用户名: 密码: 验证码:
1α,25-二羟维生素D3对BMP2基因表达的调控及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     维生素D3是目前临床上治疗骨质疏松的常用药物,它在体内通过羟化生成活性代谢产物1,25(OH)2D3(1a,25-dihydroxyvitamin D3)而发挥生理作用。1,25(OH)2D3是一种具有多种生物效应的激素前体,其主要是通过与靶细胞内的维生素D受体(Vitamin D receptor, VDR)结合后调节各种基因的表达,从而发挥其生理效应。它具有促进肠道钙和磷的吸收,促进肾小管对钙、磷的重吸收的作用。它一方面可以协同甲状旁腺激素刺激骨组织脱钙,提高血钙、磷浓度;另一方面也可以抑制甲状旁腺激素的合成释放,从而抑制甲状旁腺激素的骨溶解作用,使骨丢失减少。但是目前关于1,25(OH)2D3对骨形成及成骨细胞作用的报道仍很不一致。部分研究认为1,25(OH)2D3可诱导成骨细胞的分化成熟,对骨组织的形成有直接的促进作用。而另外一些研究则认为1,25(OH)2D3对成骨细胞有明显的抑制作用,直接抑制骨形成。因此,1,25(OH)2D3对骨形成的作用及机制仍需要进一步的研究。
     骨形态发生蛋白(Bone morphogenetic protein, BMP)是一组分泌性的多功能蛋白质,除BMP1外均属于TGF-β(转化生长因子-p)超家族成员,在体内可以通过旁分泌和自分泌的形式诱导骨的形成,是目前公认最强的骨诱导因子。BMP2是其中研究和应用最广泛的成骨生长因子之一,它可以在体外诱导间充质干细胞向成骨细胞分化,体内诱导骨形成。BMP2在启动和调节骨形成中起着关键的作用,因此任何影响BMP2基因表达的因素都可能会影响骨形成。
     若能阐明1,25(OH)2D3与BMP2基因表达的关系,对进一步理解1,25(OH)2D3在骨形成中的作用会有很大的帮助,目前文献中尚未有此类报道。
     遗传性高钙尿(Genetic hypercalciuric stone-forming, GHS)大鼠是研究特发性高钙尿(Idiopathic hypercalciuria, IH)患者的理想动物模型,它们都表现为小肠的钙吸收增加,肾脏的尿钙重吸收减少,骨密度减低。既往的研究表明GHS大鼠中肠钙吸收的增加,尿钙重吸收的减少与组织中VDR水平的增加有很大的关系。但是GHS大鼠中骨密度减低的原因仍不是十分清楚。本研究旨在通过探寻GHS大鼠中VDR与BMP2的关系来分析这种动物模型中骨密度减低的可能原因,并进一步探讨1,25(OH)2D3对BMP2基因表达的调控及可能的机制,从而进一步分析1,25(OH)2D3在骨形成中的作用及机制。
     目的:
     1、研究GHS大鼠和正常SD大鼠相同组织中维生素D受体蛋白和BMP2mRNA的基础表达水平并进行比较,分析VDR和BMP2可能存在的联系。
     2、体外培养GHS大鼠和SD大鼠的骨髓基质干细胞,以及UMR-106细胞,研究1,25(OH)2D3对BMP2mRNA表达的影响。
     3、研究1,25(OH)2D3调控BMP2基因转录表达的作用机制。
     4、探讨DNA甲基化和组蛋白修饰在1,25(OH)2D3调控BMP2基因表达中的作用。
     方法:
     1、选取成年GHS大鼠和SD大鼠,断颈处死,无菌条件下取出股骨和胫骨,抽取骨髓,应用红细胞裂解法及直接贴壁法获取并体外培养骨髓基质干细胞,无菌条件下取出肾脏及小肠,置入液氮中快速冷冻。应用蛋白质印迹(Western blot)法检测GHS和SD大鼠骨髓基质干细胞、肾脏和小肠中的维生素D受体蛋白的水平。应用实时定量聚合酶链反应(Quantitative real-time polymerase chain reaction, qRT-PCR)法检测GHS和SD大鼠骨髓基质干细胞、肾脏和小肠中的BMP2mRNA的表达。
     2、分别应用1,25(OH)2D3处理体外培养的GHS大鼠和SD大鼠的骨髓基质干细胞和UMR-106细胞,应用qRT-PCR法检测细胞中BMP2mRNA表达的变化。
     3、应用软件分析BMP2基因转录调控区内可能的VDR结合位点,根据分析结果的基因序列,利用引物设计软件Primer Premier5.0辅助设计相应的扩增引物。
     4、应用染色质免疫沉淀技术(Chromatin Immuno-Precipitation, ChIP)检测VDR与BMP2转录调控区DNA的结合,应用方法3中获得的扩增引物对ChIP产物进行PCR扩增,扩增产物进行凝胶电泳分析。
     5、克隆方法4中获得的BMP2转录调控区内VDR结合位点的基因片段,构建含此基因片段的荧光素酶基因表达载体,通过荧光素酶报告基因检测系统分析此片段的转录活性。
     6、DNA甲基转移酶抑制剂5-aza-2'-deoxycytidine (DAC)单独或联合1,25(OH)2D3处理体外培养的骨髓基质干细胞和UMR-106细胞,应用qRT-PCR检测BMP2mRNA的表达变化。组蛋白去乙酰酶抑制剂trichostatin A (TSA)单独或联合1,25(OH)2D3处理细胞,应用qRT-PCR检测BMP2mRNA的表达变化。
     7、1,25(OH)2D3处理UMR-106细胞后提取基因组DNA,应用重亚硫酸盐焦磷酸测序法(Bisulfite pyrosequencing)检测BMP2基因转录调控区CpG位点的甲基化状态的改变。
     8、1,25(OH)2D3处理UMR-106细胞后,应用染色质免疫沉淀技术检测BMP2转录调控区H3K9甲基化、组蛋白H3乙酰化程度的改变。
     结果:
     1、GHS大鼠骨髓基质干细胞、肾脏和小肠中的维生素D受体蛋白的水平较正常SD大鼠明显增加,BMP2mRNA的表达较正常SD大鼠明显降低。
     2、以10-8mol/L的1,25(OH)2D3分别处理体外培养的SD大鼠和GHS大鼠骨髓基质干细胞6h、12h和24h,与空白对照组比较,BMP2mRNA的表达均明显降低。以10-8mol/L的1,25(OH)2D3分别处理培养的UMR-106细胞1h、6h、12h、24h和48h,与空白对照组比较,BMP2mRNA的表达均明显降低。以不同浓度的1,25(OH)2D3分别处理体外培养的GHS大鼠和SD大鼠的骨髓基质干细胞和UMR-106细胞24h,与空白对照组比较,BMP2mRNA的表达均明显降低。
     3、软件分析了包括BMP2基因及其侧翼序列在内的共计28,545bp的一段基因序列,共获得8个可能存在的VDR结合位点(Region A-H)。
     4、以VDR抗体进行ChIP实验,将ChIP产物PCR扩增后,进行凝胶电泳分析显示VDR能结合BMP2转录调控区的Region C片段。
     5、成功构建了pGL3-Region C-promoter荧光素酶报告基因质粒,将其转染入UMR-106细胞,结果显示构建的pGL3-Region C-promoter荧光素酶报告基因与空白对照的PGL3-promoter相比,表达活性显著降低。1,25(OH)2D3的处理,使报告基因的荧光素酶表达活性进一步显著降低。
     6、不同浓度(0.5,1,2umol/L)的DAC处理来源于GHS大鼠的骨髓基质干细胞及UMR-106细胞后,均显著上调BMP2mRNA的表达,仅有0.5umol/L的DAC上调来源于SD大鼠的骨髓基质干细胞中BMP2mRNA的表达。但是当与1,25(OH)2D3联合使用时,与单独1,25(OH)2D3处理组相比,较高浓度(1,2umol/L)的DAC均能显著上调三种细胞中BMP2mRNA的表达。
     7、不同浓度(20,100,500nmol/L)的TSA处理来源于SD大鼠的骨髓基质干细胞后,显著上调BMP2mRNA的表达,而仅有20nmol/L的TSA上调来源于GHS大鼠的骨髓基质干细胞中BMP2mRNA的表达。当与1,25(OH)2D3联合使用处理来源于SD和GHS大鼠的骨髓基质干细胞,以及UMR-106细胞时,与单独1,25(OH)2D3处理组相比,较高浓度(100,500nmol/L)的TSA均能显著上调BMP2mRNA的表达。
     8、1,25(OH)2D3处理后,重亚硫酸盐测序显示BMP2基因转录调控区RegionC区域的一个CpG位点完全甲基化,而对照组同一CpG位点仍呈去甲基化状态。
