用户名: 密码: 验证码:
信号识别颗粒蛋白SRP68和SRP72结合组蛋白H4活性及转录调控功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为染色质基本组成单位的核小体,是由4种核心组蛋白(H3、H4,H2A和H2B)紧密结合在一起构成的八聚体复合物,其外盘绕着周长度有147个碱基对的核酸链。核心组蛋白精氨酸甲基化(histone arginine methylation)广泛发生在其N端暴露在外的“尾部”,具有基因表达调控的重要功能。组蛋白精氨酸甲基化修饰被认为是表观遗传学密码(histone code)的一部分,以影响下游效应子的结合或排斥染色质。尽管如此,人们对这种修饰体系参与调控机制的认识还很少。因而,我们采用体外pulldown方法,分别富集与组蛋白H4第3位精氨酸对称双甲基化修饰(H4R3me2s)、组蛋白H4第3位精氨酸非对称双甲基化修饰(H4R3me2a)和未修饰H4多肽特异性结合的哺乳动物细胞核蛋白。虽然pulldown:结果没有发现能特异结合组蛋白H4第3位精氨酸(H4R3)双甲基化修饰多肽的蛋白,但是我们发现H4R3的双甲基化修饰能特异抑制两个高丰度核蛋白与修饰H4多肽的结合,质谱分析表明这两个蛋白即信号识别颗粒蛋白的亚基SRP68和SRP72。
     SRP68和SRP72是信号识别颗粒蛋白(Signal recognition particle)的两个亚基。在哺乳动物细胞中,它与SRP RNA、SRP9、SRPl4、SRPl9,SRP54一起组装成SRP复合体,主要功能是帮助分泌蛋白和膜蛋白向内质网膜的转运。
     在本课题研究中,采用凝胶过滤层析(gel filtration chromatography)纯化真核细胞大分子复合体和pulldown联用的方法,结果显示结合H4多肽并不是完整的SRP复合体。体外实验结果证明,SRP68和SRP72都具有结合H4N-末端多肽的活性,H4R3甲基化修饰明显削弱SRP68和SRP72蛋白与组蛋白H4尾部的结合。细胞实验证明SRP68和SRP72主要定位于细胞核并能结合H4N-末端多肽。染色质免疫共沉淀加Western免疫印迹证明SRP68/SRP72与染色质结合并主要与H4R3未甲基化修饰的染色质相互作用。在细胞内过表达组蛋白精氨酸甲基化酶PRMT5,也会增加组蛋白精氨酸对称甲基化水平,导致SRP68/SRP72蛋白和染色质的相互作用显著减弱及SRP68和SRP72从细胞核至细胞质的转运。
     我们通过染色质免疫沉淀技术和高通量测序联用的方法(ChIP—seq),鉴定并发现SRP68的结合位点在全基因组上广泛分布。将SRP68的DNA结合位点与已知转录因子模体(motif)数据库配对分析,我们发现在SRP68的结合位点上显著富集NFATc2和K1f4的DNA结合序列。随后,免疫共沉淀实验也证明了SRP68可以分别与NFATc2和Klf4相互作用,这暗示SRP68可能通过与转录因子NFATc2、Klf4相互作用而招募至靶基因上,调控基因转录。
     以上的研究结果表明,组蛋白H4R3精氨酸甲基化修饰抑制SRP68/SRP72与染色质组蛋白的结合活性。此外,我们的研究还揭示了SRP68/SRP72具有潜在的调控基因转录的功能。
The nucleosome is the fundamental unit of chromatin and it is composed of an octamer of the four core histones (H3, H4, H2A, H2B) around which147base pairs of DNA are wrapped. Arginine methylation, which plays a important role on transcription regulation, broadly occurs in the N-teminal tails of core histones. Histone arginine methylation, described as a part of "Histone code", is required for the downstream effctor recruiment or rejection. However, the mechanisms by which histone arginine methylation regulates transcription remain poorly understood. In this study we have attempted to purify nuclear proteins in mammalian cell that recognize specifically the symmetric dimethylated arginine3in histone H4tail(H4R3me2s), the asymmetric dimethylated arginine3in histone H4tail(H4R3me2as) and unmethylated arginine3in histone H4tail using Pull down assay. No major nuclear protein was observed to bind specifically the methylated H4R3peptides. However, both H4R3me2s and H4R3me2as markedly inhibit the binding of two proteins to unmethylated H4R3tail. These proteins were identified as the signal recognition particle SRP68and SRP72heterodimers by an unbiased proteomic approach.
     SRP68and SRP72are two polypeptides of the signal recognition particle. SRP68and SRP72together with SRP RNA、SRP9、SRP14、SRP19、SRP54could form a SRP complex, which plays an key role in the delivery of secretory proteins and membrane proteins to endoplasmic reticulum membrane.
     Here we show that only SRP68and SRP72, but not the SRP complex, bind to the unmethylated H4R3peptide according to gel filtration chromatography and pull down assay result. In vitro, SRP68and SRP72bind to H4R3tail in a methylation sensitive manner. In vivo, SRP68and SRP72associate with chromatin and bind to H4N-terminal polypeptide. Chromatin immunoprecipitation and western blot result prove that SRP68/SRP72mainly combine with chromatin without H4R3methylation modification. Overexpressing arginine methylation enzyme PRMT5, also can increase histone arginine symmetric methylation level in the cells, leading to the interaction between SRP68/SRP72protein and chromatin reduce. In the meanwile, SRP68and SRP72cytoplasm localization increase.
     The genome-wide occupancy study of SRP68reveals a broad distribution of SRP68in genome. The SRP68binding sites were mapped to the known transcription factor motif data, we discovery that the two DNA binding motifs of the transcription factors NFAT and KLF4are dramaticly rich in SRP68binding sites.
     Together our study underscores a role of H4R3methylation in blocking the binding of effector protein SRP68and SRP72to chromatin. In addition, our study reveals a novel role for SRP68and SRP72in transcriptional regulation.
引文
1. Bird, A., DNA methylation patterns and epigenetic memory. Genes Dev,2002. 16:6-21.
    2. Marmorstein, R., Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol,2001.2:422-32.
    3. Fyodorov, D.V., Kadonaga, J.T., The many faces of chromatin remodeling: Switching beyond transcription. Cell,2001.106:523-5.
    4. Loizou, J. I., Murr, R., Finkbeiner, M. G., Sawan, C., Wang, Z. Q., Herceg, Z., Epigenetic information in chromatin:the code of entry for DNA repair. Cell Cycle,2006.5:696-701.
    5. Peterson, C. L., Cote, J., Cellular machineries for chromosomal DNA repair. Genes Dev,2004.18:602-16.
    6. Allfrey, V.G., Faulkner, R., Mirsky, A. E., Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci USA,1964.51:786-94.
    7. Allfrey, V. G., Mirsky, A. E., Structural modifcations of histones and their possible role in the regulation of RNA synthesis. Science,1964.144:559.
    8. Kouzarides, T., Chromatin modifcations and their function. Cell,2007.128: 693-705.
    9. Jenuwein, T., All is, C.D., Translating the histone code. Science,2001. 293:1074-80.
    10. Strahl, B. D., Allis, C.D., The language of covalent histone modifcations. Nature,2000.403:41-5.
    11. Ramachandran, G. N., Venkatachalam, C.M., Stereochemical criteria for polypeptides and proteins. Ⅳ. Standard dimensions for the cis-peptide unit and conformation of cis-polypeptides. Biopolymers,1968.6: 1255-62.
    12. Nelson, C.J., Santos-Rosa, H., Kouzarides, T., Proline isomerization of histone H3 regulates lysine methylation and gene expression. Cell,2006. 126:905-16.
