用户名: 密码: 验证码:
染料敏化太阳能电池中新型电解质的合成和光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要是开发新型的季铵盐离子导体,并将其用于染料敏化太阳能电池中,发展高效、低价的染料敏化太阳能电池。主要内容包括以下几个方面:
     成功设计合成了四种含阳离子基团的螺吡喃、螺嗯嗪类光致变色染料和六种新型的季铵盐,通过MS、1H-NMR、13C-NMR、g-COSY、g-HSQC等分析手段进行结构表征。
     利用紫外可见光谱,分别研究了四种光致染料的光致变色性质,发现含三甲胺阳离子基团的螺吡喃染料具有逆光致变色性质,而含十八叔胺阳离子基团的螺吡喃化合物,由于十八叔胺长碳链的影响,表现出正常的光致变色性质。两种螺噁嗪化合物均表现出正常的光致变色性质,并且具有良好的耐疲劳性。
     制作基于上述化合物组成的离子液体电解质的染料敏化太阳能电池,进行AM1.5 G模拟太阳光条件下光电转化效率测试。其中在1.5 G,100 mW/cm2模拟太阳光下,化合物10组成的电解质的电池η为6.63%;化合物14组成电解质的电池η为6.74%。这两种新型的季铵盐离子导体,拓宽了我们研发新型的染料敏化太阳能电池电解质的视野。
     将添加剂N-甲基咪唑用于染料敏化太阳电池电解质溶液中,和以前最常使用的添加剂4-叔丁基吡啶作了对比实验,发现效果优于4-叔丁基吡啶,这为今后液体电解质中添加剂的选用提供了新的思路。
This work had developed novel quaternary ammonium salt for high efficiency and low cost DSSC application and investigation. The main conclusions are summarized as follows.
     The photochromism of spiropyran and spirooxazine dyes containing functional cationic groups and six novel quaternary ammonium salt were successfully synthesized. The chemical structures of above compounds were conformed by MS,1H-NMR,13C-NMR, g-COSY and g-HSQC.
     The photochromism of dyes containing functional cationic groups were studied by UV-Vis spectra. The results showed that spiropyran containing trimethyl amine cationic moiety exhibited negative photochromic properties. But the spiropyran containing octadecylpropan amine cationic moiety only displayed normal photochromic properties during the irradiation process of UV light. Spirooxazines had normal photochromic properties and good fatigue resistance.
     The above compounds were used as electrolytes for DSSC, and the efficiencies had been tested under simulated sunlight. Electrolytes containing compound 10 and 14 were injected into the sandwich cells. The power conversion efficiency had reached 6.63%and 6.74%, respectively (air mass 1.5 global,100 mW/cm2). New novel quaternary ammonium salt will broaden our eyeshot to find a series of new electrolyte materials in the application of DSSC.
     This paper presents the influence of N-methylimidazole on solar cell performance and compares the properties of the 4-tert-butylpyridine additive, which is the most popular additive for the electrolyte solution in the dye-sensitized solar cell. The additive for optimization will become much clearer and more important in the power conversion efficiency may be expected.
引文
[1]杨红.功能材料的设计、组装及其光电性能研究[D].上海:复旦大学,2006.
    [2]Hagfeldt A, Gratzel M, Light-Induced Redox Reactions in Nanocrystalline Systems [J].Chem. Rev., 1995,1:49-68.
    [3]O'Regan B, Gratzel M, A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J].Nature,1991,353 (6346):737-740.
    [4](a)雷永泉主编.二十一世纪新材料丛书—新能源材料[M].天津:天津大学出版社,2002.(b)施敏主编.现代半导体器件物理[M].北京:科学出版社,2001.
    [5]Hagfeldt A, Gratzel M, Light-Induced redox reactions in nanocrystalline systems[J].Chem. Rev.,1995, 95 (1):49-68.
    [6]Huang S Y, Schlichthorl G, Nozik A J,et al. Charge Recombination in Dye-Sensitized Nanocrystalline TiO2 Solar Cells[J].J. Phys. Chem. B,1997,101(14):2576-2582.
    [7]Nazeeruddin M K, Kay A, Rodicio I,et al. Conversion of light to electricity by cis-X2 bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers(X=Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes[J].J. Am. Chem. Soc.,1993,115(14),6382-6390.
    [8]de Jongh P E, Vanmaekelbergh D. Trap-Limited Electronic Transport in Assemblies of Nanometer-Size TiO2 Particles[J].Phys. Rev. Lett.,1996,77,3427-3430.
