用户名: 密码: 验证码:
生长激素在BMP9介导的间充质干细胞向成骨分化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
间充质干细胞(Mesenchymal Stem Cells,MSCs)是具有多项分化潜能的成体干细胞,能够分化为成骨细胞、软骨细胞、脂肪细胞和肌肉细胞谱系。干细胞的成骨分化是一个复杂、调控严格的过程,这个过程受一系列内源性和各种环境因子以及信号通路的影响。对间充质干细胞成骨分化机制的研究,有望为临床上治疗骨缺损、骨折及骨不连等病症提供新方案。
     在间充质干细胞成骨分化早期,骨形态发生蛋白(Bone MorphogenesisProteins, BMPs)发挥着至关重要的作用。 BMPs属于转化生长因子(Transforming Growth Factor, TGF)β超家族成员,是一组具有类似结构的高度保守的分泌型多功能蛋白,在细胞黏附、增殖、分化,骨骼发育和骨组织形成中发挥重要作用。目前发现人BMP家族至少存在15种成员,其中BMP2,BMP4,BMP6,BMP7和BMP9能有效地在体内和体外诱导间充质干细胞向成骨分化。BMP9是骨源性最强的BMP之一,同时也是目前了解得最少的BMP之一。
     我们的前期研究发现,用BMP9腺病毒(Ad-BMP9)感染MSCs后,收集细胞总RNA进行微阵列分析,有大约40个基因的表达发生明显变化。其中,生长激素(Growth Hormone,GH)的表达上调最为显著。这提示生长激素参与了BMP9诱导的间充质干细胞分化过程,并且可能在其中发挥重要作用。生长激素是由垂体分泌的一种蛋白质激素,通过与GH受体结合,或与胰岛素样生长因子Ⅰ(Insulin-like Growth FactorⅠ,IGF-Ⅰ)相互作用,影响骨骼的发育和生长。为了揭示生长激素在BMP9诱导的间充质干细胞成骨分化中扮演的角色,探讨其中的分子机制,本研究首先构建了GH过表达的质粒,并包装相应的腺病毒,其次,在体外、器官培养和体内三个层面上研究GH和BMP9对间充质干细胞成骨分化的影响,最后通过染色质免疫沉淀技术(Chromatin Immunoprecipitation,ChIP)和小分子抑制剂的使用探索其中的调控机制。我们主要的研究内容包括:
     ①从Thermo公司购买含有人GH基因片段的质粒,酶切后将GH基因片段连接到腺病毒穿梭质粒上。测序鉴定后,将质粒转入BJAdEasy细胞中进行重组,并筛选阳性克隆。PacⅠ酶切将重组子线性化、纯化,通过脂质体转染到HEK293细胞中进行包装。将病毒命名为AdR-GH。
     ②C3H10T1/2细胞购买自ATCC公司,是常用的MSC细胞株。免疫荧光检测C3H10T1/2间充质干细胞标志物的表达。结果显示,C3H10T1/2表达MSC标志物CD29/Integrinβ1,CD44,CD73, CD90/Thy-1,CD117/c-kit,BMPRⅡ,CD133/Prom1, CD105/Endoglin和CD166/ALCAM。
     ③利用Ad-BMP9感染C3H10T1/2细胞,分别于感染后1、3、5、7天收集细胞总RNA,RT-PCR检测GH的表达。结果显示这4个时间点GH的表达均显著增强。免疫组织化学染色(Immunohistochemistry,IHC)结果表明,GH在发育中长骨生长板的成骨细胞和软骨细胞中表达。体外实验设置4个组:Ad-GFP/Ad-RFP(对照组),Ad-GFP/AdR-GH,Ad-BMP9/Ad-RFP,Ad-BMP9/AdR-GH,用这4组病毒分别刺激MSCs,并检测成骨细胞分化标记物的表达。这些标志物包括碱性磷酸酶(Alkaline Phosphatase,ALP),骨钙素,骨桥蛋白和基质的矿化作用(茜素红染色)。结果表明,GH本身不能启动MSCs的成骨分化,而当GH和BMP9共同作用时,成骨分化标志物的表达明显强于其他3组,说明GH在体外能促进BMP9介导的MSCs成骨分化。
     ④在器官培养的实验中,我们截取胚胎期E18.5天的小鼠后肢进行培养,并利用上述4组病毒感染组织。将钙黄绿素作为荧光指示剂加入培养基中追踪骨发育过程,在病毒感染后2、4、8、12天测量记录胫骨横截面荧光面积。结果显示,与对照组相比,单独的BMP9能有效促进骨生成,但BMP9和GH组合的促进效果更为显著。苏木精-伊红(Haematoxylin and eosin,H&E)染色结果显示,Ad-BMP9/AdR-GH组中肥大软骨区域大于对照组。这些结果表明,GH能促进BMP9介导的软骨内成骨。
     ⑤利用上述4组病毒感染C3H10T1/2细胞36小时后,收集细胞注射到无胸腺裸鼠皮下。注射4周后,处死裸鼠,收集移植部位进行微型计算机断层扫描(Microcomputed Tomography,MicroCT)。通过Amira5.3软件将扫描结果进行三维重建并进行统计分析。仅感染Ad-BMP9/Ad-RFP或Ad-BMP9/AdR-GH病毒的MSCs能生成异位骨,且BMP9和GH共同诱导的MSCs形成的异位骨骨量更多,骨密度更大。H&E染色以及骨钙素、骨桥蛋白的免疫组织化学染色结果显示,BMP9诱导生成的异位骨中形成部分成熟的骨基质和骨小梁,同时可观察到未分化的间充质祖细胞。而由BMP9和GH共同诱导生成的异位骨中存在更多的成熟骨基质和更大,更厚的骨小梁,未分化的间充质祖细胞相对较少。Masson’sTrichrome染色结果显示, GH增强了BMP9诱导的基质矿化作用。
     ⑥在GH启动子区域寻找假定的Smad结合位点,据此设计两对PCR寡核苷酸序列用于ChIP分析。亚融合的C3H10T1/2细胞被AdGFP或AdBMP9感染30个小时。交联细胞,超声破碎基因组DNA,然后用抗Smad1/5/8抗体进行免疫共沉淀。分别用两对引物与获得的基因组DNA进行PCR反应。结果发现,抗-Smad1/5/8抗体能拖下含有GH启动子区域的基因组片段。表明GH是MSCs中BMP9诱导的Smad信号的一个下游靶点。在BMP9或BMP9/GH诱导培养的MSCs中分别加入STAT3、STAT5、JAK的小分子抑制剂后,于第5、7天检测ALP活性。结果表明,这几种抑制剂均能有效地抑制BMP9介导的ALP活性,同时,BMP9和GH协同诱导的ALP活性也受到明显抑制。此外,RT-PCR结果显示,GH能诱导IGF1的表达,并且GH诱导的IGF1表达能被JAK和STAT5抑制剂抑制。
     综合以上研究结果,我们认为生长激素与BMP9存在协同作用,通过激活JAK/STAT/IGF1信号通路促进间充质干细胞的成骨分化。
Mesenchymal stem cells (MSCs) are multipotent adult stem cells capable ofdifferentiating into osteogenic, chondrogenic, adipogenic, and myogenic lineages.Osteogenic differentiation is a complicated and well-regulated process results from thecontrol of a series of endogenous and environmental factors as well as various signalingpathways. A better understating of molecular mechanisms underlying osteogenicdifferentiation will lead to the development of novel and targeted therapies for bonediseases.
     Bone morphogenesis Proteins (BMPs) play an important role in the early stage ofosteogenesis of MSCs. BMPs belong to the transforming growth factor β (TGF-β)superfamily, and they are a group of highly conserved, secreted multifunctionalproteins which are significant for cell proliferation,adhesion,differentiation, skeletaldevelopment and bone formation. Currently, at least15types of BMPs have beenidentified in humans. Among these members, BMP2, BMP4, BMP6, BMP7, and BMP9can effectively induce osteogenic differentiation of MSCs in vitro and in vivo.Furthermore, BMP9is one of the most osteogenic and yet least studied BMPs.
     In our previous study, total RNA of C3H10T1/2infected with BMP9adenovirus(Ad-BMP9) was collected for microarray analysis. The data showed that40genes weremost significantly regulated in MSCs upon BMP9stimulation, and growth hormone(GH) gene was among the most significantly up-regulated genes induced by BMP9.This result indicated that GH may associate with the regulation of osteoblastdifferentiation in response to BMP9. Growth hormone is a proteohormone secreted bythe pituitary gland. GH fulfills its function by binding to the GH receptor and insulin-like growth factorⅠ (IGF-Ⅰ). In order to determine the functional role of GH inBMP9-induced osteogenic differentiation as well as the mechanism involved in it, thevector expressing GH was constructed, and the adenovirus was generated. Subsequently,the effect of GH on BMP9-induced bone formation was investigated on three levels: invitro, organ culture and in vivo. In addition, chromatin immunoprecipitation and smallmolecule inhibitors were used to explore the molecular mechanism. Our studies mainlyinclude:
     ①Vector named pCMV-SPORT6.1which contained human GH gene waspurchased from Thermo. After digestion reactions, GH gene was cloned into an adenoviral shuttle vector. Verified the constructs by DNA sequencing, and thentransferred the constructs into BJAdEsay bacterial cells for making adenoviralrecombinants. PacⅠ digestion reaction was performed to liberate the adenoviralgenome, followed by transfection of HEK293cells with lipofectAMINE to generateadenovirus which named AdR-GH.
