用户名: 密码: 验证码:
染料及量子点敏化太阳能电池用带状ZnO光阳极的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(DSC)是一种新型太阳能电池,其制作工艺简单、成本低,是硅电池的有力竞争者。然而,目前DSC存在着转换效率不高、长期稳定性差等缺点,限制了它的大规模应用。TiO_2是目前主要使用的光阳极材料,但是其表面态过多,电子迁移率较低,导致电子复合比较严重,电子传输速率较慢,成为制约电池效率提高的一个因素。
     ZnO具有与TiO_2类似的能带结构和较高的电子迁移率,是一种有希望的光阳极材料。本论文尝试使用电沉积法制备了一种新型的垂直基板生长的纳米带状ZnO光阳极并将其用于DSC。纳米带结构的光阳极可以减少界面电阻,进一步提高电子传输速率。发现电沉积的制备条件对ZnO光阳极的形貌有着显著的影响,因而对DSC的光电性能也起着直接的影响。研究发现,随着电解液浓度的降低,电沉积电压、电沉积温度的升高,所得电池的性能有所提高。同时,对影响ZnO电池性能的因素如膜厚、电极形貌等进行了详细的讨论。
     另一方面,ZnO会与常用的N719染料生成Zn~(2+)/dye络合物,对电池的性能有较大的影响。为了抑制Zn~(2+)/dye的生成,尝试对光阳极进行包覆以及采用量子点代替染料。发现由于包覆层的制备过程中有酸的存在,因而无法使用跟包覆TiO_2光阳极同样的方法来对ZnO光阳极进行包覆。因此本论文主要研究使用CdS量子点代替染料。讨论了敏化次数对电池性能的影响,在电沉积制备的ZnO纳米带光阳极上得到了与使用染料时相近的效率,说明量子点敏化对该ZnO光阳极是一种行之有效的敏化方式。
Dye-sensitized solar cell (DSC), a new type solar cell, will become a powerful competitor with silicon-based solar cells, owing to the simplicity of their fabrication procedures and low cost. However, its low light-to-energy conversion efficiency and poor long-term reliability limit its large-scale ap-plication. TiO2 is the primary photoanode material; however, the surface state may confine electron mobility and cause recombination, which limits the in-crease in cell conversion efficiency.
     ZnO has been regarded as a promising candidate photoanode material with its similar band gaps as TiO2 and higher electronic mobility. Here a new nanobelt type ZnO photoanode was fabricated by electrodeposition and ap-plied to DSC. Using nanobelt structure ZnO can efficiently reduce resistance at the interfaces of crystal grains. The electrodeposition conditions affected the ZnO morphology and thus the performance of DSC remarkly. The effi-ciency of DSC increased with decreasing surfactant concentration or increas-ing electrodeposition potential or temperature. The influencing factors of ZnO-based solar cells such as film thickness and ZnO film morphology were also investigated.
     On the other hand, as the generation of Zn~(2+)/dye aggregates will limit the increase of ZnO-based solar cells efficiency, coating and quantum-dots were used to suppress the formation of Zn~(2+)/dye aggregates. As the coating method for TiO2 photoanode will cause the formation of acid, it was not suitable for coating ZnO photoanode. Here quantum-dots were used to replace dye and efficiency comparing favorably with sensitized with dye was obtained, which indicated that quantum-dots were efficient sensitizer for the ZnO photoanode.
引文
[1] BP Statistical Review of World Energy, June 2009
    [2] Graetzel M. Photoelectrochemical cells. Nature. 2001, 414:338-344
    [3] Geotzberger A, Hebling C, Schock H W, et al. Photovoltaic materials, history, sta-tus and outlook. Mater. Sci. Eng. R. 2003, 40:1-46
    [4] Zhao J H, Wang A H, Green M A. 19.8% efficient“honeycomb”textured multi-crystalline and 24.4% monocrystalline silicon solar cells. Appl. Phys. Lett. 1998, 73:1991-1993
    [5]蒋荣华,肖顺珍.硅基太阳能电池与材料.新材料产业. 2003:8-13
    [6]陈振兴.高分子电池材料.北京:化学工业出版社,2006:159-269
    [7]林鹏,张志峰,熊德平,等.有机太阳能电池的研究进展.光电子技术,2004,24:55-60
    [8] O’Reagan B, Graetzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353:737-740
    [9] Nazeeruddin M K, Kay A, Rodicio I, et al. Conversion of light to electricity by cis-X2bis (2,2’-bipyridyl-4,4’-dicarboxylate)ruthenium(II) charge-transfer sensi-tizers (X=C1-, Br-, I-, CN-, and SCN-) on nanocrystalline TiO2 electrodes. J. Am. Chem. Soc. 1993, 115(14):6382-6390
    [10] Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized mesoporous TiO2 solar cells with high proton-to-electron conversion efficiencies. Nature, 1998, 395(6702):583-585