    13. Shiio, Y., Eisenman, R.N., Histone sumoylation is associated with transcriptional repression. Proc Natl Acad Sci USA,2003.100:13225-30.
    14. Nathan, D., Ingvarsdottir, K., Sterner, D. E., Bylebyl, G. R., Dokmanovic, M., Dorsey, J. A., et al., Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifcations. Genes Dev,2006.20:966-76.
    15. Goldknopf, I. L., Taylor, C. W., Baum, R. M., Yeoman, L. C., Olson, M.0. Prestayko, A.W., et al., Isolation and characterization of protein A24, a "histone-like" non-histone chromosomal protein. J Biol Chem,1975. 250:7182-7.
    16. West, M. H., Bonner, W. M., Histone 2B can be modifed by the attachment of ubiquitin. Nucleic Acids Res,1980.8:4671-80.
    17. Geng, F., Tansey, W. P., Polyubiquitylation of histone H2B. Mol Biol Cell, 2008.19:3616-24.
    18. Zhou, W., Wang, X., Rosenfeld, M.G., Histone H2A ubiquitination in transcriptional regulation and DNA damage repair. Int J Biochem Cell Biol, 2009.41:12-15.
    19. Robzyk, K., Recht, J., Osley, M.A., Rad6-dependent ubiquitination of histone H2B in yeast. Science,2000.287:501-4.
    20. Kim, J., Hake, S. B., Roeder, R. G., The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. Mol Cell,2005.20:759-70.
    21. Koken, M. H., Reynolds, P., Jaspers-Dekker, I., Prakash, L., Prakash, S., Bootsma, D., et al., Structural and functional conservation of two human homologs of the yeast DNA repair gene RAD6. Proc Natl Acad Sci USA,1991. 88:8865-9.
    22. Roest, H. P., van Klaveren, J., de Wit, J., van Gurp, C. G., Koken, M. H., Vermey, M., et al., Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modifcation. Cell,1996.86:799-810.
    23. Tanny, J. C., Erdjument-Bromage, H., Tempst, P., Al 1 is, C.D., Ubiquitylation of histone H2B controls RNA polymerase Ⅱ transcription elongation independently of histone H3 methylation. Genes Dev,2007.21: 835-47.
    24. Zhu, B., Zheng, Y., Pham, A. D., Mandal, S. S., Erdjument-Bromage, H. Tempst, P., et al., Monoubiquitination of human histone H2B:the factors involved and their roles in HOX gene regulation. Mol Cell,2005.20: 601-11.
    25. Buchwald, G., van der Stoop, P., Weichenrieder,O., Perrakis, A., van Lohuizen, M., Sixma, T.K., Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmil and Ringlb. EMBO J,2006.25: 2465-74.
    26. Cao, R., Tsukada, Y., Zhang, Y., Role of Bmi-1 and RinglA in H2A ubiquitylation and Hox gene silencing. Mol Cell,2005.20:845-54.
    27. Li, Z., Cao, R., Wang, M., Myers, M. P., Zhang, Y., Xu, R. M., Structure of a Bmi-1-RinglB polycomb group ubiquitin ligase complex. J Biol Chem,2006. 281:20643-9.
    28. Simon, J.A., Kingston, R. E., Mechanisms of polycomb gene silencing:knowns and unknowns. Nat Rev Mol Cell Biol,2009.10:697-708.
    29. Wang, H., Wang, L., Erdjument-Bromage, H., Vidal, M., Tempst, P., Jones, R.S., et al., Role of histone H2A ubiquitination in polycomb silencing. Nature,2004.431:873-8.
    30. Francis, N. J., Saurin, A. J., Shao, Z., Kingston, R. E., Reconstitution of a functional core polycomb repressive complex. Mol Cell,2001.8:545-56.
    31. Mohd-Sarip, A., Cleard, F., Mishra, R. K., Karch, F., Verrijzer, C. P., Synergistic recognition of an epigenetic DNA element by Pleiohomeotic and a polycomb core complex. Genes Dev,2005.19:1755-60.
    32. Shao, Z., Raible, F., Mollaaghababa, R., Guyon, J. R., Wu, C. T., Bender, W., et al., Stabil ization of chromatin structure by PRC1, a polycomb complex. Cell,1999.98:37-46.
    33. Lagarou, A., Mohd-Sarip, A., Moshkin, Y. M., Chalkley, G. E., Bezstarosti, K., Demmers, J.A., et al., dKDM2 couples histone H2A ubiquitylation to histone H3 demethylation during polycomb group silencing. Genes Dev,2008. 22:2799-810.
    34. Hurley, J. H., Lee, S., Prag, G., Ubiquitin-binding domains. Biochem J, 2006.399:361-72.
    35. Zhang, Y., Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev,2003.17:2733-40.
    36. Daniel, J. A., Torok, M.S., Sun, Z. W., Schieltz, D., Allis, C.D., Yates, J. R.3rd, et al., Deubiquitination of histone H2B by a yeast acetyltransferase complex regulates transcription. J Biol Chem,2004.279: 1867-71.
    37. Henry, K. W., Wyce, A., Lo, W. S., Duggan, L. J., Emre, N. C., Kao, C. F., et al., Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. Genes Dev,2003. 17:2648-63.
    38. Shukla, A., Stanojevic, N., Duan, Z., Sen, P., Bhaumik, S. R., Ubp8p, a histone deubiquitinase whose association with SAGA is mediated by Sgfllp, differentially regulates lysine 4 methylation of histone H3 in vivo. Mol Cell Biol,2006.26:3339-52.
    39. Weake, V. M., Lee, K. K., Guelman, S., Lin, C. H., Seidel, C., Abmayr, S. M. et al., SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system. EMBO J,2008.27: 394-405.
    40. Zhang, X. Y., Pfeiffer, H. K., Thorne, A. W., McMahon, S. B., USP22, an hSAGA subunit and potential cancer stem cell marker, reverses the polycomb-catalyzed ubiquitylation of histone H2A. Cell Cycle,2008.7: 1522-4.
    41. Zhang, X. Y., Varthi, M., Sykes, S. M., Phillips, C., Warzecha, C., Zhu, W. et al., The putative cancer stem cell marker USP22 is a subunit of the human SAGA complex required for activated transcription and cell-cycle progression. Mol Cell,2008.29:102-11.
    42. Zhao, Y., Lang, G., Ito, S., Bonnet, J., Metzger, E., Sawatsubashi, S. et al., A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell,2008.29:92-101.
    43. Emre, N. C., Ingvarsdottir, K., Wyce, A., Wood, A., Krogan, N. J., Henry, K. W., et al., Maintenance of low histone ubiquitylation by UbplO correlates with telomere-proximal Sir2 association and gene silencing. Mol Cell,2005. 17:585-94.
    44. Gardner, R. G., Nelson, Z. W., Gottschling, D. E., Ubp10/Dot4p regulates the persistence of ubiquitinated histone H2B:distinct roles in telomeric silencing and general chromatin. Mol Cell Biol,2005.25:6123-39.
    45. Osley, M. A., Regulation of histone H2A and H2B ubiquitylation. Brief Funct Genomic Proteomic,2006.5:179-89.
    46. Barsoum, J., Varshavsky, A., Preferential localization of variant nucleosomes near the 5'-end of the mouse dihydrofolate reductase gene. J Biol Chem,1985.260:7688-97.
    47. Levinger, L., Varshavsky, A., Selective arrangement of ubiquitinated and Dl protein-containing nucleosomes within the Drosophila genome. Cell, 1982.28:375-85.