     ②C3H10T1/2cells are commonly used MSCs, obtaining from ATCC. Theexpression of MSC markers was characterized using immunofluorescence staining. Ourdata showed that C3H10T1/2cells expressed MSC markers, including CD73, CD44,CD90/Thy-1, CD117/c-kit, CD29/Integrinβ1, CD133/Prom1, BMPR Ⅱ, CD105/Endoglin and CD166/ALCAM.
     ③C3H10T1/2cells were infected with Ad-BMP9, and total RNA was isolated ondays1,3,5,7after infection for RT-PCR reactions. Using RT-PCR, we found that theexpression of GH obviously induced by BMP9at the four time points.Immunohistochemistry (IHC) staining evaluated of juvenile long bones reveals that GHis highly expressed in the osteoblasts of the growth plate. Four adenoviruses infectionstrategies were designed for in vitro experiment: Ad-GFP/Ad-RFP(control group),Ad-GFP/AdR-GH, Ad-BMP9/Ad-RFP and Ad-BMP9/AdR-GH. C3H10T1/2cells wereinfected with these four group viruses, and then the osteogenic markers, such as alkalinephosphatase, osteocalcin, osteopontin and mineralization were evaluated. GH alonecould not initiate osteogenic differentiation. However, a combination of GH and BMP9significantly induced the expression of osteogenic markers compared with other threegroups. These results indicated that GH promoted the BMP9-induced osteogenicdifferentiation of MSCs in vitro.
     ④The skinned hindlimbs of fetal mouse were dissected for organ culture.Hindlimbs were infected with the four group viruses as described before, and the greenfluorescence dye calcein was added to the medium to trace the new bone formation.Tibia’s cross section area was calculated on days2,4,8,12after infection. The datashowed that more new bone formation found in BMP9/RFP group compared withGFP/RFP control group, whereas the BMP9/GH group had the highest level of newbone formation, as judged by the calcein incorporation. Haematoxylin and eosin (H&E)staining image at a higher magnification showed that BMP9/GH stimulation expandedthe hypertrophic chondrocyte zone contrasted with that of the control group. Theseorgan culture studies suggest that GH may enhance BMP9-induced endochondralossification.
     ⑤Subconfluent C3H10T1/2cells were infected with the four combinations ofadenoviruses mentioned above for36hours. Cells were collected for subcutaneousinjection into the flanks of athymic nude mice. Four weeks after implantation, micewere sacrificed and the implantation sites were retrieved for microcomputedtomography (MicroCT) analysis.3D data were obtained using Amira5.3software. OnlyMSCs infected with BMP9/RFP or BMP9/GH adenoviruses could generate ectopicbones. Quantitative analysis data showed that more bone masses and higher bonedensity was found in BMP9/GH treating group. On H&E and IHC staining examination,ectopic bones formed by BMP9-transduced cells had some mature bone matrices andtrabeculae as well as numerous undifferentiated mesenchymal progenitor cells. On theother hand, cells stimulated by both BMP9and GH generated more mature bonematrices and thicker trabeculae, with minimal undifferentiated mesenchymal progenitorcells. Masson’s trichrome staining confirmed that GH enhanced BMP9-induced matrixmineralization.
     ⑥Two pairs of primers were designed for ChIP assays according to the putativeSmad binding sites in GH promoter region. Subconfluent C3H10T1/2cells wereinfected with Ad-GFP or Ad-BMP9for30hours. Cells were cross linked. GenomicDNA was sonicated for immunoprecipitation with anti-Smad1/5/8. The retrievedgenomic DNA was subjected to PCR reaction using the two pairs of primers. The PCRresults showed that anti-Smad1/5/8antibody pulled down genomic fragmentscontaining the GH promoter region, suggesting that GH may be a direct target ofBMP9-induced Smad signaling in MSCs. C3H10T1/2cells were infected with Ad-BMP9or Ad-BMP9/AdR-GH, followed by administration of STAT3, STAT5and JAKinhibitors. ALP activity was determined on day5and7after infection andadministration. Our results demonstrated that BMP9-stimulated ALP activity wassignificantly inhibited. Furthermore, these inhibitors were shown to effectively inhibitthe synergistic ALP activity induced by both BMP9and GH. In addition, RT-PCRresults indicated that GH-induced IGF1expression could be significantly inhibited byJAK and STAT5.
     In summary, we demonstrated that GH synergizes with BMP9in osteogenicdifferentiation by activating the JAK/STAT/IGF1pathway in mesenchymal stem cells.
引文
[1] Luther G, Wagner ER, Zhu GH, et al. BMP-9Induced Osteogenic Differentiation ofMesenchymal Stem Cells: Molecular Mechanism and Therapeutic Potential [J]. Curr GeneTher,2011,11(3):229-240.
    [2] Siris ES, Miller PD, Barrett-Connor E, et al. Identification and fracture outcomes ofundiagnosed low bone mineral density in postmenopausal women: results from the NationalOsteoporosis Risk Assessment [J]. JAMA,2001,286(22):2815-2822.
    [3] Sarmiento A. On the Behavior of Closed Tibial Fractures: Clinical/RadiologicalCorrelations [J]. J Orthop Trauma,2000,14(3):199-205.
    [4] Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineraldensity predict occurrence of osteoporotic fractures [J]. BMJ,1996,312(7041):1254-1259.
    [5] Dickson K, Katzman S, Delgado E, Contreras D. Delayed unions and nonunions of opentibial fractures. Correlation with arteriography results [J]. Clin Orthop Relat Res,1994,302:189-93.
    [6]常玉立,孙天胜,刘智等.自体骨髓间充质干细胞移植与纤维蛋白胶复合骨形态发生蛋白体内成骨的比较研究[J].中国康复理论与实践,2009,1(15):44-47.
    [7] Boden SD. Overview of the biology of lumbar spine fusion and principles for selecting abone graft substitute [J]. Spine,2002,27: S26-31.
    [8] Rastegar F, Shenaq D, Huang JY, et al. Mesenchymal stem cells: Molecular characteristicsand clinical applications [J]. World J Stem Cells,2010,2(4):67-80.
    [9] Axelrad TW, Einhorn TA. Bone morphogenetic proteins in orthopaedic surgery [J].Cytokine Growth Factor Rev,2009,20(5-6):481-488.
    [10] Sieber C, Kopf J, Hiepen C, et al. Recent advances in BMP receptor signaling [J]. CytokineGrowth Factor Rev,2009,20(5-6):342-355.
    [11] Kang Q, Song WX, Luo Q, et al. A Comprehensive Analysis of the Dual Roles of BMPs inRegulating Adipogenic and Osteogenic Differentiation of Mesenchymal Progenitor Cells [J].Stem Cells Dev,2009,18(4):545-559.
    [12] Alaoui-Ismaili MH, Falb D. Design of second generation therapeutic recombinant bonemorphogenetic proteins [J]. Cytokine Growth Factor Rev,2009,20(5-6):501-507.
    [13] Rosen V. BMP2signaling in bone development and repair [J]. Cytokine Growth Factor Rev,2009,20(5-6):475-480.
    [14] He TC. Distinct osteogenic activity of BMPs and their orthopaedic applications [J]. JMusculoskelet Neuronal Interact,2005,5(4):363-366.
    [15] Vukicevic S, Grgurevic L. BMP-6and mesenchymal stem cell differentiation [J]. CytokineGrowth Factor Rev,2009,20(5-6):441-448.
    [16] Cheng H, Jiang W, Phillips FM, et al. Osteogenic activity of the fourteen types of humanbonemorphogenetic proteins (BMPs)[J]. J Bone Joint Surg Am,2003,85-A(8):1544-1552.
    [17] Luu HH, Song WX, Luo X, et al. Distinct roles of bone morphogenetic proteins inosteogenic differentiation of mesenchymal stem cells [J]. J Orthop Res,2007,25(5):665-677.
    [18] Wagner ER, He BC, Chen L, et al. Therapeutic Implications of PPARgamma in HumanOsteosarcoma [J]. PPAR Res,2010:56427.
    [19]赵丹,罗进勇. BMP9促进间充质干细胞C3H10T1/2成骨分化的研究[J].临床和实验医学杂志,2011,10(16):1225-1230.