    [9]杨蓉.苯基磷酸联吡啶钌络合物敏化纳品多孔Ti02薄膜电极光电性能研究[J].感光科学与光化学,1997,15(4):293-296.
    [10]Zaban A, Chen S G, Chappel S,et al. Bilayer nanoporous electrodes for dye sensitized solar cells[J]. Chem. Comm.,2000,22:2231-2232.
    [11]李斌.染料敏化纳米太阳能电池[J].感光科学与光化学,2000,4:340-341.
    [12]M.Gratzel, Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells[J]. Photochem. Photobiol. A:Chem.,2004,164:3-14.
    [13]Ghicov A, Tsuchiya H, Macak J M,et al. Titanium oxide nanotubes prepared in phosphate electrolytes[J].Electrochemistry Communications,2005,5:505-509.
    [14]Mohammad K, Nazeeruddin, Peter Pechy, et al. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells[J].J. Am. Chem. Soc.,2001,123 (8):1613-1624.
    [15]Nguyena H T, Taa H M, Lund T, et al. Thermal thiocyanate ligand substitution kinetics of the solar cell dye N719 by acetonitrile,3-methoxypropionitrile and 4-tert-butylpyridi[J].Solar Energy Materials and Solar Cells,2007,20(91):1934-1942.
    [16]Nazeeruddin M K, Zakeeruddin S M, Humphry-Baker R, et al. Acid-Base Equilibria of (2,2'-Bipyridyl-4,4'-dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of Nanocrystalline Titania[J].Inorg. Chem.,1999,38(26):6298-6305.
    [17]Nazeeruddin Md K, Zakeeruddin S M, Gratzel M, et al. Acid-base equilibria of (2,2'-bipyridyl-4,4'-dicarboxylic acid)ruthenium(Ⅱ)complexes and the effect of pronation on charge-chansfer sensitization of nanocrystalline titania[J].Inorg. Chem.,1999,38:6298-6305.
    [18]Wang P, Zakeeruddin S M, Moser J E, et al. Stable New Sensitizer with Improved Light Harvesting for Nanocrystalline Dye-Sensitized Solar Cells[J].Advanced Materials,2004,20(16):1806-1811.
    [19]Wang P, Shaik M, Zakeeruddin, et al. A Binary Ionic Liquid Electrolyte to Achieve≥7% Power Conversion Efficiencies in Dye-Sensitized Solar Cells[J].Chem. Mater,2004,16:2694-2696.
    [20]Shi D, Pootrakulchote N, Li R, et al. New Efficiency Records for Stable Dye-Sensitized Solar Cells with Low-Volatility and Ionic Liquid Electrolytes[J].J. Phys. Chem. C,2008,112(44):17046-17050.
    [21]Shawn A, Sapp C, Elliott M, et al. Substituted Polypyridine Complexes of Cobalt(Ⅱ/Ⅲ) as Efficient Electron-Transfer Mediators in Dye-Sensitized Solar Cells[J].J. Am. Chem. Soc.,2002,124(37): 11215-11222.
    [22]Nusbaumer H, Moser J E, Shaik M, et al. CoⅡ(dbbip)22+ Complex Rivals Tri-iodide/Iodide Redox Mediator in Dye-Sensitized Photovoltaic Cells[J].J. Phys. Chem. B,2001,105 (43):10461-10464.
    [23]Oskam G, Bryan V, Bergeron, et al. Pseudohalogens for Dye-Sensitized TiO2 Photoelectrochemical Cells[J].J. Phys. Chem. B,2001,105(29):6867-6873.
    [24]Wang P, Shaik M, Zakeeruddin, et al. A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells[J].J. Phys. Chem. B,2003,107(48):13280-13285.
    [25]Kambe S, Nakade S, Kitamura T, et al. Influence of the Electrolytes on Electron Transport in Mesoporous TiO2-Electrolyte Systems[J].J. Phys. Chem. B,2002,106(11):2967-2972.
    [26]Shi C W, Daia S Y, Wang K, et al. Influence of various cations on redox behavior of I-and I3-and comparison between KI complex with 18-crown-6 and 1,2-dimethyl-3-propylimidazolium iodide in dye-sensitized solar cells[J].Electrochimica Acta,2005,50(13):2597-2602.
    [27]Hara K, Horiguchi T, Kinoshita T, et al. Influence of electrolytes on the photovol performance of organic dye-sensitize nanocrystalline TiO2 Solar cells[J].Sol. Energy Mater. Sol. Cells,2001,70(2): 151-161.
