用户名: 密码: 验证码:
酶-CdSe-TiO_2光/酶混合生物燃料电池
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着对太阳能开发的不断深入,染料敏化的太阳能电池(dye-sensitized solar cells, DSSCs)因具有低成本、环境友好和较高的光电转换效率等特性在众多光电转换装置中脱颖而出,成为近几年研究的热点。为了进一步地提高染料敏化太阳能电池的光电转换效率和长期稳定性,各种染料被用于敏化纳米结构的宽能隙半导体TiO_2电极。其中,量子点(quantum dots, QDs)敏化的太阳能电池,因具有较大地发展潜力而被广泛研究。
     本论文采用静电层层自组装(electrostatic layer-by-layer self-assembly, LBL)技术,将量子点与[Co(Phen)_3]~(2+)或PAH有序组装到TiO_2薄膜基底上,成功构建了CdSe@CdS量子点敏化的TiO_2光电极。其中,LBL技术制备的量子点敏化的TiO_2光电极,包括两种类型的纳米膜结构:ITO/TiO_2/(CdSe@CdS/PAH)n (简称为Ⅰ型膜)和ITO/TiO_2/(CdSe@CdS/[Co(Phen)_3]~(2+)-PEI)n (简称为Ⅱ型膜)。多种光谱研究表明CdSe@CdS量子点成功地被组装到TiO_2薄膜基底的表面,并且沉积的量均匀,成膜质量好。其光电检测的结果表明,当组装层数较低时,两种类型光电极的光电性能均随着量子点多层的组装层数的增加而增强;当层数进一步增加时,光电性能反而降低。此外,Ⅱ型膜结构的TiO_2光电极虽然沉积较少的CdSe@CdS量子点,但光电性能要远高于I型膜结构的TiO_2光电极。
     在此基础上,选取Ⅱ型膜结构的TiO_2光电极,采用LBL技术在其表面组装葡萄糖氧化酶/[Co(Phen)_3]~(2+)-PEI多层,成功制备了CdSe@CdS量子点敏化薄膜和酶膜复合的光/酶混合生物燃料电池的光电阳极。其具有良好的光伏特性,150 W氙灯照射下,产生显著的光电流,并且对光具有良好的即时电流响应。此外,当在PBS电解液中加入葡萄糖时,光电流强度显著增强,且其随葡萄糖浓度的增加而增加。而当葡萄糖浓度大于8 mM时,随着葡萄糖浓度的增加,电流强度几乎不变,即8 mM葡萄糖为饱和浓度。
Recently, dye-sensitized solar cells (DSSCs) are extensively studied due to their special features such as low cost, surrounding friendly and high power conversion efficiency in recent year. One of very interesting of DSSCs is quantum dots (QDs) -sensitized solar cells, which have drawn a lot of attention during the past few years because semiconductor quantum dots feature long-term stability, sizable adsorption from UV to the infrared, a tunable band structure and even charge carrier multiplication.
     In this thesis, using the layer-by-layer (LBL) assembly, we assembled the dispersed CdSe@CdS core-shell QDs over mesoporous TiO_2 matrix. Two types of photoanodes were obtained by choosing different polyelectrolyte: Type 1 films ITO/TiO_2/(CdSe@CdS/PAH)n and Type 2 films ITO/TiO_2/(CdSe@CdS/ [Co(Phen)_3]~(2+)-PEI)n. The multilayer build-up, monitored by UV-vis spectroscopy shows an increase in the film absorbance with the number of adsorbed CdSe@CdS layers. The photoluminescence (PL) and photoelectrochemical properties of the multilayers were investigated. The photoelectrochemical measurements showed that the photocurrent is directly proportional to the quantity of attached QDs. Moreover, the performances of Type 2 electrodes are much higher than that of Type 1 electrodes.
     Further, the photoanode of hybrid photoelectrochemical biofuel cell was fabricated by depositing three bilayers of GOD/[Co(Phen)_3]~(2+)-PEI on the Type 2 multilayer films. The photoanode can remarkably generate the photocurrent under the illumination with a power of 150 W. Moreover, upon the addition of glucose, the photocurrent was remarkably enhanced. The photocurrent increases with increasing concentrations of glucose in PBS (20 mM, pH=7.4) electrolyte and reached at maximum at a glucose concentration of 8 mM.