    48. Nickel, B. E., Allis, C.D., Davie, J. R.. Ubiquitinated histone H2B is preferentially located in transcriptionally active chromatin. Biochemistry,1989.28:958-63.
    49. Dawson, B. A., Herman, T., Haas, A. L., Lough, J., Affnity isolation of active murine erythroleukemia cell chromatin:uniform distribution of ubiquitinated histone H2A between active and inactive fractions. J Cell Biochem,1991.46:166-73.
    50. Huang, S. Y., Barnard, M. B., Xu, M., Matsui, S., Rose, S. M., Garrard, W. T., The active immunoglobulin kappa chain gene is packaged by non-ubiquitin-conjugated nucleosomes. Proc Natl Acad Sci USA,1986.83: 3738-42.
    51. Parlow, M. H., Haas, A.L., Lough, J., Enrichment of ubiquitinated histone H2A in a low salt extract of micrococcal nuclease-digested myotube nuclei. J Biol Chem,1990.265:7507-12.
    52. Laribee, R. N., Fuchs, S. M., Strahl, B. D., H2B ubiquitylation in transcriptional control:a FACT-fnding mission. Genes Dev,2007.21: 737-43.
    53. Minsky, N., Shema, E., Field, Y., Schuster, M., Segal, E., Oren, M., Monoubiquitinated H2B is associated with the transcribed region of highly expressed genes in human cells. Nat Cell Biol,2008.10:483-8.
    54. McGinty, R. K., Kim, J., Chatter jee, C., Roeder, R. G., Muir, T. W. Chemically ubiquitylated histone H2B stimulates hDotlL-mediated intranucleosomal methylation. Nature,2008.453:812-16.
    55. Briggs, S. D., Xiao, T., Sun, Z. W., Caldwell, J. A., Shabanowitz, J., Hunt, D. F., et al., Gene silencing:trans-histone regulatory pathway in chromatin. Nature,2002.418:498.
    56. Dover, J., Schneider, J., Tawiah-Boateng, M. A., Wood, A., Dean, K. Johnston, M., et al., Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem,2002.277:28368-71.
    57. Ng, H. H., Xu, R. M., Zhang, Y., Struhl, K., Ubiquitination of histone H2B by Rad6 is required for effcient Dotl-mediated methylation of histone H3 lysine 79. J Biol Chem,2002.277:34655-7.
    58. Sun, Z. W., Allis, C.D., Ubiquitination of histone H2B regulates H3 methylation and gene silencing in yeast. Nature,2002.418:104-8.
    59. van Leeuwen, F., Gafken, P. R., Gottschling, D. E., Dotlp modulates silencing in yeast by methylation of the nucleosome core. Cell,2002.109:745-56.
    60. Krogan, N. J., Kim, M., Tong, A., Golshani, A., Cagney, G., Canadien, V. et al., Methylation of histone H3 by Set2 in Saccharomyces cerevisiae is linked to transcriptional elongation by RNA polymerase Ⅱ. Mol Cell Biol, 2003.23:4207-18.
    61. Ng, H. H., Robert, F., Young, R. A., Struhl, K., Targeted recruitment of Setl histone methylase by elongating Pol Ⅱ provides a local ized mark and memory of recent transcriptional activity. Mol Cell,2003.11:709-19.
    62. Hassa, P.O., Haenni, S. S., Elser, M., Hottiger, M.0., Nuclear ADP-ribosylation reactions in mammalian cells:where are we today and where are we going? Microbiol Mol Biol Rev,2006.70:789-829.
    63. Schreiber, V., Dantzer, F., Ame, J. C., de Murcia, G., Poly (ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol,2006.7:517-28.
    64. Kreimeyer, A., Adamietz, P., Hilz, H., Alkylation-induced mono(ADP-ribosyl)-histones H1 and H2B. Hydroxylamine-resistant linkage in hepatoma cells. Biol Chem Hoppe Seyler,1985.366:537-44.
    65. Kreimeyer, A., Wielckens, K., Adamietz, P., Hilz, H., DNA repair-associated ADP-ribosylation in vivo. Modifcation of histone H1 differs from that of the principal acceptor proteins. J Biol Chem,1984. 259:890-6.
    66. Timinszky, G., Till, S., Hassa, P.O., Hothorn, M., Kustatscher, G. Nijmeijer, B., et al., A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat Struct Mol Biol,2009.16: 923-9.
    67. Ushiroyama, T., Tanigawa, Y., Tsuchiya, M., Matsuura, R., Ueki, M. Sugimoto,O., et al., Amino acid sequence of histone H1 at the ADP-ribose-accepting site and ADP-ribose X hi stone-H1 adduct as an inhibitor of cyclic-AMP-dependent phosphorylation. Eur j Biochem,1985.151: 173-7.
    68. Gurley, L. R., D'Anna, J.A., Barham, S. S., Deaven, L.L., Tobey, R. A. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem,1978.84:1-15.
    69. Wei, Y., Mizzen, C. A., Cook, R. G., Gorovsky, M. A., Allis, C.D., Phosphorylation of histone H3 at serine 10 is correlated with chromosome condensation during mitosis and meiosis in Tetrahymena. Proc Natl Acad Sci USA,1998.95:7480-4.
    70. Fischle, W., Tseng, B. S., Dormann, H. L., Ueberheide, B. M., Garcia, B. A. Shabanowitz, J., et al., Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature,2005.438:1116-22.
    71. Nowak, S.J., Corces, V.G., Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev,2000.14:3003-13.
    72. Nowak, S. J., Corces, V. G., Phosphorylation of histone H3:a balancing act between chromosome condensation and transcriptional activation. Trends Genet,2004.20:214-20.
    73. Macdonald, N., Welburn, J. P., Noble, M. E., Nguyen, A., Yaffe, M. B., Clynes, D., et al., Molecular basis for the recognition of phosphorylated and phosphoacetylated histone h3 by 14-3-3. Mol Cell,2005.20:199-211.
    74. Pokholok, D. K., Zeitlinger, J., Hannett, N. M., Reynolds, D. B., Young, R. A. Activated signal transduction kinases frequently occupy target genes. Science,2006.313:533-6.
    75. Cook, P. J., Ju, B. G., Telese, F., Wang, X., Glass, C. K., Rosenfeld, M. G., Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature,2009.458:591-6.
    76. Xiao, A., Li, H., Shechter, D., Ahn, S. H., Fabrizio, L. A., Erdjument-Bromage, H., et al., WSTF regulates the H2A. X DNA damage response via a novel tyrosine kinase activity. Nature,2009.457:57-62.
    77. Redon, C., Pilch, D., Rogakou, E., Sedelnikova,O., Newrock, K., Bonner, W., Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev,2002.12: 162-9.
    78. Shroff, R., Arbel-Eden, A., Pilch, D., Ira, G., Bonner, W. M., Petrini, J.H., et al., Distribution and dynamics of chromatin modifcation induced by a defned DNA double-strand break. Curr Biol,2004.14:1703-11.
    79. Celeste, A., Fernandez-Capetillo,O., Kruhlak, M. J., Pilch, D. R., Staudt, D. W., Lee, A., et al., Histone H2AX phosphorylation is dispensable for the initial recognition of DNA breaks. Nat Cell Biol,2003.5:675-9.
    80. Downs, J. A., Allard, S., Jobin-Robitaille,O., Javaheri, A., Auger, A. Bouchard, N., et al., Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell,2004.16: 979-90.
    81. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP. MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell,2005.123:1213-26.
    82. Strom, L., Lindroos, H. B., Shirahige, K., Sjogren, C., Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell,2004.16:1003-15.