     9、染色质免疫沉淀技术检测显示1,25(OH)2D3处理UMR-106细胞后,提高了BMP2转录调控区Region C区域H3K9甲基化的程度,显著降低了BMP2转录调控区Region C区域组蛋白H3乙酰化的程度。
     结论:
     1、在GHS大鼠的相同组织中,与正常SD大鼠比较,VDR水平升高而BMP2mRNA的表达降低。
     2、在体外培养条件下,1,25(OH)2D3可明显抑制骨髓基质干细胞及类成骨细胞中BMP2mRNA的表达。3、1,25(OH)2D3可通过与VDR的复合,进一步结合BMP2转录调控区的Region C区域,从而抑制BMP2基因的转录表达。
     4、DNA甲基化和组蛋白修饰协同参与1,25(OH)2D3调控BMP2基因的转录表达过程。
Background:
     Vitamin D3is commonly used in the treatment of Osteoporosis. It is hydroxylated into active metabolites1,25(OH)2D3in the body, which plays multiple physiological function. It plays a key role in the regulation of bone metabolism.1,25(OH)2D3regulates gene expression in many tissues via binding to its corresponding intra-nuclear receptor, VDR, a member of the steroid hormone receptor superfamily. It can promote the intestinal absorption and the renal tubule reabsorption of calcium and phosphorus. On one hand, it can collaborate with parathyroid hormone to stimulate bone decalcification to improve blood calcium and phosphorus concentrations; On the other hand, it can also decrease the producing and releasing of parathyroid hormone, thus inhibiting the osteolysis effect of parathyroid hormone, which reduce the bone loss. But until now, the effects of1,25(OH)2D3on bone formation and osteoblast are still in controversy. Some studies reported that1,25(OH)2D3induced the proliferation and differentiation of osteoblast, and it directly up-regulated bone formation. While, others reported that1,25(OH)2D3inhibited the function of osteoblast and down-regulated bone formation. Thus, the detailed mechanisms of1,25(OH)2D3in bone formation need further study.
     Bone morphogenetic proteins (BMPs), a set of secretory multifunctional proteins, are belong to the transformation growth factor-β (TGF-β) superfamily except BMP1. It induced bone formation in vivo and is recognized as the strongest osteoinductive factor. BMP2, one of the most well characterized BMPs, is an osteogenic factor that stimulates osteoblast differentiation in vitro, as well as bone formation in vivo. It plays a central role in initiating and regulating bone formation, so any factors that regulate the expression of BMP2would be expected to influence bone formation.
     The interaction between1,25(OH)2D3and BMP2is not fully known, and further studies may help a lot to understand the effects of1,25(OH)2D3on bone formation.
     Genetic Hypercalciuric Stone-forming (GHS) rat is a good model to study human idiopathic hypercalciuria (IH), as both of them show increased intestinal Ca absorption, decreased renal Ca reabsorption and low bone mass. Previous studies have reported high levels of VDR in GHS rat can account for all of the changes in calcium metabolism that lead to hypercalciuria. But the pathogenesis of the low bone mass is incompletely known. This study aims to explore the relationship between VDR levels and BMP2expression to analyze the possible reasons of low bone mass in GHS rats. Further studies were done on the effects and mechanisms of1,25(OH)2D3on BMP2gene expression, which may help a lot to understand the effects1,25(OH)2D3on bone formation.
     Objectives:
     1. To compare vitamin D receptor (VDR) levels and BMP2mRNA expressions in the same tissues of GHS Rats and SD Rats, and analyze the potential relationship between them.
     2. To culture Bone marrow stromal cells (BMSCs) from GHS rats and SD rats, and UMR-106cell lines, and study the effects of1,25(OH)2D3on BMP2mRNA expression.
     3. To study the potential regulatory mechanism of1,25(OH)2D3on the BMP2gene expression.
     4. To investigate the effects of DNA methylation and histone modification in1,25(OH)2D3-induced transcriptional regulation of BMP2.
