
    [52]洪嘉振.计算多体系统动力学.北京:高等教育出版社,1999
    [53]刘延柱,洪嘉振,杨海兴.多刚体系统动力学.北京:高等教育出版社,1989
    [54]N.K.Mani,E.J.Haug,K.E.Atkinson.Application of singular value decomposition for analysis mechanical system dynamics.ASME J.Mechanisms,Transmissons and Automation in Design,1972,7:387-395.
    [55]Ahmed A.Shabana.Flexible Multibody Dynamics:Review of Past and Recent Development.Multibody System Dynamics,1997,1:189-222
    [56]陆佑方.柔性多体系统动力学.北京:高等教育出版社,1996
    [57]陈乐生,王以伦.多刚体动力学基础.哈尔滨:哈尔滨工程大学出版社,1995.
    [58]Ellermann Katrin,Edwin Kreuzer.Nonlinear Dynamics in the Motion of Floating Cranes.Multibody System Dynamics,2003,9:377-387.
    [59]李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1996.
    [60]贾欣乐,杨盐生.船舶运动数学模型—机理建模与辨识建模.大连:大连海事大学 出版社,1998.
    [61]李庆扬,王能超,易大义.数值分析(第3版).武汉:华中理工大学出版社,1986.
    [62]M.Giovagnoni.Linear decoupled models for a slewing beam undergoing large rotations.Journal of Sound and Vibration,1993,164(3):485-501
    [63]M.Giovagnoni.A numerical and experimental analysis of a chain of flexible bodies.ASME J of Dynamic System,Measurement of Control,1994,116(5):73-80
    [64]M.K.Kwak,W T Schlaegel,A.Das.PACE:A test bed for the dynamics and control of flexible multibody system.In:Collection of Technical Papers-AIAA/ASME Structures,Structural Dynamics and Materials Conference 34~(th),1993,3570-3580
    [65]Low K H,Lau Michael W S.Experimental investigation of the boundary condition of slewing beams using a high-speed camera system.Mechanism & Machine Theory,1995,30(4):629-643
    [66]Popovic P,Nayfeh A H,Oh K,et al.Experimental investigation of energy transfer from a high-frequency mode to a low-frequency mode in a flexible structure.Journal of Vibration and Control,1995,1(1):115-128
    [67]Oh K,Nayfeh A H.High-to-low-frequency modal interactions in a cantilever composite plate.Journal of Vibration and Acoustics,Transactions of the ASME,1998,120(2):579-587
    [68]Yoo H H,Shin S H.Vibration Analysis of Rotating Cantilever Beams.Journal of Sound and Vibration,1998,212(5):807-828
    [69]曹树谦,张文德等.振动结构模态分析—理论、实验与应用.天津大学出版社,2001.
    [70]管迪华.模态分析技术.清华大学出版社,1996
    [71]傅志方,华宏星.模态分析理论与应用.上海交通大学出版社,2000.
    [72]许本文,焦群英.机械振动与模态分析基础.机械工业出版社,1998.
    [73]王文亮,杜作润.结构振动与动态子结构方法.上海:复旦大学出版社,1985
    [74]邢静忠,王永岗,陈晓霞.ANYSYS7.0分析实例与工程应用.北京:机械工业出版社,2004.
    [75]倪栋,段进,徐久成.通用有限元分析ANYSYS7.0实例精解.北京:电子工业出 版社、2003.
    [76]赵阳,高淑华等.复杂结构的动力学模型缩聚.复旦学报,2005,44(3):355-362.
    [77]杨为,邱清盈等.机械结构的理论模态分析方法.重庆大学学报,2004,27(6):1-4.
    [78]周新民,廖伯瑜,尹志宏等.机械结构有限元建模动态凝聚技术的应用.重庆大学学报,2000,27:20-23.
    [79]Hatch,Michael R.Vibration Simulation Using MATLAB and ANSYS.U.S.:Chapman& Hall/CRC,2001.
    [80]方子帆,邓兆祥.汽车振动系统状态空间模型的研究.中国机械工程,2005,16(4):353-357.
    [81]魏巍.MATLAB控制工程工具箱技术手册.北京:国防工业出版社,2004.
    [82]张诤,杨文平等.MATLAB程序设计与实例应用.北京:中国铁道出版社,2003.
    [83]Chua L O,Lin T.Chaos in digital filters.IEEE Transactions on circuits and system,1988,CAS-34:648-658
    [84]张琪昌,王洪礼,竺致文等.分岔与混沌理论及应用.天津大学出版社,2004.
    [85]陈予恕.非线性振动.天津:天津科技出版社,1983.
    [86]刘秉正,彭建华.非线性动力学.北京:高等教育出版社,2003.
    [87]陈士华,陆均安.混沌动力学初步.武汉:武汉水利电力大学出版社,1998.
    [88]Fabio Sattin,Lyap.A fortran 90 program to computer the Lyapunov exponent of a dynamic system from a time series.Computer physics communications,1997,107(3):253-257
    [89]Wolf A,Swift J B,et al.Determining Lyapunov exponents from a time series.Physica D,1985,16:285-317
    [90]Barana G,Tsuda L A.A new method for computing Lyapunov exponents.Physics Letters A,1993,175(6):421-427
    [91]吕金虎,张锁春.Lyapunov指数的数值计算方法.非线性动力学学报,2001,8(1):84-92
    [92]Oiwa N N,N Fiedler-Ferrara.A fast algorithm for estimating Lyapunov exponents from time series.Physics Letters A,1998,246(1):117-121
    [93] R. Van Dooren. Chaos in a pendulum with forced horizontal support motion: a tutorial.Chaos, Solitons & Fractals, 1996, 7(1): 77-90
    [94] Jianping Yang, Zhujun Jing. Inhibition of chaos in a pendulum equation. Chaos,Solitons & Fractals, 2008, 35(4): 726-737
    [95] J L Trueba, J P Baltanas, M A F Sanjuan. A generalized perturbed pendulum. Chaos, Solitons & Fractals, 2003,15(5): 911-924
    