    [28]Boschloo G, Haggman L, Hagfeldt A, et al. Quantification of the Effect of 4-tert-Butylpyridine Addition to I-/I3- Redox Electrolytes in Dye-Sensitized Nanostructured TiO2 Solar Cells[J].J. Phys. Chem. B,2006,110:13144-13150.
    [29]Kusama H, Arakawa H. Influence of benzimidazole additives in electrolytic solution on dye-sensitized solar cell performance[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,162:441-448.
    [30]Nogueira A F, Longo C, De Paoli M A, Polymer sindyes ensitized solar cells:overview and perspectives[J].Coordination Chemistry Reviews,2005,248:1455-1468.
    [31]Murai S, Mikoshiba S, Sumino H, et al. Quasi-soliddye-sensitized solar cells containing chemically cross-linked gel how to make gels with a small amount of gelator[J].Journal of Photochemistry and Photobiology A:Chemistry,2002,148:33-39.
    [32]Kubo W, Murakoshi K, Kitamura T, et al. Fabrication of quasi-solid-state dye-sensitized TiO2 solar cells using low molecular weight gelators[J].Chem. Lett,1998,12:1241-1242.
    [33]Kubo W, Murakoshi K, Kitamura T, et al. Quasi-solid-state dye-sensitized TiO2 solar cells:Effective charge transport in mesoporous space filled with gel electrolytes containing iodide and iodide[J].J. Phys. Chem. B,2001,105:12809-12815.
    [34]Kubo W, Kambe S, Nakade S, et al. Photocurrent-determining processes in quasi-solid-state dye-sensitized solar cells using ionic gel electrolytes[J].J. Phys. Chem. B,2003,107:4374-4381.
    [35]Mohmeyer N, Wang Peng, Schmidt H W, et al. Quasi-solid-state dye-sensitized solar cells with 1,3,2,4-di-obenzylidene-D-sorbitol deriva-tive saslow molecular weight organic gelators[J].J. Mater. Chem.,2004,14(12):1905-1909.
    [36]Kubo W, Murakoshi K, Kitamura T, et al. Quasi-Solid-State Dye-Sensitized TiO2 Solar Cells: Effective Charge Transport in Mesoporous Space Filled with Gel Electrolytes Containing Iodide and Iodine[J].J. Phys. Chem. B,2001,105(51):12809-12815.
    [37]Kubo W, Kitamura T, Hanabusa K, et al. Quasi-solid-state dye-sensitized solar cells using room temperature molten salts and a low molecular weight gelator[J].chem. comm.,2002,374-375.
    [38]魏月琳,黄昀昉,吴季怀,等.聚丙烯酸电解质准固态染料敏化TiO2太阳能电池[J].人工晶体学报,2005,34(3):412-416.
    [39]Ileperuma Q A, Dissanayake MAKL, Somasundaram S, Dye-sensitised photoelectrochemical solar cells with polyacrylo-nitrile based solid polymer electrolytes[J].Electrochimica Acta,2002,47:2801-2807.
    [40]Kang J J, Li W Y, Wang X, et al. Polymer electrolytes from PEO and novel quarter nar yammo-nium iodides for dye-sensitized solar cell[J].Electrochimica Acta,2003,48:2487-2491.
    [41]Wang L, Fang S B, Lin Y. Novel ionic Polymer Electrolytes for Dye Sensitized Solar Cell[J].2005, 5(44).
    [42]Saka S, guchi H, Ueki T, et al. Quasi-solid dye sensitized Solar cells solidified with chemically cross-linked gelators Control Of TiO2/gel electrolyte sand counter Pt/gel electrolytes inter-faces[J].Photochem. Photobiol. A:Chemistry,2004,164:117-122.
    [43]Murai S, Mikoshiba S, Sumino H, et al. Quasi-solid dye sen-sitised solar cells filled with phase-separated chemically cross-linked ionic gels[J].Chem. Commun,2003,3(13):1534-1535.
    [44]郭力,戴松元,王孔嘉,等.P(VDF-HFP)基凝胶电解质染料敏化纳米TiO2薄膜太阳电池[J].高等学校化学学报,2005,26(10):1934-1937.
    [45]Wang P, Zakeeruddin S M, IvanExnar. High efficiency dye-sensitized nano cr ystalline solar cells based onionic liquid polymer gel electrolyte[J].Chem. Comm.,2002,2(24):2972-2973.
    [46]Asano T, Kubo T, Nishikitani Y. Electrochemical properties of dye-sensitized solar cells fabricated with PVDF-type polymeric solid electrolytes[J].Photochem. PhotobiolA:Chemistry,2004,164:111-115.