    83. Unal, E., Arbel-Eden, A., Sattler, U., Shroff, R., Lichten, M., Haber, J. E., et al., DNA damage response pathway uses histone modifcation to assemble a double-strand break-specifc cohesin domain. Mol Cell,2004. 16:991-1002.
    84. Morrison, A. J., Highland, J., Krogan, N. J., Arbel-Eden, A., Greenblatt, J. F., Haber, J.E., et al., IN080 and gamma-H2AX interaction links ATP-dependent chromatin remodel ing to DNA damage repair. Cell,2004.119: 767-75.
    85. van Attikum, H., Fritsch,O., Hohn, B., Gasser, S. M., Recruitment of the IN080 complex by H2A phosphorylation links ATP-dependent chromatin remodeling with DNA double-strand break repair. Cell,2004.119:777-88.
    86. Rogakou, E. P., Boon, C., Redon, C., Bonner, W. M., Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol,1999. 146:905-16.
    87. Kobayashi, J., Tauchi, H., Sakamoto, S., Nakamura, A., Morishima, K., Matsuura, S., et al., NBS1 localizes to gamma-H2AX foci through interaction with the FHA/BRCT domain. Curr Biol,2002.12:1846-51.
    88. Cheung, W. L., Turner, F. B., Krishnamoorthy, T., Wolner, B., Ahn, S. H., Foley, M., et al., Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase Ⅱ in S. cerevisiae. Curr Biol,2005.15:656-60.
    89. Utley, R. T., Lacoste, N., Jobin-Robitaille,O., Allard, S., Cote, J., Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol,2005.25: 8179-90.
    90. Downs, J.A., Cote, J., Dynamics of chromatin during the repair of DNA double-strand breaks. Cell Cycle,2005.4:1373-6.
    91. Harvey, A.C., Downs, J. A., What functions do linker histones provide? Mol Microbiol,2004.53:771-5.
    92. Kysela, B., Chovanec, M., Jeggo, P.A., Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase Ⅳ-dependent ligation in the presence of histone H1. Proc Natl Acad Sci USA,2005.102: 1877-82.
    93. Clarke, S., Protein methylation. Curr Opin Cell Biol,1993.5:977-83.
    94. Metzger, E., Wissmann, M., Yin, N., Muller, J. M., Schneider, R., Peters, A. H., et al., LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature,2005.437:436-9.
    95. Shi, Y., Lan, F., Matson, C., Mulligan, P., Whetstine, J. R., Cole, P. A. et al., Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell,2004.119:941-53.
    96. Cloos, P. A., Christensen, J., Agger, K., Maiolica, A., Rappsilber, J., Antal, T., et al., The putative oncogene GASC1 demethylates tri-and dimethylated lysine 9 on histone H3. Nature,2006.442:307-11.
    97. Tsukada, Y., Fang, J., Erd jument-Bromage, H., Warren, M. E., Borchers, C. H. Tempst, P., et al., Histone demethylation by a family of JmjC domain-containing proteins. Nature,2006.439:811-16.
    98. Whetstine, J. R., Nottke, A., Lan, F., Huarte, M., Smolikov, S., Chen, Z., et al., Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell,2006.125:467-81.
    99. Yamane, K., Toumazou, C., Tsukada, Y., Erdjument-Bromage, H., Tempst, P., Wong, J., et al., JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell,2006.125:483-95.
    100. Fodor, B. D., Kubicek, S., Yonezawa, M.,O'Sullivan, R. J., Sengupta, R., Perez-Burgos, L., et al., Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev,2006.20: 1557-62.
    101. Shin, S., Janknecht, R., Diversity within the JMJD2 histone demethylase family. Biochem Biophys Res Commun,2007.353:973-7.
    102. Chen, Z., Zang, J., Whetstine, J., Hong, X., Davrazou, F., Kutateladze, T. G., et al., Structural insights into histone demethylation by JMJD2 family members. Cell,2006.125:691-702.
    103. Klose, R. J., Yamane, K., Bae, Y., Zhang, D., Erd jument-Bromage, H., Tempst, P., et al., The transcriptional repressor JHDM3A demethylates trimethyl histone H3 lysine 9 and lysine 36. Nature,2006.442:312-16.
    104. Lee, M. G., Villa, R., Trojer, P., Norman, J., Yan, K. P., Reinberg, D., et al., Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science,2007.318:447-50.
    105. Christensen, J., Agger, K., Cloos, P. A., Pasini, D., Rose, S., Sennels, L., et al., RBP2 belongs to a family of demethylases, specifc for tri-and dimethylated lysine 4 on histone 3. Cell,2007.128:1063-76.
    106. Iwase, S., Lan, F., Bayliss, P., de la Torre-Ubieta, L., Huarte, M., Qi, H. H., et al., The X-linked mental retardation gene SMCX/JARID1C defnes a family of histone H3 lysine 4 demethylases. Cell,2007.128:1077-88.
    107. Cuthbert, G.L., Daujat, S., Snowden, A. W., Erdjument-Bromage H, Hagiwara T, Yamada M, et al., Histone deimination antagonizes arginine methylation. Cell,2004.118:545-53.
    108. Wang, Y., Wysocka, J., Sayegh, J., Lee, Y. H., Perlin, J. R., Leonelli, L., et al., Human PAD4 regulates histone arginine methylation levels via demethylimination. Science,2004.306:279-83.
    109. Denis, H., Deplus, R., Putmans, P., Yamada, M., Metivier, R., Fuks, F., Functional connection between deimination and deacetylation of histones. Mol Cell Biol,2009.29:4982-93.
    110. Chang, B., Chen, Y., Zhao, Y., Bruick, R. K., JMJD6 is a histone arginine demethylase. Science,2007.318:444-7.
    111. Bernstein, B. E., Humphrey, E. L., Erlich, R. L., Schneider, R., Bouman, P., Liu, J.S., et al., Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci USA,2002.99:8695-700.
    112. Briggs, S. D., Bryk, M., Strahl, B. D., Cheung, W. L., Davie, J. K., Dent, S.Y., et al., Histone H3 lysine 4 methylation is mediated by Setl and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev,2001.15:3286-95.
    113. Santos-Rosa, H., Schneider, R., Bannister, A. J., Sherriff, J., Bernstein, B. E., Emre, N. C., et al., Active genes are tri-methylated at K4 of histone H3. Nature,2002.419:407-11.
    114. Kizer, K.O., Phatnani, H. P., Shibata, Y., Hall, H., Greenleaf, A. L. Strahl, B. D., A novel domain in Set2 mediates RNA polymerase Ⅱ interaction and couples histone H3 K36 methylation with transcript elongation. Mol Cell Biol,2005.25:3305-16.
    115. Li, B., Howe, L., Anderson, S., Yates, J. R.3rd, Workman, J. L., The Set2 histone methyltransferase functions through the phosphorylated carboxyl-terminal domain of RNA polymerase Ⅱ. J Biol Chem,2003.278: 8897-903.
    116. Xiao, B., Wilson, J. R., Gamblin, S. J., SET domains and histone methylation. Curr Opin Struct Biol,2003.13:699-705.
    117. Bannister, A. J., Schneiders, R., Myers, F. A., Thorne, A. W., Crane-Robinson, C., Kouzarides, T., Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem,2005. 280:17732-6.
    118. Barski, A., Cuddapah, S., Cui, K., Roh, T. Y., Schones, D. E., Wang, Z., et al., High-resolution profling of histone methylations in the human genome. Cell,2007.129:823-37.