    [96] Z M Geand, T N Lin. Regular and chaotic dynamic analysis and control of chaos of an elliptical pendulum on a vibrating basement. Journal of sound and vibration, 2000,230(5): 1045-1068
    [97] Cao H J, Chi X B, Chen G R. Suppressing or inducing chaos by weak resonant excitations in an externally-forced froude pendulum. International journal of bifurcation and chaos, 2004,14(3): 1115-1120
    
    [98] Z M Geand, T N Lin. Regular and chaotic dynamic analysis and control of chaos of an elliptical pendulum on a vibrating basement. Journal of sound and vibration, 2000,230(5): 1045-1068
    
    [99] Clifford MJ, Bishop SR. Rotating periodic orbits of the parametric excited pendulum.Phys Lett A, 1995, 201: 191-196.
    
    [100] Bishop S R, Clifford M J. Zones of chaotic behaviour in the parametrically excited pendulum. J Sound Vib, 1996,189:142-147.
    
    [101] Starrett J, Tagg R. Control of a chaotic parametrically driven pendulum. Phys Rev Lett,1995, 74: 1974-7.
    
    [102] I. G Jason, A. G. Mark. A Simple Model for Heave-induced Dynamic Tension in Catenary Moorings. Applied Ocean Research, 2001, (23): 159-174
    
    [103] T. R. Goodman, P. Kaplan, T. P. Sarsen, J. Benison. Static and Dynamic Analysis of A moored Buoy System, NDBCM, 1972, 6-113
    
    [104] Shan Huang. Dynamic Analysis of Three-Dimensional Marine Cables. Ocean Engineering, 1994, 6(21): 587-605
    
    [105] A. P. Shashikala, R. Sundaravadivelu, C. Ganapathy. Dynamic of A Moored Barge under Regular and Random Waves. Ocean Engineering, 1997, 5(40): 401-430
    [106]Per.I.Johansson.A Finite Element Model for Dynamic Analysis of Mooring Cables.MIT,1976
    [107]胡学军.锚索动力学分析:[硕士学位论文].武汉:华中科技大学,2007
    [108]孙意卿.海洋工程环境条件及其载荷.上海:上海交通大学出版社,1989
    [109]黄祥鹿,陆鑫森.海洋工程流体力学及结构动力响应.上海:上海交通大学出版社,1992
    [110]聂武,刘玉秋.海洋工程结构动力分析.哈尔滨:哈尔滨工程大学出版社,2002
    [111]林成森.数值计算方法.北京:科学出版社.1998.
    [112]唐友刚.高等结构动力学.天津:天津大学出版社,2002.
    [113]K.J巴特.E.L.威尔逊.有限元分析中的数值方法,林公豫,罗恩译.北京:科学出版社,1985.
    [114]李增刚.ADAMS入门详解与实例.国防工业出版社,2006.
    [115]郑建荣.ADAMS—虚拟样机技术入门与提高.北京:机械工业出版社,2002.
    [116]Mechanical Dynamics Inc.Using the ADAMS/View Function Builder.2002.
    [117]Mechanical Dynamics Inc.ADAMS User's Reference Manual,2000
    [118]起重机设计规范(GB3811-83).北京:国家标准局,1983
    [119]金启华.基于虚拟样机的岸边集装箱起重机若干动力学研究:[硕士学位论文].上海:华东理工大学,2003
    [120]F.Ju,Y.S.Choo,F.S.Cui.Dynamic response of tower crane induced by the pendulum motion of the payload.International Journal of Solids and Structures,2006,(43):376-389.
    [121]Eftychios G.Christoforou.The Control of Flexible-Link Robots Manipulating Large Payloads:Theory and Experiments.Journal of Robotic System,2000,17(5):255-271
    [122]S Moorehead,D Wang.Collision Detection Using a Flexible Manipulator:A Feasibility Study Proceedings of the 1996 IEEE International Conference on Robotics and Automation,1996:804-809
    [123]Zhang D J,Liou Y W,et al.Flexible multibody system dynamics finite segment method.Chinese Journal of Mechanical Engineering,1994,7(2):156-162
    [124]Konno A,Uchiyama M.Modeling of a flexible manipulator dynamics based on the Holzer's method.Journal of Japan Robot Institute,1994,12(7):1021-1028
    [125]Benati M,Morro A.Formulation of equations of motion for a chain of flexible links using hamilton's principle.ASME Transactions,Journal of Dynamic systems,Measurement,and Control,1994,116(4):81-88
    [126]Zhang D J,Liu Y W,Houston R L.On the dynamics of an arbitrary flexible body with large overall motion:an integrated approach.Mechanism and Machine Theory,1995,23(3):419-438
    [127]黄文虎,邵成勋等.多柔体系统动力学(第1版)[M].北京:科学出版社,1996
    [128]孙世基,黄承绪.机械系统刚柔耦合动力分析及仿真.北京:人民交通出版社,2000
    [129]刘锦阳,洪嘉振.柔性体的刚-柔耦合动力学分析.固体力学学报,2002,23(2):159-166

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700