    [47]Wang P, Shaik M, Zakeeruddin, et al. High efficiency dye-sensitized nanocrystalline solar cells based on ionic liquid polymer gel electrolyte[J].Chem. Comm.,2002,2972-2973.
    [48]Wu J H, Hao S C, Lan Z, et al. A Thermoplastic Gel Electrolyte for Stable Quasi-Solid-State Dye-Sensitized Solar Cells[J].Adv. Funct. Mater.,2007,17,2645-2652.
    [49]Ganesana S, Muthuraamana B, Madhavana J, The use of 2,6-bis (N-pyrazolyl) pyridine as an efficient dopant in conjugation with poly(ethylene oxide) for nanocrystalline dye-sensitized solar cells[J]. ectrochimica Acta,2008,27(53):7903-7907.
    [50]Murai S J, Mikoshiba S, Sumino H, et al. Quasi-solid dye-sensitized solar cells containing chemically cross-linked gel:How to make gels with a small amount of gelator[J].Journal of Photochemistry and Photobiology A:Chemistry,2002,148,33-39.
    [51]Wang P, Zakeeruddin S M, Comte P, et al. Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells[J].J. Am. Chem. Soc.,2003,125,1166-1167.
    [52]Usui H, Matsuia H, Tanabe N, et al. Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes[J]. Journal of Photochemistry and Photobiology A:Chemistry,2004,164:97-101.
    [53]O'Regan B, Schwartz D T. Efficient photo-hole injection from adsorbed cyanic dyes into electrodeposited copper(Ⅰ) thiocyanate thin fimes[J].Chem. Mater.,1995,7(7):1349-1354.
    [54]叶红伟,陈红征,汪茫.染料敏化太阳能电池中固体电解质研究进展[J].太阳能能学报,2002,23(5):543-549.
    [55]Tennakone K, Kumara G R, Kumarasinghe A, et al. A dye-sensitized nano-porous solid-state photovoltaic cell[J].Semicond. Sci. Technol.,1995,10:1689.
    [56]Kumaraa G R R A, Konnoa A, Senadeera G K R, et al. Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide Solar Energy Materials and Solar Cells[J].2001,2(69):195-199.
    [57]Brian O'Regan, Daniel T. Schwartz. Large Enhancement in Photocurrent Efficiency Caused by UV Illumination of the Dye-Sensitized Heterojunction TiO2/RuLL'NCS/CuSCN:Initiation and Potential Mechanisms[J].Chem. Mater.,1998,10(6):1501-1509.
    [58]Tennakone K, Senadeera G K R, De Silva, et al. Highly stable dye-sensitized solid-state solar cell with the semiconductor 4CuBr 3S(C4H9)2 as the hole collector[J].Appl. Phys. Lett.,2000,77:2367.
    [59]Kumara G R A, Konno A, Shiratsuchi K, et al. Dye-Sensitized Solid-State Solar Cells:Use of Crystal Growth Inhibitors for Deposition of the Hole Collector[J].Chem. Mater.,2002,14(3):954-955.
    [60]Perera VPS, Tennakone K. Recombination processes in dye-sensitized solid-state solar cells with CuI as the hole collector Solar Energy Materials and Solar Cells[J].2003,79:249-255.
    [61]Sirimanne P M, Jeranko T, Bogdanoff P, et al. On the photo-degradation of dye sensitized solid-state TiO2|dye|CuI cells[J].Semicond. Sci. Technol.2003(18)708-712.
    [62]Kumara G R A, Kaneko S, Okuya M, et al. Fabrication of dye-sensitized solar cells using triethylamine hydrothiocyanate as a cul crystal growth inhibitor[J].Langmuir,2002,18:10493-10495.
    [63]O'Regan B, Lenzmann F, Muis R, et al. A Solid-State Dye-Sensitized Solar Cell Fabricated with Pressure-Treated P25-TiO2 and CuSCN:Analysis of Pore Filling and IV Characteristics[J].Chem. Mater., 2002,14(12):5023-5029.
    [64]Bach U, Lupo D, Comte P, et al. Solid-state dye-sensitized me-soporous TiO2 solar cells with high photon-to-electron conversion efficiencies[J].Nature,1998,395(6702):583-585.
    [65]Kruger J, Plass R, Cevey L, et al. High efficiency solid-state photovolataic device due to inhibition of interface charge recombi-nation[J].Appl. Phys. Let.,2001,79(13):2085-2087.