    [20] Peng Y, Kang Q, Cheng H, et al. Transcriptional characterization of bone morphogeneticproteins (BMPs)-mediated osteogenic signaling [J]. J Cell Biochem,2003,90(6):1149-1165.
    [21] Peng Y, Kang Q, Luo Q, et al. Inhibitor of DNA binding/differentiation helix-loop-helixproteins mediate bone morphogenetic protein-induced osteoblast differentiation ofmesenchymal stem cells [J]. J Biol Chem,2004,279(31):32941-32949.
    [22] Luo Q, Kang Q, Si W, et al. Connective tissue growth factor (CTGF) is regulated by Wntand bone morphogenetic proteins signaling in osteoblast differentiation of mesenchymalstem cells [J]. J Biol Chem,2004,279(53):55958-55968.
    [23] Igura K, Zhang X, Takahashi K, et al. Isolation and characterization of mesenchymalprogenitor cells from chorionic villi of human placenta [J]. Cytotherapy,2004,6(6):543-553.
    [24] Devine SM, Bartholomew AM, Mahmud N, et al. Mesenchymal stem cells are capable ofhoming to the bone marrow of non-human primates following systemic infusion [J]. ExpHematol,2001,29(2):244-255.
    [25] Airey JA, Almeida-Porada G, Colletti EJ, et al. Human mesenchymal stem cells formPurkinje fibers in fetal sheep heart [J]. Circulation,2004,109(11):1401-1407.
    [26] Bosnakovski D, Mizuno M, Kim G, et al. Isolation and multilineage differentiation ofbovine bone marrow mesenchymal stem cells [J]. Cell Tissue Res,2005;319(2):243-253.
    [27] Moscoso I, Centeno A, López E, et al. Differentiation "in vitro" of primary andimmortalized porcine mesenchymal stem cells into cardiomyocytes for cell transplantation[J]. Transplant Proc,2005,37(1):481-482.
    [28] Ringe J, H upl T, Sittinger M. Mesenchymal stem cells for tissue engineering of bone andcartilage [J]. Med Klin (Munich),2003,98Suppl2:35-40.
    [29] Santa María L, Rojas CV, Minguell JJ. Signals from damaged but not undamaged skeletalmuscle induce myogenic differentiation of rat bone-marrow-derived mesenchymal stemcells [J]. Exp Cell Res,2004,300(2):418-426.
    [30] Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into anendothelial phenotype, enhance vascular density, and improve heart function in a caninechronic ischemia model [J]. Circulation,2005,111(2):150-156.
    [31] Baddoo M, Hill K, Wilkinson R, et al. Characterization of mesenchymal stem cells isolatedfrom murine bone marrow by negative selection [J]. J Cell Biochem,2003,89(6):1235-1249.
    [32] Dazzi F, Ramasamy R, Glennie S, et al. The role of mesenchymal stem cells inhaemopoiesis [J]. Blood Rev,2006,20(3):161-171.
    [33] Villaron EM, Almeida J, Lopez-Holgado N, et al. Mesenchymal stem cells are present inperipheral blood and can engraft after allogeneic hematopoietic stem cell transplantation [J].Haematologica,2004,89(12):1421-1427.
    [34] Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cordblood [J]. Br J Haematol,2000,109(1):235-242.
    [35] Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitorcells in human first-trimester fetal blood, liver, and bone marrow [J]. Blood,2001,98(8):2396-2402.
    [36] in’t Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but aheterogeneous multilineage differentiation potential [J]. Haematologica,2003,88(8):845-852.
    [37] Igura K, Zhang X, Takahashi K et al. Isolation and characterization of mesenchymalprogenitor cells from chorionic villi of human placenta [J]. Cytotherapy,2004,6(6):543-553.
    [38] Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cellsfrom second-trimester amniotic fluid using a novel two-stage culture protocol [J]. HumReprod,2004,19(6):1450-1456.
    [39] Amoh Y, Li L, Campillo R, et al. Implanted hair follicle stem cells form Schwann cells thatsupport repair of severed peripheral nerves [J]. Proc Natl Acad Sci U S A,2005,102(49):17734-17738.
    [40] Coles BL, Angénieux B, Inoue T, et al. Facile isolation and the characterization of humanretinal stem cells [J]. Proc Natl Acad Sci U S A,2004,101(44):15772-15777.
    [41] Sinanan AC, Hunt NP, Lewis MP. Human adult craniofacial muscle-derived cells: neural-cell adhesion-molecule (NCAM; CD56)-expressing cells appear to contain multipotentialstem cells [J]. Biotechnol Appl Biochem,2004,40(Pt1):25-34.
    [42] da Silva Meirelles L, Chagastelles PC, Nardi NB. Mesenchymal stem cells reside invirtually all post-natal organs and tissues [J]. J Cell Sci,2006,119(Pt11):2204-2213.
    [43] Davis AA, Temple S. A self-renewing multipotential stem cell in embryonic rat cerebralcortex [J]. Nature,1994,372(6503):263-266.
    [44] In 't Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Isolation of mesenchymalstem cells of fetal or maternal origin from human placenta [J]. Stem Cells,2004,22(7):1338-1345.
    [45] Ringe J, Leinhase I, Stich S, et al. Human mastoid periosteum-derived stem cells:promising candidates for skeletal tissue engineering [J]. J Tissue Eng Regen Med,2008,2(2-3):136-146.
    [46] Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies [J]. Tissue Eng,2001,7(2):211-228.
    [47] Bjerknes M, Cheng H. Intestinal epithelial stem cells and progenitors [J]. Methods Enzymol,2006,419:337-383.
    [48] Liu Z, Martin LJ. Pluripotent fates and tissue regenerative potential of adult olfactory bulbneural stem and progenitor cells [J]. J Neurotrauma,2004,21(10):1479-1499.
    [49] Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies inmonolayer culfures of guinea-pig bone marrow and spleen cells [J]. Cell Kinet,1970,3(4):393-403.
    [50] Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in differentpopulations of hematopoietic cells as detected by the in vitro colony assay method [J]. ExpHematol,1974,2(2):83-92.
    [51] Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult humanmesenchymal stem cells [J]. Science,1999,284(5411):143-147.
    [52] Sekiya I, Larson BL, Smith JR, et al. Expansion of human adult stem cells from bonemarrow stroma: conditions that maximize the yields of early progenitors and evaluate theirquality [J]. Stem Cells,2002,20(6):530-541.
    [53] Owen M. Marrow stromal stem cells [J]. J Cell Sci Suppl,1988,10:63-76.
    [54] Peister A, Mellad JA, Larson BL, et al. Adult stem cells from bone marrow(MSCs) isolatedfrom different strains of inbred mice vary in surface epitopes, rates of proliferation, anddifferentiation potential [J]. Blood,2004,103(5):1662-1668.
    [55] Valcz G, Krenacs T, Sipos F, et al. The role of the bone marrow derived mesenchymal stemcells in colonic epithelial regeneration [J]. Pathol Oncol Res,2010,17(1):11-16.
    [56] Arufe MC, Fuente AD, Boquete F, et al. Differentiation of synovial CD-105(+) humanmesenchymal stem cells into chondrocyte-like cells through spheroid formation [J]. J CellBiochem,2009,108(1):145-155.
    [57] Jo CH, Kim OS, Park EY, et al. Fetal mesenchymal stem cells derived from humanumbilical cord sustain primitive characteristics during extensive expansion [J]. Cell TissueRes,2008,334(3):423-433.
    [58] Kasten P, Beyen I, Egermann M, et al. Instant stem cell therapy: characterization andconcentration of human mesenchymal stem cells in vitro [J]. Eur Cell Mater,2008,23(16):47-55.
    [59] Oreffo RO, Cooper C, Mason C, et al. Mesenchymal stem cells: lineage, plasticity, andskeletal therapeutic potential [J]. Stem Cell Rev,2005,1(2):169-78.
    [60] Bruder SP, Ricalton NS, Boynton RE et al. Mesenchymal stem cell surface antigen SB-10corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenicdifferentiation [J]. J Bone Miner Res,1998,13(4):655-663.
    [61] Gronthos S, Graves SE, Ohta S, et al. The STRO-1+fraction of adult human bone marrowcontains the osteogenic precursors [J]. Blood,1994,84(12):4164-4173.
    [62] Vogel W, Grunebach F, Messam CA, et al. Heterogeneity among human bone marrow-derived mesenchymal stem cells and neural progenitor cells [J]. Haematologica,2003,88(2):126-133.
    [63] Mitchell JB, McIntosh K, Zvonic S, et al. Immunophenotype of human adipose-derivedcells: Temporal changes in stromal-associated and stem cell-associated markers [J]. StemCells,2006,24(2):376-385.
    [64] Covas DT, Siufi JL, Silva AR et al. Isolation and culture of umbilical vein mesenchymalstem cells [J]. Braz J Med Biol Res,2003,36(9):1179-1183.
