用户名: 密码: 验证码:
染料敏化太阳能电池电极改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化太阳能电池(Dye Sensitized Solar Cell,简称DSSC)由瑞士洛桑高等理工学院Gretzel教授于1991年率先制备,立即受到国际上广泛的关注和重视。之后各国科研人员对其进行大量的研究并取得了一定的进展,但仍存在许多尚需解决的问题,如其核心部件TiO_2纳米晶膜的光电转换性能有待提高、染料急需低成本化、开发高效电解质与固态电解质、如何实现电池大面积化以及电池结构的优化等。
     本文采用改进的溶胶-凝胶制备工艺以及利用聚苯乙烯作为造孔剂制备Gd、N共掺杂多孔TiO_2纳米薄膜,分析了薄膜中孔隙、粒径大小等对薄膜性能的影响;根据第一原理研究轨道有序态及其对光电性能的影响,定性和定量分析TiO_2的能带变化与掺杂Gd/N等物质的关系。研究结果表明:
     溶胶-凝胶法所得薄膜在500℃温度下煅烧得到的TiO_2为锐钛矿晶型,颗粒的大小约为20nm。膜的表面出现较多的孔隙,没有团聚和裂痕。以此薄膜组装了DSSC,通过对其电池的I-V测试,TiO_2薄膜厚度约10μm时,其光电池的性能最好,其开路电压为0.382v,短路电流为0.332mA。TiO_2结构的多孔隙性保证了较多染料的吸附,进而增强了捕获太阳光的能力,薄膜的合适的厚度有利于使染料分子及电解质充分地吸附到纳米TiO_2中,有利于载流子的传输和转移,抑制复合与暗电流。
     以聚苯乙烯(PS)微球为造孔剂,结合溶胶-凝胶法制备了具有良好光电性能的锐钛矿多孔TiO_2薄膜电极。其中PS微球乳液为7%时,TiO_2薄膜电极表面分布着较多孔径均匀的圆形小孔,其光电转换效率效果最优,短路电流Isc为0.4979mA/cm~2,开路电压Voc为0.6696V,填充因子FF为38.15%,比没有造孔剂时效果有大幅提高。而通过Gd、N共掺杂制备的多孔电极最好的效果,在掺杂Gd为0.5%,掺杂N为0.3%。时候,效果达到最好,其开路电压为0.649v。短路电流为0.713mA/cm~2,
     相对没有掺杂的多孔膜电极其效率提高51.47%。采用密度泛函理论的平面波超软赝势方法研究了锐钛矿相及Gd、N共掺杂TiO_2的基态几何、电子结构,计算得到TiO_2的晶格常数与实验结果的偏差很小;掺杂能级的形成主要是掺杂Gd、N的4f轨道的贡献。掺杂Gd\N后,不仅使TiO_2的吸收带产生红移,且增强了TiO_2在紫外区的光吸收,因此Gd\N型的共掺杂能使TiO_2的禁带变窄,光电性能得到提高。
Dye sensitized solar cells (DSSC) have attracted great attention as the significant progress made by Gr?tzel and co-workers in the 1990s. Though investigations into the various factors influencing the photovoltaic efficiency in this novel approach have recently been intensified, there is still many problems for the optimization of the DSSC components, i.e., the oxide semiconductor, the sensitizer, the electrolyte, large area cells and the structure of DSSC.
     In this paper, porous TiO_2 films co-doped with Gd and N were fabricated by sol-gel method using polystyrene(PS) as pore-forming agent. The influence of the porosity and the particle size to the photoelectric properties of TiO_2 films were investigated. The relationship between the energy band of TiO_2 and dopant of Gd/N were studied by first-principles.
     The results indicated that anatase TiO_2 nanoparticles were the main structural components in TiO_2 films which calcined at 500℃for 2h. And the average grain size of anatase TiO_2 was found to be about 20 nm. The porous TiO_2 films with little agglomeration and flaw were used to fabricated DSSC. The I-V test show that the photoelectric properties of TiO_2 film was the best when the thickness was about 10μm, which have a short circuit current of 0.332mA/cm~2, an open circuit voltage of 0.382V. This is because TiO_2 film with high porosity could absorb more dye which is beneficial to enhance the photoelectric properties of TiO_2 film, and suitable thickness of TiO_2 film is in favor of transmission and transfer of carrier, all of these could enhance the photoelectric properties of TiO_2 film electrodes.