    119. Bell,0., Wirbelauer, C., Hild, M., Scharf, A. N., Schwaiger, M., MacAlpine, D. M., et al., Localized H3K36 methylation states defne histone H4K16 acetylation during transcriptional elongation in Drosophila. EMBO J,2007. 26:4974-84.
    120. Lee, J.S., Shilatifard, A., A site to remember:H3K36 methylation a mark for histone deacetylation. Mutat Res,2007.618:130-4.
    121. Mikkelsen, T. S., Ku, M., Jaffe, D. B., Issac, B., Lieberman, E., Giannoukos, G., et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature,2007.448:553-60.
    122. Pokholok, D. K., Harbison, C. T., Levine, S., Cole, M., Hannett, N. M., Lee, T. I., et al., Genome-wide map of nucleosome acetylation and methylation in yeast. Cell,2005.122:517-27.
    123. Rao, B., Shibata, Y., Strahl, B. D., Lieb, J. D., Dimethylation of histone H3 at lysine 36 demarcates regulatory and nonregulatory chromatin genome-wide. Mol Cell Biol,2005.25:9447-59.
    124. Vermeulen, M., Mulder, K. W., Denissov, S., Pijnappel, W. W., van Schaik, F.M., Varier, R. A., et al., Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell,2007.131:58-69.
    125. Carrozza, M. J., Li, B., Florens, L., Suganuma, T., Swanson, S. K., Lee, K.K., et al., Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell,2005.123:581-92.
    126. Joshi, A. A., Struhl, K., Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell,2005. 20:971-8.
    127. Keogh, M. C., Kurdistani, S. K., Morris, S. A., Ahn, S. H., Podolny, V. Collins, S.R., et al., Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell,2005.123:593-605.
    128. Li, B., Gogol, M., Carey, M., Lee, D., Seidel, C., Workman, J. L., Combined action of PHD and chromo domains directs the Rpd3S HDAC to transcribed chromatin. Science,2007.316:1050-4.
    129. Steger, D. J., Lefterova, M. I., Ying, L., Stonestrom, A. J., Schupp, M., Zhuo, D., et al., DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells. Mol Cell Biol,2008.28:2825-39.
    130. Schubeler, D., MacAlpine, D. M., Scalzo, D., Wirbelauer, C., Kooperberg, C., van Leeuwen, F., et al., The histone modifcation pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev,2004.18:1263-71.
    131. Richards, E.J., Elgin, S.C., Epigenetic codes for heterochromatin formation and silencing:rounding up the usual suspects. Cell,2002.108: 489-500.
    132. Tschiersch, B., Hofmann, A., Krauss, V., Dorn, R., Korge, G., Reuter, G., The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J,1994.13:3822-31.
    133. Allshire, R. C., Nimmo, E. R., Ekwall, K., Javerzat, J. P., Cranston, G., Mutations derepressing silent centromeric domains in fssion yeast disrupt chromosome segregation. Genes Dev,1995.9:218-33.
    134. Cam, H. P., Sugiyama, T., Chen, E. S., Chen, X., FitzGerald, P. C., Grewal, S.I., Comprehensive analysis of heterochromatin- and RNAi-mediated epigenetic control of the fssion yeast genome. Nat Genet,2005.37: 809-19.
    135. Grewal, S. I., Elgin, S. C., Transcription and RNA interference in the formation of heterochromatin. Nature,2007.447:399-406.
    136. Grewal, S. I., Jia, S., Heterochromatin revisited. Nat Rev Genet,2007. 8:35-46.
    137. Hall, I. M., Shankaranarayana, G. D., Noma, K., Ayoub, N., Cohen, A., Grewal, S. I., Establishment and maintenance of a heterochromatin domain. Science, 2002.297:2232-7.
    138. Kato, H., Goto, D. B., Martienssen, R. A., Urano, T., Furukawa, K., Murakami, Y., RNA polymerase Ⅱ is required for RNAi-dependent heterochromatin assembly. Science,2005.309:467-9.
    139. Matzke, M. A., Birchler, J. A., RNAi-mediated pathways in the nucleus. Nat Rev Genet,2005.6:24-35.
    140. Mochizuki, K., Fine, N. A., Fujisawa, T., Gorovsky, M. A., Analysis of a piwi-related gene implicates small RNAs in genome rearrangement in tetrahymena. Cell,2002.110:689-99.
    141. Pal-Bhadra, M., Leibovitch, B. A., Gandhi, S. G., Rao, M., Bhadra, U. Birchler, J.A., et al., Heterochromatic silencing and HP1 localization in Drosophila are dependent on the RNAi machinery. Science,2004.303: 669-72.
    142. Reinhart, B. J., Bartel, D.P., Small RNAs correspond to centromere heterochromatic repeats. Science,2002.297:1831.
    143. Taverna, S. D., Coyne, R. S., Allis, C.D., Methylation of histone h3 at lysine 9 targets programmed DNA elimination in tetrahymena. Cell,2002. 110:701-11.
    144. Volpe, T. A., Kidner, C., Hall, I.M., Teng, G., Grewal, S. I., Martienssen, R.A., Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science,2002.297:1833-7.
    145. Hansen, K. R., Ibarra, P. T., Thon, G., Evolutionary-conserved telomere-linked helicase genes of fssion yeast are repressed by silencing factors, RNAi components and the telomere-binding protein Tazl. Nucleic Acids Res,2006.34:78-88.
    146. Jia, S., Noma, K., Grewal, S. I., RNAi-independent heterochromatin nucleation by the stress-activated ATF/CREB family proteins. Science, 2004.304:1971-6.
    147. Kanoh, J., Sadaie, M., Urano, T., Ishikawa, F., Telomere binding protein Tazl establishes Swi6 heterochromatin independently of RNAi at telomeres. Curr Biol,2005.15:1808-19.
    148. Kim, H. S., Choi, E. S., Shin, J. A., Jang, Y. K., Park, S. D., Regulation of Swi6/HP1-dependent heterochromatin assembly by cooperation of components of the mitogen-activated protein kinase pathway and a histone deacetylase Clr6. J Biol Chem,2004.279:42850-9.
    149. Yamada, T., Fischle, W., Sugiyama, T., Allis, C.D., Grewal, S. I., The nucleation and maintenance of heterochromatin by a histone deacetylase in fssion yeast. Mol Cell,2005.20:173-85.
    150. Vakoc, C. R., Mandat, S. A., Olenchock, B. A., Blobel, G. A., Histone H3 lysine 9 methylation and HPlgamma are associated with transcription elongation through mammalian chromatin. Mol Cell,2005.19:381-91.
    151. Pan, G., Tian, S., Nie, J., Yang, C., Ruotti, V., Wei, H., et al., Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell,2007.1:299-312.
    152. Zhao, X. D., Han, X., Chew, J. L., Liu, J., Chiu, K. P., Choo, A., et al., Whole-genome mapping of histone 113 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell,2007.1:286-98.
    153. Lee, D. Y., Teyssier, C., Strahl, B. D., Stallcup, M. R., Role of protein methylation in regulation of transcription. Endocr Rev,2005.26:147-70.
    154. Metivier, R., Penot, G., Hubner, M. R., Reid, G., Brand, H., Kos, M., et al., Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell, 2003.115:751-63.
    155. Kangaspeska, S., Stride, B., Metivier, R., Polycarpou-Schwarz, M., Ibberson, D., Carmouche, R. P., et al., Transient cyclical methylation of promoter DNA. Nature,2008.452:112-15.
    156. Metivier, R., Gallais, R., Tiffoche, C., Le Peron, C., Jurkowska, R. Z. Carmouche, R.P., et al., Cyclical DNA methylation of a transcriptionally active promoter. Nature,2008.452:45-50.