引文
1 A. S. Arico, P. Bruce, B. Scrosati, J. M. Tarascon, W. Van Schalkwijk. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4(5): 366-377
    2 B. O'Regan, M. Gr?tzel. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 Films. Nature. 1991, 353:737-740
    3 M. Gr?tzel. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorg. Chem. 2005, 44(20): 6841-6851
    4 A. Hagfeldt, M. Gr?tzel. Molecular Photovoltaics. Acc. Chem. Res. 2000, 33(5): 269-277
    5 M. K. Nazeeruddin, F. D. Angelis, S. Fantacci, A. Selloni, G. Viscardi, P. Liska, S. Ito, B. Takeru, M. G. Gr?tzel. Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers. J. Am. Chem. Soc. 2005, 127(48): 16835-16847
    6 L. M. Peter, D. J. Riley, E. J. Tull, K. G. U. Wijayantha. Photosensitization of Nanocrystalline TiO2 by Self-Assembled Layers of CdS Quantum Dots. Chem. Commun. 2002, 10: 1030-1031
    7 I. Robel, V. Subramanian, M. Kuno, P. V. Kamat. Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films. J. Am. Chem. Soc. 2006, 128(7): 2385-2393
    8 R. Plass, S. Pelet, J. Krueger, M. Gr?tzel, U. Bach. Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells. J. Phys. Chem. B. 2002, 106(31): 7578-7580
    9 K. Ernst, R. Engelhardt, K. Ellmer, C. Kelch, H. J. Muffler, M. C. Lux-Steiner, R. Konenkamp. Contacts to a Solar Cell with Extremely Thin CdTe Absorber. Thin Solid Films. 2001, 387(1-2): 26-28
    10 H. J. Lee, P. Chen, S. J. Moon, F. Sauvage, K. Sivula, T. Bessho, D. R. Gamelin, P. Comte, S. M. Zakeeruddin, S. I. Seok, M. Gr?tzel, M. K. Nazeeruddin. Regenerative PbS and CdS Quantum Dot Sensitized Solar Cells with a Cobalt Complex as Hole Mediator. Langmuir. 2009, 25(13): 7602-7608
    11 A. Fujishim, K. Honda. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature. 1972, 238(5358): 37-38
    12王能利,马海云,王冬雪,黄耀松. TiO2纳米晶和薄膜的制备及光催化性能.长春理工大学学报(自然科学版). 2008, 31(3): 95-97
    13 A. Mills, S. LeHunte. An Overview of Semiconductor Photocatalysis. J.Photochem. Photobiol., A. 1997, 108(1): 1-35
    14 J. Xu, Y. Sun, J. J. Huang, C. M. Chen, G. Y. Liu, Y. Jiang, Y. M. Zhao, Z. Y. Jiang. Photokilling Cancer Cells Using Highly Cell-Specific Antibody-TiO2 Bioconjugates and Electroporation. Bioelectrochemistry. 2007, 71(2): 217-222
    15 M. Gr(a|¨)tzel, J. R. Durrant. Dye-Sensitised Mesoscopic Solar Cells. Giacomo Ciamician, Eighth International Congress of Applied Chemistry.
    16 M. Gr(a|¨)tzel. Dye-Sensitized Solar Cells. J. Photochem. Photobiol., C: Photochem. Rev. 2003, (4): 145-153
    17唐笑,钱觉时,黄佳木.染料敏化太阳能电池中的光电极制备技术.材料导报. 2006, 20(3): 97-103
    18 K. Das, S. K. De. Optical Properties of the Type-II Core-Shell TiO2@CdS Nanorods for Photovoltaic Applications. J. Phys. Chem. C. 2009, 113(9): 3494-3501
    19 M. Ozkan. Quantum Dots and other Nanoparticles: What Can They Offer to Drug Discovery? Drug Discovery Today. 2004, 9(24): 1065-1071
    20陈云生.利用半导体量子点的高效太阳电池.太阳能. 2005, (4): 38-41
    21唐爱伟,滕枫,王元敏,周庆成,王永生. II-VI族半导体量子点的发光特性及其应用研究进展.液晶与显示. 2005, 20(4): 302-308
    22 P. Reiss, M. Protiere, L. Li. Core/Shell Semiconductor Nanocrystals. Small. 2009, 5(2): 154-168
    23 D. Bera, L. Qian, T. K. Tseng, P. H. Holloway. Quantum Dots and Their Multimodal Applications: A Review. Mater. 2010, 3(4): 2260-2345
    24 A. P. Alivisatos. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science. 1996, 271(5251): 933-937
    25赵家龙,张继森.量子点材料在发光二极管中的应用前景.现代应用光学. 2008: 30-31
    26 A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, P. V. Kamat. Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture. J. Am. Chem. Soc. 2008, 130(12): 4007-4015