     And the porous TiO_2 films fabricated by sol-gel method using PS as pore-forming agent were also composed by anatase TiO_2 nanoparticles. The influence of polystyrene microspheres (PS) mass ratio to the morphology and photoelectric property of the films were investigated. The results showed that when the PS mass ratio of 7.0%, the TiO_2 thin film electrods appeared with high porosity, uniform pore size and high photoelectric property. Under simulated solar illumination, a short circuit current of 0.4979 mA/cm~2, an open circuit voltage of 0.6696 V and a fill factor of 38.15% were attained, which were better than the performances of TiO_2 films without pore-forming agent. And the photoelectric properties of porous TiO_2 films co-doped with 0.5% Gd and 0.3% N was the best, which had a short circuit current of 0.713 mA/cm~2, an open circuit voltage of 0.649 V, whose efficient was improved about 51.47% to porous TiO_2 electrode.
     The ground state structures and electronic properties of anatase TiO_2 co-doped with Gd and N were calculated by using first principles method which base on plane-wave pseudopotential method. The lattice constant of the samples is in good agreement with the experimental value, and the formation of doped energy-band was main based on contribution of N and 4f-orbitals of Gd. TiO_2 co-doped with Gd and N not only have a red shift, but also enhance the light absorption in the ultraviolet region, hence the TiO_2 co-doped with Gd and N could increased the electronic propertie.
引文
[1] wjwslf.京都协议书. http://baike.baidu.com/view/121786.htm,2006-04-24
    [2]邝少平,2009年全球光伏产业发展研究报告,北京:中国环境科学出版社,2009.06.30:1-60
    [3]施敏.现代半导体器件物理.第一版.北京:科学出版社,2001,46-52.
    [4]付宗义.太阳能:解决能源问题的有效途径.中国中小企业,2009,11:83-85
    [5]周勋,徐明.太阳电池的研究和应用进展.贵州师范大学学报(自然科学版),2000,18(2):64-74
    [6]耿新华,孙云.薄膜太阳电沌的研兜进展.物理,1999,(2):96-102.
    [7] FENG Lei, CHENG Yong-qing, QIN Hua-yu.Development of Nano-TiO_2 Dye sensitized Solar Cells. DEVELOPMENT AND APPLICATION OF MATERIALS, 2009,24(3):81-85
    [8]庾莉萍(摘译).提高太阳能电池效率的主要措施.现代材料动态. 2009, 9:2-4
    [9]张竹慧.太阳能电池组件的设计及选用.中国新技术新产品,2009,7:4-4
    [10]李景琼,黄其煜.纳米薄膜太阳能电池.纳米器件与技术,2006,11:515-519
    [11]柴金龙,李毅,胡盛明.非、单晶硅太阳能电池组件比功率发电量比较.深圳大学学报.2005,22(3):226-229
    [12]王慧,邵竹锋.太阳能电池概述.中国建材科技,2008,6:67-69
    [13]沈健芬.有机薄膜太阳能电池研究进展.化学工程与装备,2009,10: 129-130,160
    [14]苏荣.8-羟基喹啉铁配合物对锐钛矿型TiO_2(101)表面的敏化机理研究:[四川师范大学].四川:四川师范大学,2009,6-10;
    [15]Gratzel M. Perspectives for Dye-sensitized Nanocrystalline Solar Cells. Progress in Photovoltaics,2000,8(1):171-185
    [16]王青,夏咏梅,何祖明等.染料敏化太阳能电池光阳极及其敏化研究进展.科技导报.2009,1:90-95
    [17]戴大祥.信义玻璃引入高端光伏薄膜导电玻璃.玻璃,2008,35(9):57-57
    [18]王玉玲,许启明,赵鹏等.TiO_2薄膜亲水性机理及改善方法的研究进展.材料导报,2004,18(F10):61-64
    [19]陈坤基.纳米晶/微晶半导体材料研究引人注目.国际学术动态,1998,2:48-49
    [20]李树全,林建明,张秀坤等.染料敏化太阳电池光阳极薄膜研究进展.材料导报:纳米与新材料专辑,2008,2:43-46
    [21]谢先法,吴平霄,党志.过渡金属离子掺杂改性TiO_2研究进展.化工进展,2005, 24(12):1358-1362
    [22]Choi W,Termin A,Hofmann M R. The role ofmetal ion dopants in quantum-sized TiO_2:Correlation between photoreactivity and charge carried recombination dynamics. J.Phys.Chem,1994,98(5):13669.