    157. Wysocka, J., Allis, C.D., Coonrod, S., Histone arginine methylation and its dynamic regulation. Front Biosci,2006.11:344-55.
    158. Chen, D., Huang, S. M., Stallcup, M. R., Synergistic, p160 coactivator-dependent enhancement of estrogen receptor function by CARM1 and p300. J Biol Chem,2000.275:40810-16.
    159. Koh, S. S., Chen, D., Lee, Y. H., Stallcup, M. R., Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J Biol Chem,2001.276: 1089-98.
    160. Koh, S.S., Li, H., Lee, Y. H., Widelitz, R. B., Chuong, C.M., Stallcup, M. R. Synergistic coactivator function by coactivator-associated arginine methyltransferase (CARM) 1 and beta-catenin with two different classes of DNA-binding transcriptional activators. J Biol Chem,2002.277: 26031-5.
    161. Lee, Y. H., Koh, S. S., Zhang, X., Cheng, X., Stallcup, M. R., Synergy among nuclear receptor coactivators:selective requirement for protein methyltransferase and acetyltransferase activities. Mol Cell Biol,2002. 22:3621-32.
    162. Qi, C., Chang, J., Zhu, Y., Yeldandi, A. V., Rao, S. M., Zhu, Y. J. Identifcation of protein arginine methyltransferase 2 as a coactivator for estrogen receptor alpha. J Biol Chem,2002.277:28624-30.
    163. Rezai-Zadeh, N., Zhang, X., Namour, F., Fejer, G., Wen, Y. D., Yao, Y. L. et al. Targeted recruitment of a histone H4-specifc methyltransferase by the transcription factor YY1. Genes Dev,2003.17:1019-29.
    164. Xu, W., Cho, H., Kadam, S., Banayo, E. M., Anderson, S., Yates, J. R.3rd, et al., A methylation-mediator complex in hormone signaling. Genes Dev, 2004.18:144-56.
    165. Cosgrove, M.S., Boeke, J. D., Wolberger, C., Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol,2004.11:1037-43.
    166. Pal, S., Vishwanath, S. N., Erdjument-Bromage, H., Tempst, P., Sif, S. Human SWI/SNF-associated PRMT5 methylatcs histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol,2004.24:9630-45.
    167. Sanders, S. L., Portoso, M., Mata, J., Bahler, J., Allshire, R. C. Kouzarides, T., Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell,2004.119:603-14.
    168. Botuyan, M. V., Lee, J., Ward, I.M., Kim, J. E., Thompson, J. R., Chen, J. et al., Structural basis for the methylation state-specifc recognition of histone H4-K20 by 53BP1 and Crb2 in DNA repair. Cell,2006.127: 1361-73.
    169. Huyen, Y., Zgheib,0., Ditullio RA, J. r., Gorgoulis, V. G., Zacharatos, P., Petty, T. J., et al., Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature,2004.432:406-11.
    170. Allis, C.D., Chicoine, L. G., Richman, R., Schulman, I. G., Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc Natl Acad Sci USA,1985.82:8048-52.
    171. Ruiz-Carrillo, A., Wangh, L. J., Allfrey, V.G., Processing of newly synthesized histone molecules. Science,1975.190:117-28.
    172. Vetting, M. W., LP SdC, Yu. M., Hegde, S. S., Magnet, S., Roderick, S. L., et al., Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys,2005.433:212-26.
    173. Borrow, J., Stanton Jr, V. P., Andresen, J. M., Becher, R., Behm, F. G., Chaganti, R. S., et al., The translocation t (8;16) (p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet,1996.14:33-41.
    174. Neuwald, A. F., Landsman, D., GC.N5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem Sci,1997.22:154-5.
    175. Akhtar, A., Becker, P. B., The histone H4 acetyltransferase MOF uses a C2HC zinc fnger for substrate recognition. EMBO Rep,2001.2:113-18.
    176. Yan, Y., Barlev, N. A., Haley, R. H., Berger, S. L., Marmorstein, R., Crystal structure of yeast Esal suggests a unifed mechanism for catalysis and substrate binding by histone acetyltransferases. Mol Cell,2000.6: 1195-205.
    177. Doyon, Y., Cote, J., The highly conserved and multifunctional NuA4 HAT complex. Curr Opin Genet Dev,2004.14:147-54.
    178. Doyon, Y., Selleck, W., Lane, W. S., Tan, S., Cote, J., Structural and functional conservation of the NuA4 histone acetyltransferase complex from yeast to humans. Mol Cell Biol,2004.24:1884-96.
    179. Kalkhoven, E., CBP and p300:HATs for different occasions. Biochem Pharmacol,2004.68:1145-55.
    180. Yuan, Z. M., Huang, Y., Ishiko, T., Nakada, S., Utsugisawa, T., Shioya, H., et al., Function for p300 and not CBP in the apoptotic response to DNA damage. Oncogene,1999.18:5714-17.
    181. Kawasaki, H., Eckner, R., Yao, T. P., Taira, K., Chiu, R., Livingston, D. M., et al., Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation. Nature,1998.393: 284-9.
    182. Kung, A. L., Rebel, V. I., Bronson, R. T., Ch'ng, L. E., Sieff, C. A. Livingston, D.M., et al., Gene dose-dependent control of hematopoiesis and hematologic tumor suppression by CBP. Genes Dev,2000.14:272-7.
    183. Yao, T. P., Oh, S. P., Fuchs, M., Zhou, N. D., Ch'ng, L. E., Newsome, D., et al., Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell,1998. 93:361-72.
    184. McManus, K. J., Hendzel, M. J., Quantitative analysis of CBP- and P300-induced histone acetylations in vivo using native chromatin. Mol Cell Biol,2003.23:7611-27.
    185. Das, C., Lucia, M.S., Hansen, K. C., Tyler, J. K., CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature,2009.459:113-17.
    186. Adkins, M. W., Carson,J.J., English, C.M., Ramey, C. J., Tyler, J. K., The histone chaperone anti-silencing function 1 stimulates the acetylation of newly synthesized histone H3 in S-phase. J Biol Chem,2007.282: 1334-40.
    187. Sklenar, A.R., Parthun, M. R., Characterization of yeast histone H3-specifc type B histone acetyltransferases identifes an ADA2-independent Gcn5p activity. BMC Biochem,2004.5:11.
    188. Tsubota, T., Berndsen, C. E., Erkmann, J. A., Smith, C. L., Yang, L., Freitas, M. A., et al., Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell,2007.25:703-12.
    189. Haynes, S. R., Dollard, C., Winston, F., Beck, S., Trowsdale, J., Dawid, I. B., The bromodomain:a conserved sequence found in human, Drosophila and yeast proteins. Nucleic Acids Res,1992.20:2603.
    190. Jeanmougin, F., Wurtz, J. M., Le Douarin, B., Chambon, P., Losson, R., The bromodomain revisited. Trends Biochem Sci,1997.22:151-3.
    191. Schiltz, R. L., Mizzen, C. A., Vassilev, A., Cook, R. G., Allis, C.D., Nakatani, Y., Overlapping but distinct patterns of histone acetylation by the human coactivators p300 and PCAF within nucleosomal substrates. J Biol Chem,1999.274:1189-92.
    192. Taylor, B. L., Zhulin, I. B., PAS domains:internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev,1999.63:479-506.
    193. Kusch, T., Florens, L., Macdonald, W. H., Swanson, S. K., Glaser, R. L., Yates, J. R.3rd, et al., Acetylation by Tip60 is required for selective histone variant exchange at DNA lesions. Science,2004.306:2084-7.