    27 P. V. Kamat. Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C. 2008, 112(48): 18737-18753
    28 H. J. Lee, J. H. Yum, H. C. Leventis, S. M. Zakeeruddin, S. A. Haque, P. Chen, S. I. Seok, M. Gr?tzel, M. K. Nazeeruddin. CdSe Quantum Dot-Sensitized Solar Cells Exceeding Efficiency 1% at Full-Sun Intensity. J. Phys. Chem. C. 2008, 112(30): 11600-11608
    29 R. J. Ellingson, M. C. Beard, J. C. Johnson, P. R. Yu, O. I. Micic, A. J. Nozik, A. Shabaev, A. L. Efros. Highly Efficient Multiple Exciton Generation in ColloidalPbSe and PbS Quantum Dots. Nano Lett. 2005, 5(5): 865-871
    30 R. D. Schaller, V. I. Klimov. High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion. Phys. Rev. Lett. 2004, 92(18):186601-186602
    31 T. Toyoda, I. Tsuboya, Q. Shen. Effect of Rutile-Type Content on Nanostructured Anatase-Type TiO2 Electrode Sensitized with CdSe Quantum Dots Characterized with Photoacoustic and Photoelectrochemical Current Spectroscopies. Mat. Sci. Eng. C-Bio. S. 2005, 25(5-8): 853-857
    32孙卫中.漫谈生物燃料电池.化学教学. 2007, (9): 48-50
    33刘强,许鑫华,任光雷.酶生物电池.化学进展. 2006, 18(11): 1530-1537
    34康峰,伍艳辉,李佟茗.生物燃料电池研究进展.电源技术. 2004, 28(11): 23-727
    35 N. Mano, F. Mao, A. Heller. Characteristics of a Miniature Compartment-Less Glucose-O2 Biofuel Cell and Its Operation in a Living Plant. J. Am. Chem. Soc. 2003, 125(21): 6588-6594
    36 E. Simon, C. M. Halliwell, C. S. Toh, A. E. G. Cass, P. N. Bartlett. Immobilisation of Enzymes on Poly(aniline)-Poly(anion) Composite Films Preparation of Bioanodes for Biofuel Cell Applications. Bioelectrochem. 2002, 55(1-2): 13-15
    37 A. Pizzariello, M. Stred'ansky, S. Miertus. A Glucose/Hydrogen Peroxide Biofuel Cell that Uses Oxidase and Peroxidase as Catalysts by Composite Bulk-Modified Bioelectrodes Based on a Solid Binding Matrix. Bioelectrochem. 2002, 56(1-2): 99-105
    38 A. Brune, G. J. Jeong, P. A. Liddell, T. Sotomura, T. A. Moore, A. L. Moore, D. Gust. Porphyrin-Sensitized Nanoparticulate TiO2 as the Photoanode of a Hybrid Photoelectrochemical Biofuel Cell. Langmuir. 2004, 20(19): 8366-8371
    39 B. S. Brunschoig, C. Creutz, D. H. Macartney. The Role of Inner-Sphere Configuration Changes in Electron-Exchange Reactions of Metal Complexes. Faraday Discuss. Chem. Soc. 1982, 74: 113-127
    40 S. Schauff, M. Ciorca, A. Laforgue, D. Belanger. Electron Transfer Processes at Aryl-Modified Glassy Carbon Electrode. Electroanal. 2009, 12(13): 1499-1504
    41贾殿增,李昌雄,忻新泉.固相配位化学反应研究.应用化学. 1993, 10(1): 110-111
    42 G. Decher. Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. Science. 1997, 277(5330): 1232-1237
    43 J. H. Fendler, F. C. Meldrum. The Colloid Chemical Approach to Nanostructured Materials. Adv. Mater. 1995, 7(7): 607-632
    44 J. A. He, R. Mosurkal, L. A. Samuelson, L. Li, J. Kumar. Dye-Sensitized SolarCell Fabricated by Electrostatic Layer-by-Layer Assembly of Amphoteric TiO2 Nanoparticles. Langmuir. 2003, 19(6): 2169-2174
    45 N. A. Kotov, I. DCkiiny, J. H. Fendler. Layer-by-Layer Self-Assembly of Polyelectrolyte-Semiconductor Nanoparticle Composite Films. J. Phys. Chem. 1995, 99(35): 13065-13069
    46 N. Kovtyukhova, P. J. Ollivier, S. Chizhik, A. Dubravin, E. Buzaneva, A. Gorchinskiy, A. Marchenko, N. Smirnova. Self-Assembly of Ultrathin Composite TiO2/Polymer Films. Thin Solid Films. 1999, 337(1-2): 166-170
    47 X. Y. Li, Y. L. Zhou, Z. Z. Zheng, X. L. Yue, Z. F. Dai, S. Q. Liu, Z. Y. Tang. Glucose Biosensor Based on Nanocomposite Films of CdTe Quantum Dots and Glucose Oxidase. Langmuir. 2009, 25(11): 6580-6586