    [65] Haniffa MA, Collin MP, Buckley CD, et al. Mesenchymal stem cells: the fibroblasts’ newclothes [J]? Haematologica,2009,94(2):258-263.
    [66] Huang EY, Bi Y, Jiang W, et al. Conditionally Immortalized Mouse Embryonic FibroblastsRetain Proliferative Activity without Compromising Multipotent Differentiation Potential[J]. PLoS ONE,2012,7(2): e32428.
    [67] Dominici M, Blanc KL, Mueller I et al. Minimal criteria for defining multipotentmesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy,2006,8(4):315-317.
    [68] Luria EA, Panasyuk AF, Friedenstein AY. Fibroblast colony formation from monolayercultures of blood cells [J]. Transfusion,1971,11(6):345-349.
    [69] Baksh D, Song L, Tuan RS. Adult mesenchymal stem cells: characterization, differentiation,and application in cell and gene therapy. J Cell Mol Med,2004,8(3):301-316.
    [70] Kuznetsov SA, Friedenstein AJ, Robey PG. Factors required for bone marrow stromalfibroblast colony formation in vitro [J]. Br J Haematol,1997,97(3):561-570.
    [71] Gronthos S, Simmons PJ. The growth factor requirements of STRO-1-positive human bonemarrow stromal precursors under serum-deprived conditions in vitro [J]. Blood,1995,85(4):929-940.
    [72] Reyes M, Lund T, Lenvik T, et al. Purification and ex vivo expansion of postnatal humanmarrow mesodermal progenitor cells [J]. Blood,2001,98(9):2615-2625.
    [73] Colter DC, Class R, DiGirolamo CM, et al. Rapid expansion of recycling stem cells incultures of plasticadherent cells from human bone marrow [J]. Proc Natl Acad Sci U S A,2000,97(7):3213-3218.
    [74] Rubio D, Garcia-Castro J, Martin MC et al. Spontaneous human adult stem celltransformation [J]. Cancer Res,2005,65(8):3035-3039.
    [75] Mareschi K, Ferrero I, Rustichelli D, et al. Expansion of mesenchymal stem cells isolatedfrom pediatric and adult donor bone marrow [J]. J Cell Biochem,2006,97(4):744-754.
    [76] Bernardo ME, Avanzini MA, Perotti C, et al. Optimization of in vitro expansion of humanmultipotent mesenchymal stromal cells for cell-therapy approaches: Further insights in thesearch for a fetal calf serum substitute [J]. J Cell Physiol,2007,211(1):121-130.
    [77] Urist MR. Bone: formation by autoinduction [J]. Science,1965,150(3698):893-899.
    [78] Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation: molecularclones and activities [J]. Science,1988,24294885):1528-1534.
    [79] Urist MR, Chang JJ, Lietze A, et al. Preparation and bioassay of bone morphogeneticprotein and polypeptide fragments [J]. Methods Enzymol,1987,146:294-312.
    [80] Wu ZY, Hu XB. Separation and purification of porcine bone morphogenetic protein [J].Clin Orthop,1998,(230):229-236.
    [81] Croteau S, Rauch F, Silvestri A, et al. Bone morphogenetic proteins in orthopedics. BasicScience to clinical practice [J]. Orthopedics,1999,22(7):686-695.
    [82] Rankin CT, Bunton T, Lawler AM, et al. Regulation of left-right patterning in mice bygrowth/differentiation factor-1[J]. Nat Genet,2000,24(3):262-265.
    [83] Saito S, Yano K, Sharma S, et al. Characterization of the post-translational modification ofrecombinant human BMP-15mature protein [J]. Protein Sci,2008,17(2):362-370.
    [84]王松波,束刚,朱晓彤等.骨形态发生蛋白在脂肪生成中的作用[J].中国生物化学与分子生物学报,2009,25(11):997-1002.
    [85] Shi Y, Massague J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus[J]. Cell,2003,113(6):685-700.
    [86] Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily [J]. Science,2002,296(5573):1646-1647.
    [87] Varga AC, Wrana JL. The disparate role of BMP in stem cell biology [J]. Oncogene,2005,24(37):5713-5721.
    [88] Zhang J, Li L. BMP signaling and stem cell regulation [J]. Dev Biol,2005,284(1):1-11.
    [89] Hogan BL. Bone morphogenetic protein: multifunctional regulators of vertebratedevelopment [J]. Genes Dev,1996,10(13):1580-1594.
    [90] Rankin CT, Bunton T, Lawler AM, et al. Regulation of left-right patterning in mice bygrowth/differentiation factor-1[J]. Nat Genet,2000,24(3):262-265.
    [91] Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins [J]. Growth Factors,2004,22(4):233-241.
    [92] Fatehi AN, van den Hurk R, Colenbrander B, et al. Expression of bone morphogeneticprotein2(BMP2), BMP4and BMP receptors in the bovine ovary but absence of effects ofBMP2and BMP4during IVM on bovine oocyte nuclear maturation and subsequent embryodevelopment [J]. Theriogenology,2005,63(3):872-889.
    [93]董传河,杜立新. BMP15对卵巢功能的调节及对生殖的影响[J].动物学杂志,2008,43(4):140-145.
    [94] Hu J, Chen YX, Wang D, et al. Developmental expression and function of Bmp4inspermatogenesis and in maintaining epididymal integrity [J]. Dev biol,2004,276(1):158-171.
    [95] Paulini F, Melo EO. The role of oocyte-secreted factors GDF9and BMP15in folliculardevelopment and oogenesis [J]. Reprod Domest Anim,2011,46(2):354-361.
    [96] Zhao GQ, Chen YX, Liu XM, et al. Mutation in Bmp7exacerbates the phenotype of Bmp8amutants in spermatogenesis and epididymis. Dev Biol.2001,240(1):212-222.
    [97]甘霏霏,钱卫平.骨形态发生蛋白15在卵巢生殖调控过程中的作用[J].医学综述,2010,16(6):814-816.
    [98] McMahon HE, Hashimoto O, Mellon PL, et al. Oo-cyte-specific over-expression of mouseBMP-15leads to ac-celerated folliculogenesis and an early onset of acyclicity in transgenicmice [J]. Endocrinology,2008,149(6):2807-2815.
    [99]郭小强,王晓红. PR结构域蛋白与原始生殖细胞特化[J].生命的化学,2010,1:4-7.
    [100] Derynck R, Feng XH. TGF-beta receptor signaling [J]. Biochim Biophys Acta,1997,1333(2): F105-150.
    [101] Christiansen JH, Coles EG, Wilkinson DG. Molecular control of neural crest formation,migration and differentiation [J]. Curr opin cell biol,2000,12(6):719-724.
    [102]郭庆华,刘强,李平等.骨形态发生蛋白-2基因转染骨髓基质干细胞复合壳聚糖体外构建组织工程软骨的实验研究[J].中国药物与临床,2010,10(1):21-24.
    [103] Mitu G, Hirschberg R. Bone morphogenetic protein-7(BMP7) in chronic kidney disease [J].Front biosci,2008,13:4726-4739.
    [104] Di Cesare PE, Frenkel SR, Carlson CS, et al. Regional gene therapy for full-thicknessarticular cartilage lesions using naked DNA with a collagen matrix [J]. J Orthop Res,2006,24(5):1118-1127.
    [105] Kuo AC, Rodrigo JJ, Reddi AH, et al. Microfracture and bone morphogenetic protein7(BMP-7) synergistically stimulate articular cartilage repair [J]. Osteoarthritis cartilage,2006,14(11):1126-1135.
    [106]莫小兰,郝小亚.骨形态发生蛋白12对肌腱和韧带损伤的修复作用[J].中国临床康复,2006,10(25):150-152.
    [107] Berasi SP, Varadarajan U, Archambault J, et al. Divergent activities of osteogenic BMP2,and tenogenic BMP12and BMP13independent of receptor binding affinities [J]. GrowthFactors,2011,29(4):128-139.
    [108] Haddad-Weber M, Prager P, Kunz M, et al. BMP12and BMP13gene transfer induceligamentogenic differentiation in mesenchymal progenitor and anterior cruciate ligamentcells [J]. Cytotherapy,2010,12(4):505-513.
    [109] Bai X, Li G, Zhao C, et al. BMP7induces the differentiation of bone marrow-derivedmesenchymal cells into chondrocytes [J]. Med Biol Eng Comput,2011,49(6):687-692.
    [110] He BC, Chen L, Zuo GW, et al. Synergistic antitumor effect of the activated PPARgammaand retinoid receptors on human osteosarcoma [J]. Clin Cancer Res,2010,16(8):2235-2245.
    [111] Aubin JE. Regulation of osteoblast formation and function [J]. Rev Endocr Metab Disord,2001,2(1):81-94.
    [112] Deng ZL, Sharff KA, Tang N, et al. Regulation of osteogenic differentiation during skeletaldevelopment [J]. Front Biosci,2008,13:2001-2021.