    [23]Asahi R, Ohwaki T, Aoki K, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science,2001,293:269-271.
    [24]Liu X,Tang Z F, Zhu H M.Development of activities in visible light on TiO_2 doped with anions. New Chemical Materials,2006,34:20-23.
    [25]陈俊涛,李新军,杨莹等.稀土元素掺杂对TiO_2薄膜光催化性能的影响.中国稀土学报,2003,21:67-71
    [26]王剑波,张景来,卢寿慈.金属共掺杂对TiO_2光催化性能的影响.安徽理工大学学报(自然科学版),2004,24(3):61-64
    [27]李越湘,王添辉,彭绍琴等. Eu3+、Si4+共掺杂TiO_2光催化剂的协同效应.物理化学学报,2004,20(12):1434-1439
    [28]Yang P,Lu C,Hua N P,et al.Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis[J]. Materials Letters,2002,57(4):794-801
    [29]Li D, Haneda H, Hishita S, et al.Visible-light-driven N-F-codoped TiO_2 photocatalysts-optical characterization, photocatalysis, and potential application to air purification.Chem.Mater,2005,17:2596-2602.
    [30]秦国旭,袁希梅,李祥飞.染料敏化太阳电池的染料敏化剂的研究进展.巢湖学院学报.2009,3:89-97
    [31]乔大勇,孙磊,苑伟.纯有机染料共敏化纳米晶太阳能电池的性能研究.感光科学与光化学.2005,23(5):327-332
    [32]李胜军,林原,杨世伟,陈今茂,肖绪瑞.染料敏化太阳能电池TiO_2电极的制备及电解质的影响.影像科学与光化学.2008,26(1):54-59
    [33]陈建国,黎源.新型吡喃鎓方酸菁染料溶剂效应、聚集行为研究.感光科学与光化学.2000,18(4):308-315
    [34]ANKang HUJi-fan SUNDe-jun QINHong-wei ZHANGJie HANTao ZHANGLing. Transition Between Solid-like and Liquid-like States in Soft Silica Suspensions [J].CHEMICAL RESEARCH IN CHINESE UNIVERSITY,2004,20(6):771-773
    [35]P.Wang&S.M.Zakeemddin, P.Comte, et al. Gelation of Ionic Liquid-baLsed Eletrolytes with Silica Nanopaticles for Quasi-solid-state Dye-sensitized Solar sells. J.Am.Chem.Soc,2003,125(5):1166-1167
    [36]林原,周晓文,肖绪瑞等.固态染料敏化二氧化钛纳晶薄膜太阳能电池的研究进.科技导报,2006,24(6):11-15
    [37]尹艳红,许泽辉,冯磊硕,杨书廷,李承斌.染料敏化太阳能电池对电极的研究进展.材料导报,2009,23(9):109-112
    [38]张帅.太阳能电池工作原理简介.灯与照明,2004,2:9-11
    [39]李淑梅.染料敏化纳米晶太阳能电池阳极的制备与共敏化研究:[长春理工大学].长春:长春理工大学,2006.12,5-8
    [40]P.Wang&S.M.Zakeemddin,P.Comte,etal.Gelation of Ionic Liquid-baLsedEletrolytes with Silica Nanopaticles for Quasi-solid-state Dye-sensitized Solarsells. J.Am.Chem.Soc.,2003,125(5):1166-1167.