    48 S. Q. Liu, D. G. Kurth, B. Bredenkotter, D. Volkmer. The Structure of Self- Assembled Multilayers with Polyoxometalate Nanoclusters. J. Am. Chem. Soc. 2002, 124(41): 12279-12287
    49 X. G. Peng, M. C. Schlamp, A. V. Kadavanich, A. P. Alivisatos. Epitaxial Growth of Highly Luminescent CdSe/CdS Core/Shell Nanocrystals with Photostability and Electronic Accessibility. J. Am. Chem. Soc. 1997, 119(30): 7019-7029
    50 E. A. Dias, S. L. Sewall, P. Kambhampati. Light Harvesting and Carrier Transport in Core/Barrier/Shell Semiconductor Nanocrystals. J. Phys. Chem. C. 2007, 111(2): 708-713
    51 Y. Wang, Z. Y. Tang, M. A. Correa-Duarte, I. Pastoriza-Santos, M. Giersig, N. A. Kotov, L. M. Liz-Marzan. Mechanism of Strong Luminescence Photoactivation of Citrate-Stabilized Water-Soluble Nanoparticles with CdSe Cores. J. Phys. Chem. B. 2004, 108(40): 15461-15469
    52 B. Qin, H. Y. Chen, H. Liang, L. Fu, X. F. Liu, X. H. Qiu, S. Q. Liu, R. Song, Z. Y. Tang. Reversible Photoswitchable Fluorescence in Thin Films of Inorganic Nanoparticle and Polyoxometalate Assemblies. J. Am. Chem. Soc. 2010, 132(9): 2886-2887
    53 W. W. Yu, L. H. Qu, W. Z. Guo, X. G. Peng. Experimental Determination of the Extinction Coefficient of CdTe, CdSe, and CdS Nanocrystals. Chem. Mater. 2003, 15(14): 2854-2860
    54 W. W. Brandt, F. P. Dwyer, E. D. Gyarfas. Chelate Complexes of 1,10- Phenanthroline and Related Compounds. Chem. Rev. 1954, 54(6): 961-962
    55陈昌云,李小华,单云,夏娟,相秉仁.普利沙星与[Co(Phen)3]2+及DNA间结合作用的电化学和光谱.应用化学. 2006, 23(7): 819-820
    56 R. G. Inskeep. Infra-Red Spectra of Metal Complex Ions below 600 cm?1-I: The Spectra of the Tris Complexes of 1, 10-Phenanthroline and 2, 2′-Bipyridine withthe Transition Metals Iron(II) through Zinc(II). J. Inorg. Nucl. Chem. 1962, 24(7): 763-776
    57 B. K. Jin, X. P. Jia, T. Nakamuraa. Voltammetric Study of Interaction of Co(Phen)33+ with DNA at Gold Nanoparticle Self-Assembly Electrode. Electrochim. Acta. 2004, 50(4): 1049-1055
    58 S. L. Clark, M. F. Montague, P. T. Hammond. Ionic Effects of Sodium Chloride on the Templated Deposition of Polyelectrolytes Using Layer-by-Layer Ionic Assembly. Macromol. 1997, 30(23): 7237-7244
    59 C. H. Chang, Y. L. Lee. Chemical Bath Deposition of CdS Quantum Dots onto Mesoscopic TiO2 Films for Application in Quantum-Dot-Sensitized Solar Cells. Appl. Phys. Lett. 2007, 91(5): 053503-053504
    60 S. C. Lin, Y. L. Lee, C. H. Chang, Y. J. Shen, Y. M. Yang. Quantum-Dot- Sensitized Solar Cells: Assembly of CdS-Quantum-Dots Coupling Techniques of Self-Assembled Monolayer and Chemical Bath Deposition. Appl. Phys. Lett. 2007, 90(14): 143517-143518
    61 S. B. Rawal, A. K. Chakraborty, W. I. Lee. Heterojunction of FeOOH and TiO2 for the Formation of Visible Light Photocatalyst. B. Korean. Chem. Soc. 2009, 30(11): 2613-2616
    62 C. J. Wang, M. Shim, P. Guyot-Sionnest. Electrochromic Nanocrystal Quantum Dots. Science. 2001, 291(5512): 2390-2392
    63 D. W. Pang, H. D. Abruna. Micromethod for the Investigation of the Interactions between DNA and Redox Active Molecules. Anal. Chem. 1998, 70(15): 3162- 3169
    64 J. L. Blackburn, D. C. Selmarten, R. J. Ellingson, M. Jones, O. Micic, A. J. Nozik. Electron and Hole Transfer from Indium Phosphide Quantum Dots. J. Phys. Chem. B. 2005, 109(7): 2625-2631
    65 M. Gr?tzel. Photoelectrochemical Cells. Nature. 2001, 414(6861): 338-344
    66 S. J. Chiang, K. T. Chang, C. Y. Yen. Residential Photovoltaic Energy Storage System. IEEE. T. Ind. Electron. 1998, 45(3): 385-394

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700