     Methods:
     1. Bone marrow was obtained from tibias and femurs of adult GHS rats and SD rats in aseptic condition. The BMSCs purified by red blood cell lysis buffer and direct adherent method, were cultured in vitro. Kidney and intestine were obtained in aseptic condition and were directly put into liquid nitrogen for rapid frozen. VDR levels in BMSCs, kidney and intestine from GHS and SD rats were determined by Western blot. BMP2mRNA expression in BMSCs, kidney and intestine from GHS and SD rats were determined by quantitative real time polymerase chain reaction (qRT-PCR).
     2.1,25(OH)2D3were used to treat BMSCs and UMR-106cells, and the changes of BMP2mRNA expression were determined by qRT-PCR.
     3. BMP2promoter regions were screened for putative VDR binding site. Corresponding primer pairs for detecting these loci were designed using Primer Premier5.0software.
     4. VDR binding to the BMP2promoter was identified by ChIP assay. The DNA fragments were subjected to PCR with the primer pairs designed in method3.
     5. DNA fragment containing VDR binding site in BMP2promoter was cloned to construct a luciferase vector. The activity of BMP2promoter was investigated by luciferase reporter assay.
     6. Treat BMSCs and UMR-106cells with the DNA methyltransferase inhibitor5-aza-2'-deoxycytidine (DAC) or together with1,25(OH)2D3, and investigate BMP2expression by qRT-PCR. Treat cells with histone deacetylase inhibitor trichostatin A (TSA) or together with1,25(OH)2D3, and investigate BMP2expression by qRT-PCR.
     7. Isolate genomic DNA from UMR-106cells incubated with1,25(OH)2D3or vehicle. Methylation status of CpG sites in the BMP2promoter region was examined by Bisulfite pyrosequencing.
     8. H3k9methylation status and H3acetylation status in the BMP2promoter region were examined using ChIP assay.
     Results:
     1. VDR levels are much higher in BMSCs, kidney and intestine from GHS rats compared to SD rats. While BMP2mRNA expressions are lower in BMSCs, kidney and intestine from GHS rats compared to SD rats.
     2. BMP2mRNA expression in BMSCs was significantly down-regulated in the presence of1,25(OH)2D3at6,12and24hr in SD and GHS rats. Using UMR-106cells cultured with1,25(OH)2D3over1-48hr created a time-dependent decrease in BMP2mRNA expression. Suppression of BMP2mRNA by1,25(OH)2D3was dose-dependent in BMSCs from SD and GHS rats, and UMR-106cells.
     3. The entire BMP2and its flanking regions (a total of28,545bp) were screened for putative VDR binding site and eight putative VDREs were identified. Seven primer pairs were designed to match the putative binding sites.
     4. Using the ChIP assay, significant binding of VDR to BMP2promoter region C was identified in cells incubated with1,25(OH)2D3. The other putative sites showed no binding to VDR.
     5. Activity of the Luciferase promoter of the constructed reporter gene reduced significantly comparing with the control. Following administration of1,25(OH)2D3, the Luciferase activity of the constructed reporter gene furtherly reduced significantly.
     6. DAC (0.5umol/L) upregulated BMP2expression in BMSCs from SD rats. Consistent up-regulation of BMP2expression occurred in BMSCs from GHS rats and UMR-106cells following DAC (0.5,1.0and2.0umol/L) administration. When incubated with1,25(OH)2D3, higher concentrations (1.0and2.0μM) of DAC induced BMP2expression in cells.
     7. Different concentrations of TSA (20,100,500nmol/L) up-regulated BMP2expression in BMSCs from SD rats and only20nM TSA increased BMP2expression in BMSCs from GHS rats. With1,25(OH)2D3, both100and500nM TSA up-regulated BMP2expression in cells.
     8. Bisulfite pyrosequencing demonstrate that one CpG site was completely (100%,25C/0T) methylated after incubation with1,25(OH)2D3. In the untreated control cell line, this CpG site was not methylated.
     9. ChIP assays demonstrate that administration with1,25(OH)2D3increased dimethylation of H3k9and decreased the acetylation of histone H3in the BMP2promoter region C in UMR-106cells
     Conclusions:
     1. VDR levels increase, while BMP2expressions decrease in the same tissues of GHS rats.
     2.1,25(OH)2D3administration down-regulates BMP2mRNA expression in vitro.
     3.1,25(OH)2D3down-regulates BMP2gene transcriptional expression in osteoblast-like cells by binding to a VDR binding site in the BMP2promoter.
     4. Both DNA methylation and histone modification are involved in1,25(OH)2D3-induced transcriptional regulation of BMP2.
引文
1. Raisz LG (2005) Pathogenesis of osteoporosis:concepts, conflicts, and prospects[J]. The Journal of Clinical Investigation 115(12):3318-25.
    2. Cummings SR, Melton LJ (2002) Epidemiology and outcomes of osteoporotic fractures[J]. Lancet 359(9319):1761-1767.
    3. Pei L, Tontonoz P (2004) Fat's loss is bone's gain[J]. The Journal of clinical investigation 113(6):805-806.
    4. Walters MR (1992) Newly identified actions of the Vitamin D endocrine system[J]. Endocr Rev 13 (4):719-764.
    5. Bouillon R, Okamura WH, Norman AW (1995) Structure-function relationships in the Vitamin D endocrine system[J]. Endocr Rev 16 (2):200-257.
    6. DeLuca HF (1988) The vitamin D story:A collaborative effort of basic science and clinical medicine[J]. FASEB J 2(3):224-236.
    7. Erben RG, Scutt AM, Miao D, Kollenkirchen U, Haberey M (1997) Short-term treatment of rats with high dose 1,25-dihydroxyvitamin D3 stimulates bone formation and increases the number of osteoblast precursor cells in bone marrow[J]. Endocrinology 138 (11):4629-4635.
    8. Erben RG, Bromm S, Stangassinger M (1998) Therapeutic efficacy of lalpha, 25-dihydroxyvitamin D3 and calcium in osteopenic ovariectomized rats:evidence for a direct anabolic effect of lalpha,25-dihydroxyvitamin D3 on bone[J]. Endocrinology 139(10):4319-4328.
    9. van Leeuwen JP, van Driel M, van den Bemd GJ, Pols HA (2001) Vitamin D control of osteoblast function and bone extracellular matrix mineralization[J]. Crit Rev Eukaryot Gene Expr 11(1-3):199-226.
    10. Tanaka H, Seino Y (2004) Direct action of 1,25-dihydroxyvitamin Don bone: VDRKO bone shows excessive bone formation in normal mineral condition[J]. J Steroid Biochem Mol Biol 89-90(1-5):343-345.