    [41]苏荣.8-羟基喹啉铁配合物对锐钛矿型TiO_2(101)表面的敏化机理研究:[四川师范大学].四川:四川师范大学,2009.04.08,6-10;
    [42]徐林,崔容强,庞乾骏等.对太阳电池I-V曲线进行拟合的数论方法[J].太阳能学报,2000,21(2):160-164
    [43]姬少靓.染料敏化太阳能电池光阳极结构的构筑及性能:[黑龙江大学硕士论文].黑龙江:黑龙江大学,2009,3-4;
    [44]倪萌,M K Leung, K Sumathy.太阳能电池研究的新进展.可再生能源。2004,2:8-11
    [45]王爱坤,周国香,杨韧等.梯度掺杂对太阳能电池转换效率的影响.半导体技术,2003,9:63-66
    [46]朱永法.纳米材料的表征与测试技术.第一版.北京:化学工业出版社,2006,224-271
    [47]陈敬中.现代晶体化学—理论与方法.第一版.北京:高等教育出版社,2001,55-85
    [48]王中林.纳米材料表征.第一版.北京:化学工业出版社,2005,10-28
    [49]丛秋兹.多晶二维X射线衍射.第二版.北京:科学出版社,1997,47-89
    [50]李树棠.金属X射线衍射与电子显微分析技术.第二版.北京:冶金工业出版社,1980,44-67
    [51]周小菊,刘东,陈春霞等。沸腾回流均相沉淀法合成超细粉体TiO_2[J]。西南名族大学学报·自然科学版,2004,30(4):434 -437.
    [52]王富民,巩峰,李成亮.染料敏化太阳能电池的内部阻抗分析.天津大学学报,2007,40(3):265-268
    [53]赖陆锋,李春燕.可见分光光度计的正确使用及维护[J].教学仪器与实验,2007,(06) :40-45
    [54]许艳,安庆大,张绍印等.担载Zn THPP的TiO_2杂化材料的制备及结构表征.光谱学与光谱分析,2006,26(6):1134-1137
    [55]冯岩青,李智丽.扫描电镜及能谱仪的主要功能开发.包钢科技,2008,34(4):93-9
    [56]李林,周剑雄,张家云.矿物的电子显微镜研究.第一版.北京:地质出版社,1984,55-67
    [57]郭可信,叶恒强等.高分辨电子显微学在固体科学中的应用.第一版.北京:科学出版社,1983,34-78
    [58]张继远,田汉民,田志鹏.TiO_2纳米晶溶胶水热的合成及其染料敏化光电性能.无机材料学报,2009,24(6):1110-1114
    [59]董红英,张建勇,孙振侠,马文.溶胶-凝胶工艺参数对介孔TiO_2的影响.内蒙古工业大学学报,2009,28(3):193-198
    [60]刘伟娜,王丽华,陈杰.溶胶-凝胶法制备纳米二氧化钛.辽宁工程技术大学学报(自然科学版),2009,28:187-189
    [61] Gong D W, Grimes C A, Varghese O K, eta1. Titanium oxide nanotube arraysprepared by anodic oxidation. J Mater Res, 2001,16(12):3331-3334.
    [62]周呈悦,马忠权,李凤,张楠生.厚度对溶胶–凝胶法制备锂掺杂ZnO薄膜性能的影响.硅酸盐学报,2009,37(8):1332-1337
    [63]Zwilling V, Darque Ceretti E, Boutry Forveille A, eta1. Preparation andphotoelectro-catalytic application of porous TiO_2 film by anodization at lowvoltage. Surf, Interface Ana1,1999,27:629-637.
    [64]Zukalova M, et al. Organized Mesoporous TiO_2 Films Exhibiting GreatlyEnhanced Performance in Dye-sensitized Solar cells. Nano Lett, 2005, 5 (9):1789-1792.
    [65]罗新连,蓝顶,万发荣等.NPC太阳能电池的TiO_2薄膜结构的研究.功能材料与器械学报,2003,9(4):385-390;
    [66]DING Yingchun,XU Ming,SHEN Yibin. Research Development of SelfassemblyNanostructural Materials for Solar Cells. MATERIALS REVIEW,2006,20(9):116-119
    [67]Varghese O K,Paulose M. A study on the growth and structure of titaniananotubes. J Mater Res,2004,19 (2):417-422.
    [68]Asahi R,Morikawa T et al.Visible-light photocatalysis in nitrogen-dopedtitanium oxides. Science,2001(293):269-270
    [69]Wei H Y,Wu Y S, Lun N et al. Preparation and photocatalysis of TiO_2nanoparticles co-doped with nitrogen and lanthanum. J Mater Sci, 2004,39(4):1305-1308.