    [113] Tang N, Song WX, Luo J, et al. Osteosarcoma development and stem cell differentiation [J].Clin Orthop Relat Res,2008,466(9):2114-2130.
    [114]李建军,许晓军,杨军等.骨形态发生蛋白2基因转染对人骨髓间充质干细胞成骨分化的影响[J].中国医科大学学报,2006,35(1):69-71.
    [115] Cheng SL, Lou J, Wright NM, et al. In vitro and in vivo induction of bone formation using arecombinant adenoviral vector carrying the human BMP-2gene [J]. Calcif Tissue Int,2001,68(2):87-94.
    [116]金丹,裴国献,王珂等.人骨形态发生蛋白7基因转染对骨髓间充质干细胞增殖及成骨分化性能的影响[J].中国临床康复,2005,9(14):206-208.
    [117] Krebsbach PH, Gu K, Franceschi RT, et al. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo [J]. Hum Gene Ther,2000,11(8):1201-1210.
    [118]孙大铭,侯树勋,付小兵.骨形成蛋白7重组腺病毒的构建及诱导成骨的研究[J].中国骨肿瘤骨病,2008,7(5):268-271.
    [119] Heckman JD, Boyan BD, Aufdemorte TB, et al. The use of bone morphogenetic protein inthe treatment of non-union in a canine model [J]. J Bone Joint Surg Am1991,73(5):750-764.
    [120] Gerhart TN, Kirker-Head CA, Kriz MJ, et al. Healing segmental femoral defects in sheepusing recombinant human bone morphogenetic protein [J]. Clin Orthop Relat Res,1993,(293):317-326.
    [121] Lee SC, Shea M, Battle MA, et al. Healing of large segmental defects in rat femurs is aidedby RhBMP-2in PLGA matrix [J]. J Biomed Mater Res,1994,28(10):1149-1156.
    [122] Ishihara A, Zekas LJ, Litsky AS, et al. Dermal fibroblast-mediated BMP2therapy toaccelerate bone healing in an equine osteotomy model [J]. J Orthop Res,2010,28(3):403-411.
    [123] Bostrom MP, Camacho NP. Potential role of bone morphogenetic proteins in fracturehealing [J]. Clin Orthop Relat Res,1998,(355Suppl): S274-82.
    [124] Cheng SL, Lou J, Wright NM, et al. In vitro and in vivo induction of bone formation using arecombinant adenoviral vector carrying the human BMP-2gene [J]. Calcif Tissue Int2001,68(2):87-94.
    [125] Krebsbach PH, Gu K, Franceschi RT, et al. Gene therapy-directed osteogenesis: BMP-7-transduced human fibroblasts form bone in vivo [J]. Hum Gene Ther,2000,11(8):1201-1210.
    [126] Partridge K, Yang X, Clarke NM, et al. Adenoviral BMP-2gene transfer in mesenchymalstem cells: in vitro and in vivo bone formation on biodegradable polymer scaffolds [J].Biochem Biophys Res Commun,2002,292(1):144-152.
    [127] Riew KD, Wright NM, Cheng S, et al. Induction of bone formation using a recombinantadenoviral vector carrying the human BMP-2gene in a rabbit spinal fusion model [J]. CalcifTissue Int,1998,63(4):357-360.
    [128] Varady P, Li JZ, Alden TD, et al. CT and radionuclide study of BMP-2gene therapy-induced bone formation [J]. Acad Radiol,2002,9(6):632-637.
    [129] Koh JT, Zhao Z, Wang Z, Lewis IS, et al. Combinatorial gene therapy with BMP2/7enhances cranial bone regeneration [J]. J Dent Res,2008,87(9):845-849.
    [130] Helm GA, Alden TD, Beres EJ, et al. Use of bone morphogenetic protein-9gene therapy toinduce spinal arthrodesis in the rodent [J]. J Neurosurg,2000,92(2Suppl):191-196.
    [131] Sandhu HS, Khan SN, Suh DY, et al. Demineralized bone matrix, bone morphogeneticproteins, and animal models of spine fusion: an overview [J]. Eur Spine J,2001,10(Suppl2):122-131.
    [132] Varady P, Li JZ, Cunningham M, et al. Morphologic analysis of BMP-9gene therapy-induced osteogenesis [J]. Hum Gene Ther,2001,12(6):697-710.
    [133] Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-formingactivity of14BMPs using recombinant adenovirus-mediated gene delivery [J]. Gene Ther,2004,11(17):1312-1320.
    [134] Song JJ, Celeste AJ, Kong FM, et al. Bone morphogenetic protein-9binds to liver cells andstimulates proliferation [J]. Endocrinology,1995,136(10):4293-4297.
    [135] Lopez-Coviella I, Berse B, Krauss R, et al. Induction and maintenance of the neuronalcholinergic phenotype in the central nervous system by BMP-9[J]. Science,2000,289(5477):313-316.
    [136] Chen C, Grzegorzewski KJ, Barash S, et al. An integrated functional genomics screeningprogram reveals a role for BMP-9in glucose homeostasis [J]. Nat Biotechnol,2003,21(3):294-301.
    [137] Truksa J, Peng H, Lee P, Beutler E. Bone morphogenetic proteins2,4, and9stimulatemurine hepcidin1expression independently of Hfe, transferrin receptor2(Tfr2), and IL-6[J]. Proc Natl Acad Sci U S A,2006,103(27):10289-10293.
    [138] Olsen BR, Reginato AM, Wang W. Bone development [J]. Annu Rev Cell Dev Biol,2000,16:191-220.
    [139] Harada S, Rodan GA. Control of osteoblast function and regulation of bone mass [J]. Nature,2003,423(6973):349-355.
    [140] Ralston SH, de Crombrugghe B. Genetic regulation of bone mass and susceptibility toosteoporosis [J]. Gnenes Dev,2006,20(18):2492-2506.
    [141] Gong Y, Reginato AM, Wang H, et al. LDL receptor-related protein5(LRP5) affects boneaccrual and eye development [J]. Cell,2001,107(4):513-523.
    [142] Tu X, Joeng KS, Nakayama KI, et al. Noncanonical Wnt signaling through G protein-linkedPKCdelta activation promotes bone formation [J]. Dev Cell,2007,12(1):113-127.
    [143] Hartmann C, Tabin CJ. Wnt-14plays a pivotal role in inducing synovial joint formation inthe developing appendicular skeleton [J]. Cell,2001,104(3):341-351.
    [144] Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling [J]. JClin Invest,2006,116(5):1202-1209.
    [145] Wagner ER, Zhu GH, Zhang BQ, et al. Therapeutic Potential of the Wnt Signaling Pathwayin Bone Metabolic Disorders [J]. Current Molecular Pharmacology,2011,4(1):14-25.
    [146] Fischer L, Boland G and Tuan RS. Wnt signaling during BMP-2stimulation ofmesenchymal chondrogenesis [J]. J Cell Biochem,2002,84(4):816-831.
    [147] Li X, Liu P, Liu W, et al. Dkk2has a role in terminal osteoblast differentiation andmineralized matrix formation [J]. Nat Genet,2005,37(9):945-952.
    [148] Li X, Zhang Y, Kang H, et al. Sclerostin binds to LRP5/6and antagonizes canonical Wntsignaling [J]. J Biol Chem,2005,280(20):19883-19887.
    [149] Tang N, Song WX, Luo JY, et al. BMP9-induced osteogenic differentiation ofmesenchymal progenitors requires functional canonical Wnt/b-catenin signaling [J]. Journalof Cellular and Molecular Medicine,2009,13(8B):2448-2464.
    [150] Boland GM, Perkins G, Hall DJ,et al. Wnt3a promotes proliferation and suppressesosteogenic differentiation of adult human mesenchymal stem cells [J]. J Cell Biochem,2004,93(6):1210-1230.
    [151] Day TF, Guo Y, Garrett-Beal L, et al. Wnt/beta-catenin signaling in mesenchymalprogenitors controls osteoblast and chondrocyte differentiation during vertebrateskeletogenesis [J]. Dev Cell,2005,8(5):739-750.
    [152] Hill TP, Spater D, Taketo MM, et al. Canonical Wnt/beta-catenin signaling preventsosteoblasts from differentiating into chondrocytes [J]. Dev Cell,2005,8(5):727-738.
    [153] Maeda K, Kobayashi Y, Udagawa N, et al. Wnt5a-Ror2signaling between osteoblast-lineage cells and osteoclast precursors enhances osteoclastogenesis [J]. Nat med,2012,18(3):405-413.
    [154] Bennett CN, Longo KA, Wright WS, et al. Regulation of osteoblastogenesis and bone massby Wnt10b [J]. Proc Natl Acad Sci U S A,2005,102(9):3324-3329.
    [155] Gregory CA, Gunn WG, Reyes E, et al. How Wnt signaling affects bone repair bymesenchymal stem cells from the bone marrow [J]. Ann N Y Acad Sci,2005,1049:97-106.