    194. Muratoglu, S., Georgieva, S., Papai, G., Scheer, E., Enunlu, I., Komonyi, O., et al., Two different Drosophila ADA2 homologues are present in distinct GCN5 histone acetyltransferase-containing complexes. Mol Cell Biol,2003.23:306-21.
    195. Grant, P. A., Duggan, L., Cote, J., Roberts, S. M., Brownell, J. E., Candau, R., et al., Yeast Gcn5 functions in two multisubunit complexes to acetylate nucleosomal histones:characterization of an Ada complex and the SAGA (Spt/Ada) complex. Genes Dev,1997.11:1640-50.
    196. Taverna, S. D., Ilin, S., Rogers, R. S., Tanny, J. C., Lavender, H., Li, H. et al., Yngl PHD fnger binding to H3 trimethylated at K4 promotes NuA3 HAT activity at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell,2006.24:785-96.
    197. Utley, R. T., Ikeda, K., Grant, P. A., Cote, J., Steger, D. J., Eberharter, A., et al., Transcriptional activators direct histone acetyltransferase complexes to nucleosomes. Nature,1998.394:498-502.
    198. Wallberg, A. E., Neely, K. E., Gustafsson, J. A., Workman, J. L., Wright, A. P. Grant, P. A., Histone acetyltransferase complexes can mediate transcriptional activation by the major glucocorticoid receptor activation domain. Mol Cell Biol,1999.19:5952-9.
    199. Ikura, T., Ogryzko, V. V., Grigoriev, M., Groisman, R., Wang, J., Horikoshi, M., et al. Involvement of the TIP60 histone acetylase complex in DNA repair and apoptosis. Cell,2000.102:463-73.
    200. Sapountzi, V., Logan, I. R., Robson, C. N., Cellular functions of TIP60. Int J Biochem Cell Biol,2006.38:1496-509.
    201. Fuchs, M., Gerber, J., Drapkin, R., Si f, S., Ikura, T., Ogryzko, V., et al. The p400 complex is an essential ElA transformation target. Cell,2001. 106:297-307.
    202. Park, J., Wood, M. A., Cole, M. D., BAF53 forms distinct nuclear complexes and functions as a critical c-Myc-interacting nuclear cofactor for oncogenic transformation. Mol Cell Biol,2002.22:1307-16.
    203. Boudreault, A. A., Cronier, D., Selleck, W., Lacoste, N., Utley, R. T. Allard, S., et al. Yeast enhancer of polycomb defnes global Esal-dependent acetylation of chromatin. Genes Dev,2003.17:1415-28.
    204. Vaquero, A., Loyola, A., Reinberg, D., The constantly changing face of chromatin. Sci Aging Knowledge Environ,2003.2003:RE4.
    205. Workman, J.L., Kingston, R.E., Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem,1998.67: 545-79.
    206. Shogren-Knaak, M., Ishii, H., Sun, J. M., Pazin, M. J., Davie, J. R. Peterson, C. L., Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science,2006.311:844-7.
    207. Shogren-Knaak, M., Peterson, C.L., Switching on chromatin:mechanistic role of histone H4-K16 acetylation. Cell Cycle,2006.5:1361-5.
    208. de la Cruz, X., Lois, S., Sanchez-Molina, S., Martinez-Balbas, M. A. Do protein motifs read the histone code? Bioessays,2005.27:164-75.
    209. Dhalluin, C., Carlson, J. E., Zeng, L., He, C., Aggarwal, A. K., Zhou, M. M. Structure and ligand of a histone acetyltransferase bromodomain. Nature, 1999.399:491-6.
    210. Hassan, A. H., Prochasson, P., Neely, K. E., Galasinski, S. C., Chandy, M. Carrozza, M. J., et al., Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell, 2002. 111:369-79.
    211. Owen, D. J., Ornaghi, P., Yang, J. C., Lowe, N., Evans, P. R., Ballario, P. et al., The structural basis for the recognition of acetylated histone H4 by the bromodomain of histone acetyltransferase gcn5p. EMBO J,2000. 19:6141-9.
    212. Rea, S., Eisenhaber, F.,0'Carroll, D., Strahl, B. D., Sun, Z. W., Schmid, M., et al., Regulation of chromatin structure by site-specifc histone H3 methyltransferases. Nature,2000.406:593-9.
    213. Brownell, J. E., Allis, C.D., Special HATs for special occasions:linking histone acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev,1996.6:176-84.
    214. Vignali, M., Steger, D. J., Neely, K. E., Workman, J. L., Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes. EMBO J,2000.19:2629-40.
    215. Nourani, A., Doyon, Y., Utley, R. T., Allard, S., Lane, W. S., Cote, J., Role of an ING1 growth regulator in transcriptional activation and targeted histone acetylation by the NuA4 complex. Mol Cell Biol,2001. 21:7629-40.
    216. Galarneau, L., Nourani, A., Boudreault, A. A., Zhang, Y., Heliot, L., Allard, S., et al., Multiple links between the NuA4 histone acetyltransferase complex and epigenetic control of transcription. Mol Cell,2000.5:927-7.
    217. Reid, J. L., Iyer, V. R., Brown, P.O., Struhl, K., Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esal histone acetylase. Mol Cell,2000.6:1297-307.
    218. Arabi, A., Wu, S., Ridderstrale, K., Bierhoff, H., Shiue, C., Fatyo,1. K. et al., c-Myc associates with ribosomal DNA and activates RNA polymerase Ⅰ transcription. Nat Cell Biol,2005.7:303-10.
    219. Brown, C. E., Howe, L., Sousa, K., Alley, S. C., Carrozza, M. J., Tan, S. et al., Recruitment of HAT complexes by direct activator interactions with the ATM-related Tral subunit. Science,2001.292:2333-7.
    220. Fernandez, P. C., Frank, S. R., Wang, L., Schroeder, M., Liu, S., Greene, J., et al, Genomic targets of the human c-Myc protein. Genes Dev,2003. 17:1115-29.
    221. Knoepfer, P. S., Zhang, X. Y., Cheng, P. F., Gafken, P. R., McMahon, S. B. Eisenman, R.N., Myc infuences global chromatin structure. EMBO J,2006. 25:2723-34.
    222. Herceg, Z., Li, H., Cuenin, C., Shukla, V., Radolf, M., Steinlein, P. et al, Genome-wide analysis of gene expression regulated by the HAT cofactor Trrap in conditional knockout cells. Nucleic Acids Res,2003. 31:7011-23.
    223. Li, H., Cuenin, C., Murr, R., Wang, Z. Q., Herceg, Z., HAT cofactor Trrap regulates the mitotic checkpoint by modulation of Madl and Mad2 expression. EMBO J,2004.23:4824-34.
    224. Masumoto, H., Hawke, D., Kobayashi, R., Verreault, A., A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature,2005.436:294-8.
    225. Schneider, J., Bajwa, P., Johnson, F. C., Bhaumik, S. R., Shilatifard, A. Rtt109 is required for proper H3K56 acetylation:a chromatin mark associated with the elongating RNA polymerase Ⅱ. J Biol Chem.2006.281: 37270-4.
    226. Xu, F., Zhang, K., Grunstein, M., Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell,2005.121:375-85
    227. Brown, C. E., Lechner, T., Howe, L., Workman, J. L., The many HATs of transcription coactivators. Trends Biochem Sci,2000.25:15-19.
    228. Carrozza, M. J., Utley, R. T., Workman, J. L., Cote, J., The diverse functions of histone acetyltransferase complexes. Trends Genet,2003.19: 321-9.