    11. Sooy K, Sabbagh Y, Demay MB (2005) Osteoblasts lacking the Vitamin D receptor display enhanced osteogenic potential in vitro[J]. J Cell Biochem 94(1): 81-87.
    12. Drissi H, Pouliot A, Koolloos C, Stein JL, Lian JB, et al. (2002) 1,25-(OH)2-vitamin D3 suppresses the bone-related Runx2/Cbfal gene promoter. Exp Cell Res 274:323-333.
    13. Liberman UA, Sperling O, Atsmon A, Frank M, Modan M, et al. (1968) Metabolic and calcium kinetic studies in idiopathic hypercalciuria[J]. J Clin Invest 47(12):2580-2590.
    14. Bushinsky DA, Favus MJ (1988) Mechanism of hypercalciuria in genetic hypercalciuric rats. Inherited defect in intestinal calcium transport[J]. J Clin Invest 82(5):1585-1591.
    15. Tsuruoka S, Bushinsky DA, Schwartz GJ (1997) Defective renal calcium reabsorption in genetic hypercalciuric rats[J]. Kidney Int 5(5)1:1540-1547.
    16. Bushinsky DA (1996) Genetic hypercalciuric stone forming rats[J]. Semin Nephrol 16(5):448-457.
    17. Yao J, Kathpalia P, Bushinsky DA, Favus MJ (1998) Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats[J]. J Clin Invest 101(10):2223-2232.
    18. Karnauskas AJ, van Leeuwen JP, van den Bemd GJ, Kathpalia PP, DeLuca HF, et al. (2005) Mechanism and function of high vitamin D receptor levels in genetic hypercalciuric stone-forming rats[J]. J Bone Miner Res 20(3):447-454.
    19. Bai S, Favus MJ (2006) Vitamin D and calcium receptors:links to hypercalciuria[J]. Curr Opin Nephrol Hypertens 15(4):381-385.
    20. Bai S, Wang H, Shen J, Zhou R, Bushinsky DA, et al. (2010) Elevated vitamin D receptor levels in genetic hypercalciuric stone-forming rats are associated with downregulation of Snail[J]. J Bone Miner Res 25(4):830-840.
    21. Bushinsky DA, Frick KK, Nehrke K (2006) Genetic hypercalciuric stone-forming rats[J]. Curr Opin Nephrol Hypertens 15(4):403-418.
    22. Partridge NC,Alcorn D, Michelangeli VP,Ryan G, Martin TJ (1983) Morphological and biochemical characterization of four clonal osteogenic sarcoma cell lines of rat origin[J]. Cancer Res 43(9):4308-4314.
    23. Qin L, Qiu P, Wang L, Li X, Swarthout JT, et al. (2003) Gene expression profiles and transcription factors involved in parathyroid hormone signaling in osteoblasts revealed by microarray and bioinformatics[J]. J Biol Chem 278(22): 19723-19731.
    24. Wong RW, Rabie AB (2006) Effect of naringin on bone cells[J]. J Orthop Res 24(11):2045-2050.
    25. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR [J]. Nucleic Acids Res 29(9):e45.
    26. Holick MF (2007) Vitamin D deficiency [J]. N Engl J Med 357(3):266-281.
    27. Gray RW, Omdahl JL, Ghazarian JG, DeLuca HF (1972) 25-Hydroxycholecalciferol-1-hydroxylase. Subcellular location and properties[J]. J Biol Chem 247(23):7528-7532.
    28. Scarlett WL (2003) Ultraviolet radiation:sun exposure, tanning beds, and vitamin D levels. What you need to know and how to decrease the risk of skin cancer [J]. J Am Osteopath Assoc 103(8):371-375.
    29. Norman AW (2008) From vitamin D to hormone D:fundamentals of the vitamin D endocrine system essential for good health[J], Am J Clin Nutr 88(2):491-499.
    30. Mawer EB, Davies M (2001) Vitamin D nutrition and bone disease in adults[J]. Rev Endocr Metab Disord 2(2):153-164.
    31. Ledger GA, Burritt MF, Kao PC, O'Fallon WM, Riggs BL, et al. (1994) Abnormalities of parathyroid hormone secretion in elderly women that are reversible by short term therapy with 1,25-dihydroxyvitamin D3[J]. J Clin Endocrinol Metab 79(1):211-216.
    32. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly:consequences for bone loss and fractures and therapeutic implications[J]. Endocr Rev 22(4):477-501.
    33. Reichel H, Koeffler HP, Norman AW (1989) The role of the vitamin D endocrine system in health and disease[J]. N Engl J Med 320(15):980-991.
    34. Faugere MC, Okamoto S, DeLuca HF, Malluche HH (1986) Calcitriol corrects bone loss induced by oophorectomy in rats[J]. Am J Physiol 250(1 Pt 1):E35-388.
    35. Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, et al. (1998) The nuclear vitamin D receptor:biological and molecular regulatory properties revealed[J]. J. Bone Miner Res 13(3):325-349.
    36. Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA, Haussler MR (2001) Molecular nature of the vitamin D receptor and its role in regulation of gene expression[J]. Rev Endocr Metab Disord 2(2):203-216.
    37. Elaroussi MA, Prahl JM, Deluca HF (1994) The avian vitamin D receptors: primary structures and their origins [J]. Proc Natl Acad Sci USA 91(24): 11596-11600.
    38. Rastinejad F, Perlmann T, Evans RM, Sigler PB (1995) Structural determinants of nuclear receptor assembly on DNA direct repeats[J]. Nature 375(6528):203-211.
    39. Strugnell SA, Deluca HF (1997) The vitamin D receptor-structure and transcriptional activation[J]. Proc Soc Exp Biol Med 215(3):223-228.
    40. Nakajima S, Hsieh JC, Jurutka P, Galligan MA, Haussler CA, et al. (1996) Examination of the potential functional role of conserved cysteine residues in the hormone binding domain of the human 1,25-dihydroxyvitamin D3 receptor[J]. J Biol Chem 271(9):5143-5149.
    41. Ylikomi T, Laaksi I, Lou YR, Martikainen P, Miettinen S, et al. (2002) Antipoliferative action of vitamin D[J]. Vitam Horm 64:357-406.
    42. Glass CK (1994) Differential recognition of target genes by nuclear receptor monomers, dimmers, and heterodimers[J]. Endocr Rev 15(3):391-407.