    [156] Glass DA,2nd Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiatedosteoblasts controls osteoclast differentiation [J]. Dev Cell,2005,8(5):751-764.
    [157] Nalesso G, Sherwood J, Bertrand J, et al. Wnt-3a modulates articular chondrocytephenotype by activating both canonical and noncanonical pathways [J]. J Cell Biol,2011,193(3):551-564.
    [158] Wang J, Wynshaw-Boris A. The canonical Wnt pathway in early mammalianembryogenesis and stem cell maintenance/differentiation [J]. Curr Opin Genet Dev,2004,14(5):533-539.
    [159] Holmen SL, Zylstra CR, Mukherjee A, et al. Essential role of beta-catenin in postnatal boneacquisition [J]. J Biol Chem,2005,280(22):21162-21168.
    [160] Marshall RP, Wintges K, Friedrich FW, et al. Control of bone formation by the serpentinereceptor Frizzled-9[J]. J Cell Biol,2011,192(6):1057-1072.
    [161] Kitase Y, Barragan L, Qing H, et al. Mechanical Induction of PGE2in Osteocytes BlocksGlucocorticoid-Induced Apoptosis Through Both the b-Catenin and PKA Pathways [J].Journal of Bone and Mineral Research,2010,25(12):2381-2392.
    [162] Luo J, Sun MH, Kang Q, et al. Gene therapy for bone regeneration [J]. Curr Gene Ther,2005,5(2):167-179.
    [163] Li X, Cao X. BMP signaling and skeletogenesis [J]. Ann N Y Acad Sci,2006,1068:26-40.
    [164] Zhao GQ. Consequences of knocking out BMP signaling in the mouse [J]. Genesis,2003,35(1):43-56.
    [165] Seuntjens E, Umans L, Zwijsen A, et al. Transforming Growth Factor type β and Smadfamily signaling in stem cell function [J]. Cytokine Growth Factor Rev,2009,20(5-6):449-458.
    [166] Chen G, Deng C, Li YP. TGF-β and BMP signaling in osteoblast differentiation and boneformation [J]. Int J Biol Sci.2012,8(2):272-288.
    [167] Serra R, Chang C. TGF-beta signaling in human skeletal and patterning disorders [J]. BirthDefects Res C EmbryoToday,2003,69(4):333-351.
    [168] Harradine KA, Akhurst RJ. Mutations of TGFbeta signaling molecules in human disease [J].Ann Med,2006,38(6):403-414.
    [169] Zhang FJ, Qiu T, Wu XW, et al. Sustained BMP Signaling in Osteoblasts Stimulates BoneFormation by Promoting Angiogenesis and Osteoblast Differentiation [J]. J Bone Miner Res,2009,24(7):1224-1233.
    [170] Shore EM, Xu M, Feldman GJ, et al. A recurrent mutation in the BMP type I receptorACVR1causes inherited and sporadic fibrodysplasia ossificans progressiva [J]. Nat Genet,2006,38(5):525-527.
    [171] Janssens K, Gershoni-Baruch R, Guanabens N, et al. Mutations in the gene encoding thelatency-associated peptide of TGF-beta1cause Camurati-Engelmann disease [J]. Nat Genet,2000,26(3):273-275.
    [172] Wilson TJ, Nannuru KC, Singh RK. Cathepsin G–Mediated Activation of Pro–MatrixMetalloproteinase9at the Tumor-Bone Interface Promotes Transforming Growth Factor-βSignaling and Bone Destruction [J]. Mol Cancer Res,2009,7(8):1224-1233.
    [173] Tezuka K, Yasuda M, Watanabe N, et al. Stimulation of osteoblastic cell differentiation byNotch [J]. J Bone Miner Res,2002,17(2):231-239.
    [174] Deregowski V, Gazzerro E, Priest L, et al. Notch1overexpression inhibitsosteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic proteinsignaling [J]. J Biol Chem,2006,281(10):6203-6210.
    [175] Zanotti S, Canalis E. Notch and the Skeleton [J]. Mol Cell Biol,2010,30(4):886-896.
    [176] Schnabel M, Fichtel I, Gotzen L, et al. Differential expression of Notch genes in humanosteoblastic cells [J]. Int J Mol Med,2002,9(3):229-232.
    [177] Engin F, Lee B. NOTCHing the bone: Insights into multi-functionality [J]. Bone,2010,46(2):274-280.
    [178] Nobta M, Tsukazaki T, Shibata Y, et al. Critical regulation of bone morphogenetic protein-induced osteoblastic differentiation by Delta1/Jagged1-activated Notch1signaling [J]. J BiolChem,2005,280(16):15842-15848.
    [179] Sciaudone M, Gazzerro E, Priest L, et al. Notch1impairs osteoblastic cell differentiation [J].Endocrinology,2003,144(12):5631-5639.
    [180] Haller R, Schwanbeck R, Martini S, et al. Notch1signaling regulates chondrogenic lineagedetermination through Sox9activation [J]. Cell Death Differ,2012,19(3):461-469.
    [181] Mead TJ, Yutzey KE. Notch pathway regulation of chondrocyte differentiation andproliferation during appendicular and axial skeleton development [J]. Pro Natl Acad Sci U SA,2009,106(34):14420-14425.
    [182] Simpson MA, Irving MD, Asilmaz E, et al. Mutations in NOTCH2cause Hajdu-Cheneysyndrome, a disorder of severe and progressive bone loss [J]. Nat Genet.2011,43(4):303-308.
    [183] Ehlen HW, Buelens LA, Vortkamp A. Hedgehog signaling in skeletal development [J].Birth Defects Res C Embryo Today,2006,78(3):267-279.
    [184] Hooper JE, Scott MP. Communicating with Hedgehogs [J]. Nat Rev Mol Cell Biol,2005,6(4):306-317.
    [185] Fuchs S, Dohle E, Kirkpatrick CJ. Sonic hedgehog-mediated synergistic effects guidingangiogenesis and osteogenesis [J]. Vitam Horm,2012,88:491-506.
    [186] Lupo G, Harris WA, Lewis KE. Mechanisms of ventral patterning in the vertebrate nervoussystem [J]. Nat Rev Neurosci,2006,7(2):103-114.
    [187] Lum L, Beachy PA. The Hedgehog response network: sensors, switches, and routers [J].Science,2004,304(5678):1755-1759.
    [188] Ruiz-Heiland G, Horn A, Zerr P, Hofstetter W, et al. Blockade of the hedgehog pathwayinhibits osteophyte formation in arthritis [J]. Ann Rheum Dis.2012,71(3):400-407.
    [189] McMahon AP, Ingham PW, Tabin CJ. Developmental roles and clinical significance ofhedgehog signaling [J]. Curr Top Dev Biol,2003,53,1-114.
    [190] Cohen MM Jr. The hedgehog signaling network [J]. Am J Med Genet A,2003,123A(1):5-28.
    [191] St-Jacques B, Hammerschmidt M, McMahon AP. Indian hedgehog signaling regulatesproliferation and differentiation of chondrocytes and is essential for bone formation [J].Genes Dev,1999,13(16):2072-2086.
    [192] Tu X, Joeng KS, Long F. Indian hedgehog requires additional effectors besides Runx2toinduce osteoblast differentiation [J]. Dev Biol.2012,362(1):76-82.
    [193] Baron MH, Fraser ST. The specification of early hematopoiesis in the mammal [J]. CurrOpin Hematol,2005,12(3):217-221.
    [194] Lai LP, Mitchell J. Indian hedgehog: its roles and regulation in endochondral bonedevelopment [J]. J Cell Biochem,2005,96(6):1163-1173.
    [195] Hellemans J, Coucke PJ, Giedion A, et al. Homozygous mutations in IHH causeacrocapitofemoral dysplasia, an autosomal recessive disorder with cone-shaped epiphyses inhands and hips [J]. Am J Hum Genet,2003,72(4):1040-1046.
    [196] Cai JQ, Huang YZ, Chen XH, et al. Sonic hedgehog enhances the proliferation andosteogenic differentiation of bone marrow-derived mesenchymal stem cells [J]. Cell Biol Int,2012,36(4):349-355.
    [197] Lenton K, James AW, Manu A, et al. Indian hedgehog positively regulates calvarialossification and modulates bone morphogenetic protein signaling [J]. Genesis,2011,49(10):784-96.
    [198] Chiang C, Litingtung Y, Lee E, et al. Cyclopia and defective axial patterning in micelacking Sonic hedgehog gene function [J]. Nature,1996,383(6599):407-413.
    [199] Gao B, Guo J, She C, et al. Mutations in IHH, encoding Indian hedgehog, causebrachydactyly type A-1[J]. Nat Genet,2001,28(4):386-388.
    [200] Brechbiel JL, Ng JM, Curran T. PTHrP treatment fails to rescue bone defects caused byHedgehog pathway inhibition in young mice [J]. Toxicol Pathol,2011,39(3):478-485.