    229. Herceg, Z., Wang, Z. Q., Rendez-vous at mitosis:TRRAPed in the chromatin. Cell Cycle,2005.4:383-7.
    230. Brand, M., Moggs, J. G., Oulad-Abdelghani, M., Lejeune, F., Dilworth, F. J. Stevenin, J, et al. UV-damaged DNA-binding protein in the TFTC complex links DNA damage recognition to nucleosome acetylation. EMBO J,2001.20: 3187-96.
    231. Martinez, E., Palhan, V. B., Tjernberg, A., Lymar, E. S., Gamper, A.M. Kundu, T.K., et al. Human STAGA complex is a chromatin-acetylating transcription coactivator that interacts with pre-mRNA splicing and DNA damage-binding factors in vivo. Mol Cell Biol,2001.21:6782-95.
    232. Choy, J. S., Kron, S. J., NuA4 subunit Yng2 function in intra-S-phase DNA damage response. Mol Cell Biol,2002.22:8215-25.
    233. Qin, S., Parthun, M. R., Histone H3 and the histone acetyltransferase Hatlp contribute to DNA double-strand break repair. Mol Cell Biol,2002.22: 8353-65.
    234. Tamburini, B. A., Tyler, J.K., Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol,2005.25:4903-13.
    235. Celic, I., Masumoto, H., Griffth, W. P., Meluh, P., Cotter, R. J., Boeke, J. D., et al, The sirtuins hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol,2006.16: 1280-9.
    236. Maas, N. L., Miller, K. M., DeFazio, L. G., Toczyski, D. P., Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell,2006.23:109-19.
    237. Driscoll, R., Hudson, A., Jackson, S. P., Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science,2007.315: 649-52.
    238. Han, J., Zhou, H., Horazdovsky, B., Zhang, K., Xu, R. M., Zhang, Z., Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science, 2007.315:653-5.
    239. Murr, R, Loizou, J. I., Yang, Y. G., Cuenin, C., Li, H., Wang, Z. Q., et al, Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol,2006.8:91-9.
    240. Murr, R, Vaissiere, T, Sawan, C, Shukla, V, Herceg, Z, Orchestration of chromatin-based processes:mind the TRRAP. Oncogene.2007,26:5358-72.
    241. BAN, NISTER, A.J., KOUZARIDES, T., Reversing histone methylation [J]. Nature,2005.436:1103-1106.
    242. FORN, ERIS, F., BINDA, C., VANONI, M. A., et al, Human histone demethylase LSD1 reads the histone code[J]. J Biol Chem.2005,280:41360-41365.
    243. ADCOCK, I. M., FORD, P., ITO, K., et al, Epigenetics and airw ays disease [J]. Respir Res,2006.7:21.
    244. PAL, S., SIF, S., Interplay between chromatin remodelers and prptein arginine methyltransferases. J CellPhysiol,2007.213 (2):306-315.
    245. Wysocka, J., Allis, C.D., Coonrod, S., Histone arginine methylationan its dynamic regulation. Front Biosci,2006.11 (1):344-355.
    246. Keenan, R. J., Freymann, D. M., Stroud, R. M., and Walter, P., The signal recognition particle. Annu. Rev. Biochem,2001.70:755-775.
    247. Wild, K., Weichenrieder,O., Strub, K., Sinning,1., and Cusack, S., Towards the structure of the mammalian signal recognition particle. Curr. Opin. Struct. Biol,2002.12:72-81.
    248. Zwieb, C. and Eichler, J., Getting on target:The archaeal signal recognition particle. Archaea,2002.1:27-34.
    249. Zwieb, C. and Eichler, J., Signal recognition particle-mediated protein targeting. Recent Res. Dev. Mol. Biol.,2003.1:205-224.
    250. Doudna, J. A. and Batey, R.T., Structural insights into the signal recognition particle. Annu. Rev. Biochem,2004.73:539-557.
    251. Halic, M., Becker, T., Pool, M. R., Spahn, C.M., Grassucci, R. A., Frank, J., and Beckmann, R., Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature,2004.427: 808-814.
    252. Luirink, J. and Sinning, I., SRP-mediated protein targeting:Structure and function revisited. Biochim. Biophys. Acta,2004.1694:17-35.
    253. Shan, S.O. and Walter, P., Co-translational protein targeting by the signal recognition particle. FEBS Lett,2005.579:921-926.
    254. Rosenblad, M. A., Gorodkin, J., Knudsen, B., Zwieb, C., and Samuelsson, T. SRPDB:Signal recognition particle database. Nucleic Acids Res,2003.31: 363-364.
    255. Walter, P. and Blobel, G., Disassembly and reconstitution of signal recognition particle. Cell,1983.34:525-533.
    256. Andrews, D. W., Walter, P. and Ottensmeyer, F.P., Evidence for an extended 7SL RNA structure in the signal recognition particle. EMBO J,1987.6: 3471-3477.
    257. Weichenrieder,O., Wild, K., Strub, K., and Cusack, S., Structure and assembly of the Alu domain of the mammalian signal recognition particle. Nature,2000.408:167-173.
    258. Siegel, V. and Walter, P., Removal of the Alu structural domain from signal recognition particle leaves its protein translocation activity intact. Nature,1986.320:81-84.
    259. Siegel, V. and Walter, P., Binding sites of the 19-kDa and 68/72-kDa signal recognition particle (SRP) proteins on SRP RNA as determined in protein-RNA "footprinting". Proc. Natl. Acad. Sci,1988.85:1801-1805.
    260. Scoulica, E., Krause, E., Meese, K., and Dobberstein, B., Disassembly and domain structure of the proteins in the signal-recognition particle. Eur. J. Biochem.,1987.163:519-528.
    261. Politz, J. C., Yarovoi, S., Kilroy, S. M., Gowda, K., Zwieb, C., and Pederson, T., Signal recognition particle components in the nucleolus. Proc. Natl. Acad. Sci.,2000.97:55-60.
    262. Liitcke, H., Prehn, S., Ashford, A. J., Remus, M., Frank, R., and Dobberstein, B., Assembly of the 68- and 72-kD proteins of signal recognition particle with 7S RNA. J. Cell Biol,1993.121:977-985.
    263. Elena, iakhiaeva., Shakhawat, H. B., Jiaming, Y., and Christian, Z., Protein SRP68 of human signal recognition particle:Identification of the RNA and SRP72 binding domains. Protein Science,2006.15:1290-1302.
    264. Dignam, J.D., et al., Accurate transcription initiation by RNA polymerase Ⅱ in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res, 1983.11:1475-1489.
    265. Rajakumara, E., Wang, Z., Ma, H., et al., PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Molecular cell,2011.22:275-84.
    266. Jianmin, Z., Jinping,Z., Amy I., Melanie Cushion, T. Bernard K., and Henry K., Pneumocystis Activates Human Alveolar Macrophage NF-κB Signaling through Mannose Receptors. Infection and immunity,2004.6:3147-3160.
    267. Xiangjiao, Y., Edward, S., The Rpd3/Hdal family of lysine deacetylases: from bacteria and yeast to mice and men. Molecular Cell Biology,2008.9: 206-218.
    268 Yi, Z., Danny, R., Transcription regulation by histone methylation: interplay between different covalent modifications of the core histone tails. Genes & Development,2001.15:2343-2360.
    269 Elena, I., Shakhawat Hossain, B., Jiaming Y., and Christian Z., Protein SRP68 of human signal recognition particle:Identification of the RNA and SRP72 binding domains. Protein Science,2006.15:1290-1302.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700