    43. Umesono K, Evans RM (1989) Determinants of target gene specificity for steroid/thyroid hormone receptors[J]. Cell 57(7):1139-1146.
    44. Umesono K, Murakami KK, Thompson CC, Evans RM (1991) Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors[J]. Cell 65(7):1255-1266.
    45. Towers TL, Luisi BF, Asianov A, Freedman LP (1993) DNA target selectivity by the vitamin D3 receptor:mechanism of dimer binding to an asymmetric repeat element[J]. Proc Natl Acad Sci USA 90(13):6310-6314.
    46. Candeliere GA, Jurutka PW, Haussler MR, St-Arnaud R (1996) A composite element binding the vitamin D receptor, retinoid X receptor alpha, and a member of the CTF/NF-1 family of transcription factors mediates the vitamin D responsiveness of the c-fos promoter[J]. Mol Cell Biol 16(2):584-592.
    47. Koszewski NJ, Reinhardt TA, Horst RL (1996) Vitamin D receptor interactions with the murine osteopontin response element[J]. J Steroid Biochem Mol Biol 59(5-6):377-388.
    48. Rachez C, Freedman LP (2000) Mechanisms of gene regulation by vitamin D(3) receptor:a network of coactivator interactions[J]. Gene 246 (1-2):9-21.
    49. Majeska RJ, Rodan GA (1982) The effect of 1,25(OH)2D3 on alkaline phosphatase in osteoblastic osteosarcoma cells[J]. J Biol Chem 257(7):3362-3365.
    50. Beresford JN, Gallagher JA, Russell RG (1986) 1,25-Dihydroxyvitamin D3 and human bone-derived cells in vitro:effects on alkaline phosphatase, type I collagen and proliferation[J]. Endocrinology 119(4):1776-1785.
    51. Owen TA, Aronow MS, Barone LM, Bettencourt B, Stein GS, et al. (1991) Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype:dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures[J]. Endocrinology 128(3):1496-1504.
    52. Sooy K, Sabbagh Y, Demay MB (2005) Osteoblasts lacking the vitamin D receptor display enhanced osteogenic potential in vitro[J]. J Cell Biochem 94(l):81-87.
    53. Tanaka H, Seino Y (2004) Direct action of 1,25-dihydroxyvitamin D on bone: VDRKO bone shows excessive bone formation in normal mineral condition[J]. J Steroid Biochem Mol Biol 89-90(1-5):343-34
    54. Martin TJ (1983) Drug and hormone effects on calcium release from bone[J]. Pharmacol Ther 21(2):209-228.5.
    55. Urist MR (1965) Bone:formation by autoinduction[J]. Science 150(3698): 893-899.
    56. Urist MR (1970) The substratum for bone morphogenesis[J]. Symp Soc Dev Biol 29:125-163.
    57. Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, et al. (1988) Novel regulators of bone formation:Molecular clones and activities[J]. Science 242(4885):1528-1534.
    58. Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, et al. (1994) Bone morphogenetic protein-2 converts the differentiation pathway of C2C12 myoblasts into the osteoblast lineage[J].J Cell Biol 127(6 Pt 1):1755-1766。
    59. Wang EA, Rosen V, D' Alessandro JS, Bauduy M, Cordes P, et al. (1990) Recombinant human bone morphogenetic protein induces bone formation[J]. Proe Natl Aead Sei USA 87(6):2220-2224.
    60. Huang W, Rudkin GH, Carlsen B, Ishida K, Ghasri P, et al. (2002) Overexpression of BMP-2 modulates morphology, growth, and gene expression in osteoblastic cells[J].Exp Cell Res 274(2):226-234.
    61. Harris SE, Bonewald LF, Harris MA, Sabatini M, Dallas S, et al. (1994) Effects of transforming growth factor beta on bone nodule formation and expression of bone morphogentic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts[J]. J Bone Miner Res 9(6):855-863.
    62. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, et al. (2002) Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells[J]. J Bone Miner Res 17(1):101-110.
    63. Liu SB, Hu PZ, Hou Y, Li P, Cao W, et al. (2009) Recombinant human bone morphogenetic Protein-2 promotes the proliferation of mesenchymal stem cells in vivo and in vitro[J].Chin Med J (Engl) 122(7):839-843
    64. Hong L, Tabata Y, Yamamoto M, Miyamoto S, Yamada K, et al. (1998) Comparison of bone regeneration in a rabbit skull defect by recombinant human BMP-2 incorporated in biodegradable hydrogel and in solution[J] J Biomater Sci Polym Ed 9(9):1001-1014.
    65. Murakami N, Saito N, Takahashi J, Ota H, Horiuchi H, et al. (2003) Repair of a proximal femoral bone defect in dogs using a porous surfaced prosthesis in combination with recombinant BMP-2 and a synthetic polymer carrier [J]. Biomaterials 24(13):2153-2159.
    66. Bostrom MP, Lane JM,Berberian WS,Missri AA,Tomin E,et al. (1995) Immunolocalization and expression of bone morphogenetic proteins 2 and 4 in fracture healing[J]. J Orthop Res 13(3):357-367.
    67. Cho TJ, Gerstenfeld LC, Einhorn TA (2002) Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing[J]. J Bone Miner Res 17(3):513-20.
    68. Spector JA, Luchs JS, Mehrara BJ, Greenwald JA, Smith LP, et al. (2001) Expression of bone morphogenetic proteins during membranous bone healing[J].Plast Reconstr Surg 107(1):124-34.
    69. Celeste AJ, Iannazzi JA, Taylor RC, Hewick RM, Rosen V, et al. (1990) Identification of transforming growth factor beta family members present in bone-inductive protein purified from bovine bone[J]. Proc Natl Acad Sci USA 87(24):9843-98447.
    70. Tsuji K, Bandyopadhyay A, Harfe BD, Cox K, Kakar S, et al. (2006) BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing[J]. Nat Genet 38(12):1424-1429.
    71. Grynpas M, Waldman S, Holmyard D, Bushinsky DA (2009) Genetic hypercalciuric stone-forming rats have a primary decrease in BMD and strength[J]. J Bone Miner Res 24(8):1420-1426.
    72. Pietschmann F, Breslau NA, Pak CY (1992) Reduced vertebral bone density in hypercalciuric nephrolithiasis[J]. J Bone Miner Res 7(12):1383-1388.
    73. Asplin JR, Donahue S, Kinder J, Coe FL (2006) Urine calcium excretion predicts bone loss in idiopathic hypercalciuria[J]. Kidney Int 70(8):1463-1467.