    [11] Chen C Y, Wang M K, Li J Y, et al. Highly efficient light-harvesting ruthenium sen-sitizer for thin-film dye-sensitized solar cells. ACS Nano. 2009, 3(10):3103-3109
    [12] Baxter J B, Aydil E S. Nanowire-based dye-sensitized solar cells. Appl. Phys. Lett. 2005, 86:053114
    [13] Zhang W, Zhu R, Liu X Z, et al. Facile construction of nanofibrous ZnO photoelec-trode for dye-sensitized solar cell applications. Appl. Phys. Lett. 2009, 95:043304
    [14] Chen W, Zhang H F, Hsing I M, et al. A new photoanode architecture of dye sensi-tized solar cell based on ZnO nanotetrapods with no need for calcination. Electro-chem. Commun. 2009, 11:1057-1060
    [15] Chappel S, Zaban A. Nanoporous SnO2 electrodes for dye-sensitized solar cells: improved cell performance by the synthesis of 18nm SnO2 colloids. Sol. Energ. Mat. Sol. C. 2002, 71;141-152
    [16] Senevirathna M K I, Pitigala P K D D P, Premalal E V A, et al. Stability of the SnO2/MgO dye-sensitized photoelectrochemical solar cell. Sol. Energ. Mat. Sol. C. 2007, 91:544-547
    [17] Sayama K., Sugihara H., Arakawa H. Photoelectrochemical properties of a porous Nb2O5 electrode sensitized by a ruthenium dye. Chem. Mater. 1998,10:3825-3832
    [18]孔凡太,戴松元.染料敏化太阳能电池研究进展.化学进展. 2006 ,18(11):1409-1424
    [19]孔凡太,戴松元,王孔嘉.染料敏化纳米薄膜太阳电池中的染料敏化剂.化学通报. 2005(5):338-345
    [20]王宁.染料敏化太阳能电池光阳极和电解质材料制备及性能研究:[博士学位论文].北京:清华大学,2006
    [21]林红,李鑫,王宁等.染料敏化太阳能电池用电解质的研究现状.世界科技研究与发展,2006,28(4):41-45
    [22]孟庆波,林原.固态纳晶染料敏化太阳能电池研究进展.新材料产业,2006(8):66-69
    [23]张正华,李陵岚,叶楚平,等.有机太阳电池与塑料太阳电池..北京:化学工业出版社,2006:1-218
    [24]郑建邦,任驹,郭文阁,等.太阳电池内部电阻对其输出特性影响的仿真.太阳能学报,2006,27(2):121-125
    [25] Jongh P E, Vanmaekelbergh D. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles. Phys. Rev. Lett. 1996, 77(16):3427-3430
    [26] Schlichth?rl G, Huang S Y, Sprague J, et al. Band edge movement and recombina-tion kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. J. Phys. Chem. B. 1997, 101:8141-8155
    [27] Chen S G, Chappel S, Diamant Y, et al. Preparation of Nb2O5 coated TiO2 nano-porous electrodes and their application in dye-sensitized solar cells. Chem. Mater. 2001, 13(12):4629-4634
    [28] Kay A, Gr?tzel M. Dye-sensitized core-shell nanocrystals: Improved efficiency of mesoporous tin oxide electrodes coated with a thin layer of an insulating oxide. Chem. Mater. 2002, 14(7):2930-2935.
    [29] Lee S, Kim J Y, Youn S H, et al. Preparation of a nanoporous CaCO3-coated TiO2 electrode and its application to a dye-sensitized solar cell. Langmuir. 2007, 23:11907-11910
    [30] Meulenkamp E A. Electron transport in nanoparticulate ZnO films. J. Phys. Chem. B. 1999, 103: 7831-7838
    [31] Redmond G, Fitzmaurice M, Graetzel M. Visible light sensitization by cis-bis (thi-ocyanato) bis (2,2'-bipyridyl-4,4'- dicarboxylato) ruthenium(II) of a transparentnanocrystalline ZnO film prepared by sol-gel techniques. Chem. Mater. 1994,6:686-691
    [32] Rensmo H, Keis K, Lindstr?m H, et al. High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. J. Phys. Chem. B. 1997, 101:2598-2601
    [33] Zhang Q F, Dandeneau C S, Zhou X Y, et al. ZnO nanostrutures for dye-sensitized solar cells. Adv. Mater. 2009, 21:4087-4108
    [34]盛显良,赵勇,翟锦,等.基于ZnO光阳极的染料敏化太阳电池.化学进展. 2007, 19(01):59-65
    [35] Izaki M., Omi T. Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 1996, 68(17):2439-2440
    [36] Izaki M., Omi T. Electrolyte optimization for cathodic growth of zinc oxide films. J. Electrochem. Soc. 1996, 143(3):L53-L55
    [37] Izaki M., Omi T. Characterization of transparent zinc oxide films prepared by elec-trochemical reaction. J. Electrochem. Soc. 1997, 144(6):1949-1952