    [201] Song K, Rao NJ, Chen ML, et al. Enhanced bone regeneration with sequential delivery ofbasic fibroblast growth factor and sonic hedgehog [J]. Injury,2011,42(8):796-802.
    [202] Schinzel A. Postaxial polydactyly, hallux duplication, absence of the corpus callosum,macrencephaly and severe mental retardation: a new syndrome [J]? Helv Paediatr Acta,1979,34(2):141-146.
    [203] James AW, Leucht P, Levi B, et al. Sonic Hedgehog influences the balance of osteogenesisand adipogenesis in mouse adipose-derived stromal cells [J]. Tissue Eng Part A,2010,16(8):2605-2616.
    [204] Maeda Y, Nakamura E, Nguyen MT, et al. Indian Hedgehog produced by postnatalchondrocytes is essential for maintaining a growth plate and trabecular bone [J]. Proc NatlAcad Sci U S A,2007,104(5):6382-6387.
    [205] Levi B, James AW, Nelson ER, et al. Role of Indian hedgehog signaling in palatalosteogenesis [J]. Plast Reconstr Surg,2011,127(3):1182-1190.
    [206] Rockel JS, Alman BA. Don't hedge your bets: hedgehog signaling as a central mediator ofendochondral bone development and cartilage diseases [J]. J Orthop Res,2011,29(6):810-815.
    [207] Hammond CL, Schulte-Merker S. Two populations of endochondral osteoblasts withdifferential sensitivity to Hedgehog signalling [J]. Development,2009,136(23):3991-4000.
    [208] Felber K, Croucher P, Roehl HH. Hedgehog signalling is required for perichondralosteoblast differentiation in zebrafish [J]. Mech Dev,2011,128(1-2):141-152.
    [209] Dohle E, Fuchs S, Kolbe M, et al. Sonic hedgehog promotes angiogenesis and osteogenesisin a coculture system consisting of primary osteoblasts and outgrowth endothelial cells [J].Tissue Eng Part A,2010,16(4):1235-1237.
    [210] Kim WK, Meliton V, Bourquard N, et al. Hedgehog signaling and osteogenic differentiationin multipotent bone marrow stromal cells are inhibited by oxidative stress [J]. J CellBiochem,2010,111(5):1199-1209.
    [211] Han L, Zhang XL, Li X, et al. Hedgehog pathway is associated with the proliferation anddifferentiation of osteoblasts [J]. Shanghai Kou Qiang Yi Xue,2009,18(3):287-290.
    [212] Ornitz DM, Marie J. FGF signaling pathways in endochondral and intramembranous bonedevelopment and human genetic disease [J]. Genes Dev,2002,16(12):1446-1465.
    [213] Ornitz DM. FGF signaling in the developing endochondral skeleton [J]. Cytokine GrowthFactor Rev,2005,16(2):205-213.
    [214] Merrill AE, Sarukhanov A, Krejci P, et al. Bent Bone Dysplasia-FGFR2type, a DistinctSkeletal Disorder, Has Deficient Canonical FGF Signaling [J]. Am J Hum Genet,2012,90(3):550-557.
    [215] Mackenzie NC, Zhu D, Milne EM, et al. Altered Bone Development and an Increase inFGF-23Expression in Enpp1Mice [J]. PLoS One,2012,7(2):e32177.
    [216] Jackson RA, Nurcombe V, Cool SM. Coordinated fibroblast growth factor and heparansulfate regulation of osteogenesis [J]. Gene,2006,379:79-91.
    [217] Chen L, Adar R, Yang X, et al. Gly369Cys mutation in mouse FGFR3causesachondroplasia by affecting both chondrogenesis and osteogenesis [J]. J Clin Invest,1999,104(11):1517-1525.
    [218] Fedak D, Bigaj K, Su owicz W. Fibroblast growth factor-23(FGF-23). Part I. Significancein phosphate homeostasis and bone metabolism [J]. Przegl Lek,2011,68(4):231-238.
    [219] Chen L, Deng CX. Roles of FGF signaling in skeletal development and human geneticdiseases [J]. Front Biosci,2005,10:1961-1976.
    [220] Webster MK, Donoghue DJ. FGFR activation in skeletal disorders: too much of a goodthing [J]. Trends Genet,1997,13(5):178-182.
    [221] W hrle S, Bonny O, Beluch N, et al. FGF receptors control vitamin D and phosphatehomeostasis by mediating renal FGF-23signaling and regulating FGF-23expression inbone [J]. J Bone Miner Res,2011,26(10):2486-2497.
    [222] Cool S, Jackson R, Pincus P, et al. Fibroblast growth factor receptor4(FGFR4) expressionin newborn murine calvaria and primary osteoblast cultures [J]. Int J Dev Biol,2002,46(4):519-523.
    [223] Woei Ng K, Speicher T, Dombrowski C, et al. Osteogenic Differentiation of MurineEmbryonic Stem Cells is Mediated by Fibroblast Growth Factor Receptors [J]. Stem CellsDev,2007,16(4):305-318.
    [224] Valverde-Franco G, Liu H, Davidson D, et al. Defective bone mineralization and osteopeniain young adult FGFR3-/-mice [J]. Hum Mol Genet,2004,13(3):271-284.
    [225] Martin A, Liu S, David V, et al. Bone proteins PHEX and DMP1regulate fibroblasticgrowth factor Fgf23expression in osteocytes through a common pathway involving FGFreceptor (FGFR) signaling [J]. FASEB J,2011,25(8):2551-2562.
    [226] Behr B, Sorkin M, Manu A, et al. Fgf-18is required for osteogenesis but not angiogenesisduring long bone repair [J]. Tissue Eng Part A,2011,17(15-16):2061-2069.
    [227] Kluppel M, Wrana JL. Turning it up a Notch: cross-talk between TGFβ and Notch signaling[J]. BioEssays,2005,27(2):115-118.
    [228] Massague J. TGF-beta signal transduction [J]. Annu Rev Biochem,1998,67:753-791.
    [229] Mishra L, Derynck R. Mishra B. Transforming growth factor-beta signaling in stem cellsand cancer [J]. Science,2005,310(5745):68-71.
    [230] Feng XH, Derynck R. Specificity and versatility in tgf-beta signaling through Smads [J].Annu Rev Cell Dev Biol,2005,21:659-693.
    [231] Ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling [J]. Trends Biochem Sci,2004,29(5):265-273.
    [232] Waite KA, Eng C. From developmental disorder to heritable cancer: it's all in theBMP/TGF-beta family [J]. Nat Rev Genet,2003,4(10):763-773.
    [233] Luo JY, Tang N, Huang JY, et al. TGFβ/BMP Type I Receptors ALK1and ALK2AreEssential for BMP9-induced Osteogenic Signaling in Mesenchymal Stem Cells [J]. J BiolChem,2010,285(38):29588-29598.
    [234] Geiser AG, Hummel CW, Draper MW, et al. A new selective estrogen receptor A newselective estrogen receptor activity in bone, and minimal ovarian stimulation [J].Endocrinology,2005,146(10):4524-4535.
    [235] Kanaan RA, Kanaan LA. Transforming growth factor beta1, bone connection [J]. Med SciMonit,2006,12(8): RA164-169.
    [236] Dunker N, Krieglstein K. Tgfbeta2-/-Tgfbeta3-/-double knockout mice display severemidline fusion defects and early embryonic lethality [J]. Anat Embryol (Berl),2002,206(1-2):73-83.
    [237] Song B, Estrada KD, Lyons DM. Smad signaling in skeletal development and regeneration[J]. Cytokine Growth Factor Rev,2009,20(5-6):379-388.
    [238] Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasiasyndrome, is essential for osteoblast differentiation and bone development [J]. Cell,1997,89(5):765-771.
    [239] Komori T, Yagi H, Nomura S, et al. Targeted disruption of Cbfa1results in a complete lackof bone formation owing to maturational arrest of osteoblasts [J]. Cell,1997,89(5):755-764.
    [240] Zhang YW, Yasui N, Ito K, et al. A RUNX2/PEBP2alpha A/CBFA1mutation displayingimpaired transactivation and Smad interaction in cleidocranial dysplasia [J]. Proc Natl AcadSci U S A,2000,97(19):10549-10554.
    [241] Afzal F, Pratap J, Ito K, et al. Smad function and intranuclear targeting share a Runx2motifrequired for osteogenic lineage induction and BMP2responsive transcription [J]. J CellPhysiol,2005,204(1):63-72.
    [242] Sharff KA, Song WX, Luo XJ, et al. Hey1Basic Helix-Loop-Helix Protein Plays anImportant Role in Mediating BMP9-induced Osteogenic Differentiation of MesenchymalProgenitor Cells [J]. J Biol Chem,2009,284(1):649-659.
    [243] Komori, T. Regulation of osteoblast differentiation by transcription factors [J]. J CellBiochem,2006,99(5):1233-1239.