    [70]孙岚,李静,王成林,林昌健,杜荣,陈鸿博.钛基TiO_2纳米管阵列电极的光电催化性能.无机化学学报, 2009, 25(2):334-338.
    [71]曹艳玲,王艳平,朱永政等.聚苯乙烯胶体晶体模板制备高质量的二氧化钛孔型材料.科学通报,2006,51(13):1509-1512
    [72]Carbeck J D, Negin R S. Measuring t he size and charge of proteins usingprotein charge ladders,capillary elect rophoresis ,and elect rokinetic modelscolloids. J Am Chem Soc,2001,(123):1252-1253.
    [73] Zhang J, Coombs N, Kumacheva E. A new approach to hybrid nanocompositematerials wit h periodic st ructures. J AmChem Soc,2002,124:14512-14515.
    [74]刘萍,李新勇,王玉新,鞠跷东,陈国华.二氧化钛纳米管阵列的构建及其光电催化性能[J].高等学校化学学报,2006,27(12):2411-2413.
    [75]Choi W, Termin A, Hoffmamm M R. The role of metaI ion dopantsquantumsized TiO_2: correlation between photoreactivity and charge carrierrecombination dynamics. Phys Chem,1994,98 (51):13669-13679.
    [76]阮圣平,王兢,张力等.锐钛矿型TiO_2纳米晶阻抗谱的等效电路.吉林大学学报(信息科学版),2003,21(3):209-211.
    [77]翁景峥,李颖.利用Materials Studio软件进行光催化降解有机染料的机理研究海峡科学,2009,2:6-9.
    [78] Perdew J P, Wang Y. Pair—distribution function and its coupling—constantaverage for the spin-polarized electron gas. Phys Rev B,1992,46(20):12947-12954.
    [79]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductorelectrode. Nature,1972,238:37-38.
    [80]Zhu J F,Zhang J L,Chen H J. Reactive magnetron sputtering of titaniumstructuraland optical characterization of TiO_2 films. J Appl Phys,1992,71:1421-1424.
    [81]Chang J T, Lai Y F, He J L. Light—Induced Redox Reactions in NanocrystallineSystems. J Chem ReV,1995,95:49-68.
    [82]谷秀梅,王承遇等.镍离子掺入TiO_2的研究.硅酸盐学报,2004(12):298-306
    [83]张令通.计算机在材料模拟与设计中的应用.大理学院学报,2002,1(4):138-147.
    [84]张魏军,李燕等.氮掺杂TiO_2的原理研究.催化学报,2004(7):93-95.
    [85]张令通.计算机在材料模拟与设计中的应用.大理学院学报,2002,1(4):138-147.
    [86]张季爽,申成等.基础结构化学.第二版.北京:科学出版社, 2006: 46-68.
    [87]侯清玉,张跃,张涛.含氧空位锐钛矿TiO_2光学性质的第一性原理研究.光学学报,2008,28(7):1347-1352
    [88] Zongyan Zhao,Qingju Liu. Designed Highly Effective Photocatalyst of AnataseTiO_2 Codoped with Nitrogen and Vanadium Under Visible-light IrradiationUsing First-principles. Catal Lett,2008,124:111-117.
    [89] First-principles study of point defects in rutile TiO_2. FENG Qing, WANGXin-Qiang, LIU Gao-Bin. JOURNAL OF ATOMIC AND MOLECULARPHYSICS,2008,25(5):1096-1100.
    [90]唐敖庆,江元生等.分子轨道的图形理论.第一版.中国科学出版社,1977,218-231.
    [91]赵宗彦,柳清菊等.3d过渡金属掺杂锐钛矿相TiO_2的第一性原理研究.物理学报,2007(11):6592-6599.
    [92]慕东周等.Cr掺杂锐钛矿相TiO_2电子结构的第一性原理计算.湖北大学学报(自然科学版),2008,4:360-363.
    [93]Sato K, Akai H, Maruyama Y,et a1. Calculations of electronic friend gradientsdetected by impurities in TiO_2, A12O3 and CaCO3. Hyperfine Interact,1999,56:145 -149.
    [94] Kidou F, Kondarides D I,Verykios X E.Theef fectofopera tionalp arameters andTiO_2-doping on the photocatalytic degradation ofazo—dyes. Catal Today,1999,54:119-130.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700