    [38] Izaki M. Preparation of transparent and conductive zinc oxide films by optimiza-tion of the two-step electrolysis technique. J. Electrochem. Soc. 1999, 146(12):4517-4521
    [39] Chen Q.P., Xue M.Z., Sheng Q.R. Electrochemical growth of nanopillar zinc oxide films by applying a low concentration of zinc nitrate precursor. Electrochem. Solid State Lett. 2006, 9(3): C58-C61
    [40] Luo H.M., Zhang J.F., Yan Y.S. Electrochemical deposition of mesoporous crystal-line oxide semiconductor films from lyotropic liquid crystalline phases. Chem. Mater. 2003, 15(20): 3769-3773
    [41] Tak Y, Hong S J, Lee J S, et al. Fabrication of ZnO/CdS core/shell nanowire arrays for efficient solar energy conversion. J. Mater. Chem. 2009, 19, 5945-5951
    [42] Robel I, Subramanian V, Kuno M, et al. Quantum dot solar cells. Harvesting light energy with CdSe nanocrystals molecularly linked to mesoscopic TiO2 films. J. Am. Chem. Soc. 2006, 128:2385-2393
    [43] Lee W, Kang S H, Kim J Y. TiO2 nanotubes wih a ZnO thin energy barrier for im-proved current efficiency of CdSe quantum-dot-sensitized solar cells. Nanotechnol. 2009, 20:335706
    [44] Plass R, Pelet S, Krueger J, et al. Quantum dot sensitization of organic-inorganic hydrid solar cells. J. Phys. Chem. B. 2002, 106(31):7578-7580
    [45]唐爱伟,藤枫,王元敏,等. II-VI族半导体量子点的发光特性及其应用研究进展.液晶与显示. 2005, 20(4):302-308
    [46] Lee W, Min S K, Dhas V, et al. Chemical bath deposition of CdS quantum dots on vertically aligned ZnO nanorods for quantum dots-sensitized solar cells. Elecro-chem. Commun. 2009, 11:103-106
    [47] Ito S, Murakami T N, Comte P, et al. Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10%. Thin Solid Films. 2008, 516:4613-4619
    [48]李鑫.染料敏化太阳能电池光阳极的低温制备及其表面改性研究:[清华大学博士论文].北京:清华大学材料系, 2009
    [49] Lee Y L, Chang C H. Efficient polysulfide electrolyte for CdS quantum dot-sensitized solar cells. J. Power Sources. 2008, 185:584-588
    [50]袁志好,张明艳,段月琴,等.表面包覆的ZnFe2O4纳米粒子的光吸收边红移.光电子激光. 2009, 20(2):212-215
    [51]李玲,白建双,金志琛,等.掺杂对纳米ZnO粉末紫外-可见光吸收性能的影响.华南理工大学学报(自然科学版). 2004, 32(6):41-44
    [52] Bandaranayake K M, Senevirathna M K, Weligamuwa P M, et al. Dye-sensitized solar cells made from nanocrystalline TiO2 films coated with outer layers of differ-ent oxide materials. Coordi. Chem. Rev. 2004, 248(13-14):1277-1281.
    [53] Zhang Q F, Dangeneau C S, Zhou X Y, et al. ZnO nanostructures for dye-sensitized solar cells. Adv. Mater, 2009, 21:4087-4108.
    [54] Lin C F, Lin H, Li J B, et al. Electrodeposition preparation of ZnO nanobelt array films and application to dye-sensitized solar cells. J. Alloy. Compd. 2008, 462:175-180
    [55] Lin C F, Lin H, Zhuang D T, et al. Highly-ordered perpendicularly oriented ZnO nanobelt array films: synthesis, characterization and application. J. Nanosci. Nano-techno. 2009, 9:1976-1984
    [56] Shibuya H, Inoue S, Ihara M. Evaluation of dye-sensitized solar cells using forward bias applied impedance spectroscopy under dark. ECS Trans. 2009, 16(50):93-105
    [57] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature. 1992, 359:710-712
    [58]李彦,张庆敏,黄福志,等.表面活性剂溶致液晶体系研究进展.大学化学. 2000, 15:5-9
    [59] Kalyanasundaram K, Graetzel M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordin. Chem. Rev. 1998, 77:347-414
    [60] Hamann T W, Jensen R A, Martinson A B F, et al. Advancing beyond current gener-ation dye-sensitized solar cells. Energy Environ. Sci. 2008, 1:66-78
    [61]曾隆月,戴松元,王孔嘉,等.染料敏化纳米ZnO薄膜太阳电池机理初探.物理学报. 2005,54:53-57
    [62]曾隆月,史成武,方霞琴,等.纳米ZnO在染料敏化薄膜太阳电池中的应用.中国科学院研究生院学报. 2004,21:393-397

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700