    [244] Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger-containing transcriptionfactor osterix is required for osteoblast differentiation and bone formation [J]. Cell,2002,108(1):17-29.
    [245] Oh JH, Park SY, de Crombrugghe B, et al. Chondrocyte-specific ablation of Osterix leads toimpaired endochondral ossification [J]. Biochem Biophys Res Commun,2012,418(4):634-640.
    [246] Komori, T. Regulation of osteoblast differentiation by transcription factors [J]. J CellBiochem,2006,99(5):1233-1239.
    [247] St-Arnaud R, Hekmatnejad B. Combinatorial control of ATF4-dependent gene transcriptionin osteoblasts [J]. Ann N Y Acad Sci,2011,1237:11-18.
    [248] Yang X, Matsuda K, Bialek P, et al. ATF4is a substrate of RSK2and an essential regulatorof osteoblast biology; implication for Coffin-Lowry Syndrome [J]. Cell,2004,117(3):387-398.
    [249] Danciu TE, Li Y, Koh A, et al. The basic helix loop helix transcription factor Twist1is anovel regulator of ATF4in osteoblasts [J]. J Cell Biochem,2012,113(1):70-79.
    [250] Kanai F, Marignani PA, Sarbassova D, et al. TAZ: A novel transcriptional coactivatorregulated by interactions with14-3-3and PDZ domain proteins [J]. Embo J,2000,19(24):6778-6791.
    [251] Sudol M, Bork P, Einbond A, et al. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain [J].J Biol Chem,1995,270(24):14733-14741.
    [252] Hong JH, Yaffe MB. TAZ: a beta-catenin-like molecule that regulates mesenchymal stemcell differentiation [J]. Cell Cycle,2006,5(2):176-179.
    [253] Komori T. Regulation of osteoblast differentiation by transcription factors [J]. J CellBiochem,2006,99(5):1233-1239.
    [254] Byun MR, Jeong H, Bae SJ, et al. TAZ is required for the osteogenic and anti-adipogenicactivities of kaempferol [J]. Bone,2012,50(1):364-372.
    [255] Wisniewski ES, Rees DK, Chege EW. Proteolytic-based method for the identification ofhuman growth hormone [J]. J Forensic Sci,2009,54(1):122-127.
    [256] Bex M, Bouillon R. Growth hormone and bone health [J]. Horm Res,2003,60(suppl3):80-86.
    [257] Eriksen EF, Kassem M, Langdahl B. Growth hormone, insulin-like growth factors and boneremodeling [J]. Eur J Clin Invest,1996,26(7):525-534.
    [258] Leung DW, Spencer SA, Cachianes G, et al. Growth hormone receptor and serum bindingprotein: purification, cloning and expression [J]. Nature,1987,330(6148):537-543.
    [259] Iglesias L, Yeh JK, Castro-Magana M, et al. Effects of growth hormone on bone modelingand remodeling in hypophysectomized young female rats: a bone histomorphometric study[J]. J Bone Miner Metab,2010,29(2):159-167.
    [260] Bechtold S, Pozza RD, Schwarz HP, et al. Effects of Growth Hormone TreatmentinJuvenile Idiopathic Arthritis: Bone and Body Composition [J]. Horm Res2009,72(suppl1):60-64.
    [261] He TC, Zhou SB, Costa LD, et al. A simplified system for generating recombinantadenoviruses [J]. Proc Natl Acad Sci U S A,1998,95(5):2509-2514.
    [262] Luo JY, Deng ZL, Luo XJ, et al. A protocol for rapid generation of recombinantadenoviruses using the AdEasy system [J]. Nature Protocols,2007,2(5):1236-1247.
    [263] Graham FL, Smiley J, Russell, WC, et al. Characteristics of a human cell line transformedby DNA from human adenovirus type5[J]. J. Gen. Virol,1977,36(1):59-74.
    [264] Bett AJ, Prevec L, Graham FL. Packaging capacity and stability of human adenovirus type5vectors [J]. J. Virol,1993,67(10):5911-5921.
    [265] McConnell MJ, Imperiale MJ. Biology of adenovirus and its use as a vector for genetherapy [J]. Hum Gene Ther,2004,15(11):1022-1033.
    [266] Nadeau I, Kamen A. Production of adenovirus vector for gene therapy [J]. Biotechnol Adv,2003,20(7-8):475-489.
    [267] Reznikoff CA, Brankow DW, Heidelberger C. Establishment and Characterization of aCloned Line of C3H Mouse Embryo Cells Sensitive to Postconfluence Inhibition ofDivision [J]. Cancer Res,1973,33(12):3231-3238.
    [268] Pinney DF, Emerson CP Jr.10T1/2Cells: An In Vitro Model for MolecularGeneticAnalysis of MesodermalDetermination and Differentiation [J]. Environ Health Perspect,1989,80:221-227.
    [269] Tang QQ, Otto TC, Lane MD. Commitment of C3H10T1/2pluripotent stem cells to theadipocyte lineage [J]. Proc Natl Acad Sci U S A,2009,101(26):9607-9611.
    [270] Zhang WL, Deng ZL, Chen L, et al. Retinoic Acids Potentiate BMP9-Induced OsteogenicDifferentiation of Mesenchymal Progenitor Cells [J]. PLoS ONE,2010,5(7): e11917.
    [271] Warnke I, Goralczyk R, Fuhrer E, et al. Dietary constituents reduce lipid accumulation inmurine C3H10T1/2adipocytes: A novel fluorescent method to quantify fat droplets [J].Nutr Metab (Lond),2011,8(1):30.
    [272] Dror DK, King JC, Fung EB et al. Evidence of associations between feto-maternal vitamind status, cord parathyroid hormone and bone-specific alkaline phosphatase, and newbornwhole body bone mineral content [J]. Nutrients,2012,4(2):68-77.
    [273]王瑒,吴文,李正等.骨髓间充质干细胞向成骨细胞的定向诱导分化[J].广东医学,2011,32(3):401-403.
    [274] Nagao M, Feinstein TN, Ezura Y et al. Sympathetic control of bone mass regulated byosteopontin [J]. Proc Natl Acad Sci U S A,2011,108(43):17767-17772.
    [275]邓敏,张楠,唐璐等.腺病毒介导骨形态发生蛋白2基因转染诱导脂肪间充质干细胞向成骨细胞的定向分化[J].中国组织工程研究与临床康复,2009,13(1):80-83.
    [276] Chen H, Kolman K, Lanciloti N, et al. p53and MDM2are involved in the regulation ofosteocalcin gene expression [J]. Exp Cell Res,2012,318(8):867-876.
    [277] Patterson-Buckendahl P, Sowinska A, Yee S, et al. Decreased Sensory Responses inOsteocalcin Null Mutant Mice Imply Neuropeptide Function. Cell Mol Neurobiol [J].2012Feb17.[Epub ahead of print] DOI:10.1007/s10571-012-9810-x:1-11.
    [278] Otsuka E, Yamaguchi A, Shigehisa H, et al. Characterization of osteoblastic differentiationofstromal cell line ST2that is induced by ascorbic acid [J]. Am J Physiol,1999,277(1Pt1):C132-138.
    [279] Weyts FA, Bosmans B, Niesing R, et al. Mechanical control of human osteoblast apoptosisand proliferation in relation to differentiation [J]. Calcif Tissue Int,2003,72(4):505-512.
    [280] Chen L, Jiang W, Huang J, et al. Insulin-like growth factor2(IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation [J]. J Bone Miner Res,2010,25(11):2447-2459.
    [281]刘广鹏,崔磊,曹谊林.软骨生长板基因调控机制的研究进展[J].组织工程与重建外科杂志,2006,2(2):110-112.
    [282] Blair JC, Savage MO. The GH-IGF-I axis in children with idiopathic short stature [J].Trends Endocrinol Metab,2002,13(8):325-330.
    [283] Brooks AJ, Waters MJ. The growth hormone receptor: mechanism of activation and clinicalimplications [J]. Nat Rev Endocrinol,2010,6(9):515-525.
    [284] Harvey S. Extrapituitary growth hormone [J]. Endocrine,2010,38(3):335-359.
    [285]刘广鹏,曹谊林.显微CT在口腔医学研究中的应用[J].上海口腔医学,2007,16(3):333-336.
    [286] Hull KL, Harvey S. Growth hormone: a reproductive endocrine-paracrine regulator [J]? RevReprod,2000,5(3):175-182.
    [287] Thomas MJ. The molecular basis of growth hormone action [J]. Growth Horm IGF Res,1998,8(1):3-11.
    [288] Kawai M, Rosen CJ. The IGF-I regulatory system and its impact on skeletal and energyhomeostasis [J]. J Cell Biochem,2010,111(1):14-19.
    [289] Canalis E. Growth factor control of bone mass [J]. J Cell Biochem,2009,108(4):769-777.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700