    1. Yamamoto KR (1985) Steroid receptor regulated transcription of specific gene and gene networks. Annu Rev Genet 19:209-52.
    2. Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, et al. (1998) The nuclear vitamin D receptor:biological and molecular regulatory properties revealed[J]. J. Bone Miner Res 13(3):325-349.
    3. Jurutka PW, Whitfield GK, Hsieh JC, Thompson PD, Haussler CA, Haussler MR (2001) Molecular nature of the vitamin D receptor and its role in regulation of gene expression[J]. Rev Endocr Metab Disord 2(2):203-216.
    4. Glass CK (1994) Differential recognition of target genes by nuclear receptor monomers, dimmers, and heterodimers[J]. Endocr Rev 15(3):391-407.
    5. Nagpal S, Na S, Rathnachalan R (2005) Noncalcemic actions of vitamin D receptor ligands[J]. Endocrine Rev 26(5):662-687.
    6. Pike JW (1987) Emerging concepts on the biologic role and mechanism of action of 1,25-dihydroxyvitamin D3. Steroids 4(1-3):3-27.
    7. Umesono K, Murakami KK, Thompson CC, Evans RM (1991) Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors [J]. Cell 65(7):1255-1266.
    8. Towers TL, Luisi BF, Asianov A, Freedman LP (1993) DNA target selectivity by the vitamin D3 receptor:mechanism of dimer binding to an asymmetric repeat element [J]. Proc Natl Acad Sci USA 90(13):6310-6314.
    9. Im H, Grass JA, Johnson KD, Boyer ME, Wu J, et al. (2004) Measurement of protein-DNA interactions in vivo by chromatin immunoprecipitation[J].Methods Mol Biol 284:129-146.
    10. Das PM, Ramachandran K, vanWert J, Singal R, et al. (2004) Chromatin immunoprecipitation assay [J]. Biotechniques 37:961-969.
    11. Wells J, Farham PJ (2002) Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation[J]. Methods 26(1):48-56.
    12. Spencer VA, Sun JM, Li L, Davie JR. (2003) Chromatin immunoprecipitation:a tool for studying histone acetylation and transcription factor binding[J]. Methods 31(1):67-75.
    13. Van Lente F, Jackson JF, Weintraub H (1975) Identification of specific crosslinked histones after treatment of chromatin with formaldehyde[J]. Cell 5(1): 45-50.
    14. Jackson V (1978) Studies on histone organization in the nucleosome using formaldehyde as a reversible cross-linking agent[J]. Cell 15(3):945-954.
    15. Jackson V, Chalkley R (1981) A new method for the isolation of replicative chromatin:selective deposition of histone on both new and old DNA[J]. Cell 23(1):121-134.
    16. Solomon MJ, Varshavsky A (1985) Formaldehyde-mediated DNA-protein crosslinking:A probe for in vivo chromatin structures[J]. Proc Natl Acad Sci USA 82(19):6470-6474.
    17. Wang JC, Derynck MK, Nonaka DF, Khodabakhsh DB, Haqq C, et al. (2004) Chromatin immunoprecipitation(ChIP) scanning identifies primary glucocorticoid receptor target genes[J].Proc Natl Acad Sci USA 101(44):15603-15608.
    18. Wells J, Farnham PJ (2002) Characterizing transcription factor binding sites using formaldehyde crosslinking and immunoprecipitation[J]. Methods 26(1):48-56.
    19. Johnson KD, Bresnick EH (2002) Dissecting long-range transcriptional mechanisms by chromatin immunoprecipitation[J]. Methods 26(1):27-36.
    20. Kuo MH, Allis CD (1999) In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment[J]. Methods 19(3):425-433.
    21. Orlando V (2000) Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation[J]. Trends Biochem Sci 25(3):99-104.
    22. Zhang L, Zhang K, Prandl R, Schoffl F (2004) Detecting DNA-binding of proteins in vivo by UV-crosslinking and immunoprecipitation[J]. Biochem Biophys Res Commun322(3):705-711.
    23. Spencer VA, Sun JM, Li L, Davie JR (2003) Chromatin immunoprecipitation:a tool for studying histone acetylation and transcription factor binding[J]. Methods 31(1):67-75.
    24. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking[J]. Methods 11(2):205-214.
    25. Buchenau P, Hodgson J, Strutt H, Arndt-Jovin DJ (1998) The distribution of polycomb-group proteins during cell division and development in Drosophila embryos:impact on models for silencing[J]. J Cell Biol 141(2):469-481.
    26. Weinmann AS, Bartley SM, Zhang T, Zhang MQ, Farnham PJ (2001) Use of chromatin immunoprecipitation to clone novel E2F target promoters[J]. Mol Cell Biol 21(20):6820-6832.
    27. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, et al. (2000) Genome-wide location and function of DNA binding proteins[J]. Science 290(5500): 2306-2309.
    28. Lyer VR, Horak CE, Scafe CS, Botstein D, Snyder M, et al. (2001) Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF[J]. Nature 409(6819):533-538.
    29. Weinmann AS, Farnham PJ (2002) Identification of unknown target genes of human transcription factors using chromatin immunoprecipitation [J]. Methods 26(1):37-47.
    30. Weinmann AS (2004) Novel ChIP-based strategies to uncover transcription factor target genes in the immune system[J]. Nat Rev Immunol 4(5):381-386.
    31. Oh SW, Mukhopadhyay A, Dixit BL, Raha T, Green MR, et al. (2006) Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation[J]. Nat Genet 38(2):251-257.
    32. Alam J, Cook JL (1990) Reporter genes:application to the study of mammalian gene transcription[J]. Anal Biochem 188(2):245-254.
    33. Naylor LH (1999) Reporter gene technology:the future looks bright[J]. Biochem Phannacol 58(5):749-757.
    34. Naylor LH (1999) Reporter gene technology:the future looks bright[J]. Biochem Pharmacol 58(5):749-757.
    35. Martin CS, Wight PA, Dobretsova A, Bronstein I (1996) Dual luminescence-based reporter gene assay for luciferase and beta-galactosidase[J]. Biotechniques 21(3):520-524.
    36. de Wet JR, Wood KV, Helinski DR, DeLuca M (1985) Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli[J]. Proc Natl Acad Sci USA 82(23):7870-7873.
    37. Wood KV, de Wet JR, Dewji N, DeLuca M (1984) Synthesis of active firefly luciferase by in vitro translation of RNA obtained from adult lanterns[J]. Biochem Biophys Res Commun 124(2):592-596.
    38. Hastings JW (1996) Chemistries and colors of bioluminescent reactions:a review[J]. Gene 173(1):5-11.
    39. Zhou D, Masri S, Ye JJ, Chen S (2005) Transcriptional regulation of the mouse PNRC2 promoter by the nuclear factor Y (NFY) and E2F1[J]. Gene 21;361:89-100.
    40. Jenkins DE, Oei Y, Hornig YS, Yu SF, Dusich J, et al. (2003) Bioluminescent imaging (BLI) to improve an'd refine traditional murine models of tumor growth and metastasis[J]. Clin Exp Metastasis 20(8):733-744.
    41. Bhaumik S, Gambhir SS (2002) Optical imaging of Renilla luciferase reporter gene expression in living mice[J]. Proc Natl Aead Sci USA 99(1):377-382.
    42. Chen Y, Gorski DH (2008) Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5[J]. Blood 111(3):1217-1226.
    43. Care A, Catalucci D, Felicetti F, Bonci D, Addario A, et al. (2007) MicroRNA-133 controls cardiac hypertrophy [J]. Nat Med 13(5):613-618.
    44. Leclerc GM, Boockfor FR, Faught WJ, Frawley LS (2000) Development of a destabilized firefly lueiferase enzyme for measurement of gene expression[J]. Bioteehniques 29(3):590-1,594-6,598 passim.
    45. Vopalensky V, Masek T, Horvath O, Vicenova B, Mokrejs M, et al. (2008) Firefly luciferase gene contains a cryptic promoter[J]. RNA 14(9):1720-1729.
    46. Li Z, Suzuki Y, Huang M, Cao F, Xie X, et al. (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects[J]. Stem Cells 26(4): 864-873.
    47. Lim K, Chae CB (1989) A simple assay for DNA transfection by incubation of the cells in culture dishes with substrates for beta-galatosidase[J]. Biotechniques 7(6):576-579.
    48. Menoret S, Aubert D, Tesson L, Braudeau C, Pichard V, et al. IacZ transgenic rats tolerant for beta-galactosidase:recipients for gene transfer studies using lacZ as a reporter gene[J]. Hum Gene Ther 13(11):1383-1390
    49. Herpin A, Lelong C, Becker T, Rosa F, Favrel P, et al. (2005) Structural and functional evidence for a singular repertoire of BMP receptor signal transducing proteins in the lophotrochozoan Crassostrea gigas suggests a shared ancestral BMP/activin pathway[J]. FEBS J 272(13):3424-3440.
    50. Abrams KL, Xu J, Nativelle-Serpentini C, Dabirshahsahebi S, Rogers MB (2004) An evolutionary and molecular analysis of Bmp2 expression[J]. J Biol Chem 279(16):15916-15928.
    51. Fritz DT, Liu D, Xu J, Jiang S, Rogers MB (2004) Conservation of Bmp2 post-transcriptional regulatory mechanisms[J]. J Biol Chem 279 (47): 48950-48958.
    52. D.T. Fritz, S. Jiang, J. Xu, M.B. Rogers (2006) A polymorphism in a conserved posttranscriptional regulatory motif alters bone morphogenetic protein 2 (BMP2) RNA:protein interactions [J]. Mol. Endocrinol 20(7):1574-1586.
    53. Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their
    54. Antagonists, and the skeleton[J]. Endocr Rev 24(2):218-235.
    55. Massague J, Seoane J, Wotton D (2005) Smad transcription factors[J]. Genes Dev 19(23):2783-2810.
    56. Hill CS (2006) Turning off Smads:identification of a Smad phosphatase[J]. Dev Cell 10(4):412-413.
    57. Jiang S, Chandler RL, Fritz DT, Mortlock DP, Rogers MB (2010) Repressive BMP2 gene regulatory elements near the BMP2 promoter[J]. Biochem Biophys Res Commun 392(2):124-128.
    1. Adams RLP, Burdon RH (1985) Molecular Biology of DNA methylation. First ed. New York, Berlin, Herddberg, Tokyo:Springer-Verlag,
    2. Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, et al. (2000) Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a[J]. Proc Natl Acad Sci USA 97(10):5237-5242.
    3. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters[J]. Proc Natl Acad Sci USA 103(5):1412-1417.
    4. Shen L, Kondo Y, Guo Y, Zhang J, Zhang L, et al. (2007) Genome-wide profiling of DNA methylation reveals a class of normally methylated CpG island promoters[J]. PLoS Genet 3(10):2023-2036.
    5. Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, et al. (2007) Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome[J]. Nat Genet 39(4):457-466.
    6. Mohn F, Weber M, Rebhan M, Roloff TC, Richter J, et al. (2008) Lineage-specific polycomb targets and de novo DNA methylation define restriction and potential of neuronal progenitors[J]. Mol Cell 30(6):755-766.
    7. Tycko B (2000) Epigenetic gene silencing in cancer[J]. J Clin Invest 105 (4): 401-407.
    8. Bestor TH (2000) The DNA methyltransferases of mammals[J]. Hum Mol Genet 9(16):2395-2402
    9. Yoder JA, Soman NS, Verdine GL, Bestor TH (1997) DNA (cytosine-5)-methyltransferases in mouse cells and tissues. Studies with a mechanism-based probe[J]. J Mol Biol 270(3):385-395.
    10. Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, et al. (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation[J]. Science 292 (5524):2077-2080.
    11. Bird A (2002) DNA methylation patterns and epigenetic memory [J]. Genes Dev 16(1):6-21.
    12. Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex[J]. Nature 393(6683):386-389.
    13. Momparler RL, Bovenzi V (2000) DNA methylation and cancer[J]. J Cell Physiol 183(2):145-154.
    14. Robertson KD, Jones PA (2000) DNA methylation:past, present and future directions. Carcinogenesis 21(3):461-467.
    15. Meehan RR, Lewis JD, McKay S, Kleiner EL, Bird AP (1989) Identification of a mammalian p rotein that binds specifically to DNA containing methylated CpGs[J]. Cell,1989,58 (3):499-507.
    16. Lewis JD, Meehan RR, Henzel WJ, Maurer-Fogy I, Jeppesen P, et al. (1992) Purification, sequence, and celluar localization of a novel chromosomal protein that binds to methylated DNA[J]. Cell 69 (6):905-914.
    17. Yu F, Thiesen J, Statling WH (2000) Histone deacetylase-independent transcriptional repression by methyl-CpG-binding protei n 2[J]. Nucleic Acids Res 28 (10):2201-2206.
    18. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F, et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands[J].Pro c Natl Acad Sci 89(5):1827-31,
    19. Stirzaker C, Song JZ, Davidson B, Clark SJ (2004) Transcriptional gene silencing promotes DNA hypermethylation through a sequential change in chromatin modifications in cancer cells [J]. Cancer Res 64(11):3871-7.
    20. Christman JK (2002) 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation:mechanistic studies and their implications for cancer therapy[J]. Oncogene 21(35):5483-5495.
    21. Sewack GF, Elis TW, Hansen U (2001) Binding of TATA binding protein to a naturally positioned nucleosome is facilitated by histone acetylation[J]. Mol Cell Biol21(4):1404-1415.
    22. Kornberg RD, Lorch Y (1999) Twenty-five years old of the nucelosome, fundamental partical of the eukaryote chromosome[J]. Cell 98(3):285-294.
    23. Kouzarides T (1999) Histone acetylases and deacetylases in cell proliferation[J]. Curr Opin Genet Dev 9(1):40-48.
    24. Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications[J]. Cell 103 (2):263-271.
    25. Khochbin S, Verdel A, Lemercier C, Seigneurin-Berny D (2001) Functional significance of histone deacetylase diversity[J]. Curr Opin Genet Dev 11(2): 162-166.
    26. Johnson LM, Fisher-Adams G, Grunstein M (1992) Identification of a non-basic domain in the histone H4 N-terminus required for repression of the yeast silent mating loci[J]. EMBO J 11(6):2201-2209.
    27. Berger SL (2001) An embarrassment of niches:the many covalent modifications of histones in transcriptional regulation[J]. Oncogene 20(24):3007-3013.
    28. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293(5532): 1074-1080.
    29. Garcia-Ramirez M, Rocchini C, Ausio J (1995) Modulation of chromatin folding by histone acetylation[J]. J Biol Chem 270(30):17923-17928.
    30. Tse C, Sera T, Wolffe AP, Hansen JC (1998) Disruption of higher-order folding by core histone acetylation dramatically enhances transcription of nucleosomal arrays by RNA polymerase Ⅲ[J]. Mol Cell Biol. Aug;18(8):4629-38.
    31. Hebbes TR, Clayton AL, Thorne AW, Crane-Robinson C (1994) Core histone hyperacetylation co-maps with generalized DNase I sensitivity in the chicken beta-globin chromosomal domain[J]. EMBO J 13(8):1823-1830.
    32. Krajewski WA, Becker PB (1998) Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA[J]. Proc Nat1 Acad Sci USA 95(4):1540-1545.
    33. Trievel RC, Beach BM, Dirk LM, Houtz RL, Hurley JH (2002) Structure and catalytic mechanism of a SET domain protein methyltransferse[J]. Cell 111(1): 91-103.
    34. Zhang Y, Reinberg D (2001) Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone talls, Cienes Dev 15(18):2343-2360.
    J5. Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, et al. (2000) Regulation of chromatin structure by site-specific histone H3 methyltransferases[J]. Nature 406(6796):593-599.
    36. Krogan NJ, Kim M, Tong A, Golshani A, Cagney G, et al. (2003) Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase II[J]. Mol Cell Biol 23(12):4207-4218.
    37. Ng HH, Ciccone DN, Morshead KB, Oettinger MA, Struhl K (2003) Lysine-79 of histone H3 is hypomethylated at silenced loci in yeast and mammalian cells:a potential mechanism for position-effect variegation[J]. Proc Natl Acad Sci USA 100(4):1820-1825.
    38. Weinberg MS, Villeneuve LM, Ehsani A, Amarzguioui M, Aagaard L, et al. (2006) The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells[J]. RNA 12(2):256-262.
    39. Stewart MD, Li J, Wong J (2005) Relationship between histone H3 lysine 9 methylation, transcription repression, and heterochromatin protein 1 recruitment[J]. Mol Cell Biol 25(7):2525-2538.
    40. Bird A (2001) Molecular biology. Methylation talk between histones and DNA[J]. Science 294(5549):2113-2115.
    41. Strahl BD, Allis CD (2000) The language of covalent histone modifications[J]. Nature 403(6765):41-45.
    42. Jenuwein T, Allis CD (2001) Translating the histone code[J]. Science 293(5532): 1074-1080.
    43. Margueron R, Trojer P, Reinberg D (2005) The key to development:interpreting the histone code? Curr Opin Genet Dev 15(2):163-176.
    44. Espada J, Ballestar E, Santoro R, Fraga MF, Villar-Garea A, et al. (2007) Epigenetic disruption of ribosomal RNA genes and nucleolar architecture in DNA methyltransferase 1 (Dnmtl) deficient cells[J]. Nucleic Acids Res 35(7): 2191-2198.
    45. Fuks F, Burgers WA, Brehm A, Hughes-Davies L, Kouzarides T (2000) DNA methyltransferase Dnmtl associates with histone deacetylase activity[J]. Nat Genet 24(1):88-91.
    46. Jackson JP, Lindroth AM, Cao X, Jacobsen SE (2002) Control of CpNpG DNA methylation by the KRYPTONIT E histone H3 methyltransferase[J]. Nature 416(6880):556-560.
    47. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, et al. (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin[J]. Curr Biol 13(14): 1192-1200.
    48. Sarraf SA, Stancheva I (2004) Methy-1 CpG binding protein MBD1 couples histone H3 methylation at lysine 9 by SETDB1 to DNA replication and chromatin assembly[J]. Mol Cell 15(4):595-605.
    49. Kouzarides T (2002) Histone methylation in transcriptional control[J]. Curr Opin Genet Dev 12(2):198-209.
    50. Krishnan S, Horowitz S, Trievel RC (2011) Structure and function of histone H3 lysine 9 methyltransferases and demethylases[J]. Chembiochem 12(2):254-263.
    51. Jackson JP, Johnson L, Jasencakova Z, Zhang X, PerezBurgos L, et al. (2004) Dimethylation of histone H3 lysine 9 is a critical mark for DNA methylation and gene silencing in Arabidopsis thaliana[J]. Chromosoma 112(6):308-315.
    52. Marks PA, Richon VM, Rifkind RA (2000) Histone deacetylase inhibitors: inducers of differentiation or apoptosis of transformed cells[J]. J Natl Cancer Inst 92(15):1210-1216.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700