    [66]Fabregat-Santiago F, Bisquert J, Cevey L, et al. Electron Transport and Recombination in Solid-State Dye solar Cell with Spiro-OMeTAD as Hole Conductor[J].J. Am. Chem. Soc.,2009,131:558-562.
    [67]Stergiopoulos T, Arabatzis I M, Katsaros G, et al. Binary Polyethylene Oxide/Titania Solid-State Redox Electrolyte for Highly Efficient Nanocrystalline TiO2 Photoelectrochemical Cells[J].Nano letters,2002,11(2):1259-1261.
    [68]Wu J H, Hao S C, Lan Z, et al. An All-Solid-State Dye-Sensitized Solar Cell-Based Poly(N-alkyl-4-vinyl-pyridine iodide) Electrolyte with Efficiency of 5.64%[J].J. Am. Chem. Soc.,2008,130:11568-11569.
    [69]Yong Zhao, Jin Zhai, Jinling He, et al. High-Performance All-Solid-State Dye-Sensitized Solar Cells Utilizing Imidazolium-Type Ionic Crystal as Charge Transfer Layer[J].Chem. Mater.,2008,20(19):6022-6028.
    [70]Wang H X, Li H, Xue B F, et al. Solid-State Composite Electrolyte LiI/3-Hydroxypropionitrile/SiO2 for Dye-Sensitized Solar Cells[J].J. Am. Chem. Soc.,2005,127(17):6394-6401.
    [71]Ramasamy E, Lee J. Large-pore sized mesoporous carbon electrocatalyst for efficient dye-sensitized solar cells[J].Chem. Comm.,2010,46:2136-2138.
    [72]Ahmad S, Yum J H, Xianxi Z, et al. Dye-sensitized solar cells based on poly (3,4-ethylenedioxythiophene) counter electrode derived from ionic liquids[J].J. Mater. Chem.,2010, 20:1654-1658.
    [73]Robert M. Christie, Li-Jen Chi, et al. The application of molecular modeling techniques in the prediction of the photochromic behaviour of spiroindolinonaphthoxazines[J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,169:37-45.
    [74]Tan T F, Chen P L, Huang H M, et al. Synthesis, characterization and photochromic studies in film of heterocycle-containing spirooxazines[J].Tetrahedron,2005,61:8192-8198.
    [75]Lokshin V, Samat A, Guglielmetti R. Synthesis of Photochromic Spirooxazines from 1-Amino-2-Naphthols[J].Tetrahedron,1997,28(53):9669-9678.
    [76]malatesta V, Millini R, Montanari L. Key Intermediate Product of Oxidative Degradation of Photochromic Spirooxazines. X-ray Crystal Structure and Electron Spin Resonance Analysis of Its 7,7,8,8-Tetracyanoquinodimethane Ion-Radical Salt[J].J. Am. Chem. SOC.,1995,117:6258-6264.
    [77]Zelichenok A, Buchholtz F, Yitzchaik S, et al. Steric Effects in Photochromic Polysiloxanes with Spirooxazine Side Groups Macromolecules[J].1992,25:3179-3183.
    [78]Tan T F, Chen P L, Huang H M, et al. Synthesis, characterization and photochromic studies in film of heterocycle-containing spirooxazines[J].Tetrahedron,2005,61:8192-8198.
    [79]Yam V W W, Ko C C, Wu L X, et al. Syntheses, Crystal Structure, and Photochromic Properties of Rhenium(I) Complexes Containing the Spironaphthoxazine Moiety[J].Organometallics,2000,19: 1820-1822.
    [80]Nishikiori H, Sasai R, Takagi K, et al. Zinc Chelation and Photofluorochromic Behavior of Spironaphthoxazine Intercalated into Hydrophobically Modified Montmorillonite[J].Langmuir,2006, 22:3376-3380.
    [81]Peter E C, Roger P D, Parry M, et al. Selective Thromboxane Synthetase Inhibitors.2.3-(1H-Imidazol-1-ylmethyl)-2-methyl-lH-indole-l-propanoic Acid and Analogues[J].J. Med. Chem.,1986,29,342-346.
    [82]Shirakawa S, Kobayashi S. Carboxylic Acid Catalyzed Three-Component Aza-Friedel-Crafts Reactions in Water for the Synthesis of 3-Substituted Indoles[J].Organic letters,2006,21(8):4939-4942.
    [83]Corbel J C, Uriac P, Huet J, I-Benzazepine derivatives acting as ATP-dependent potassium-channels antagonists[J].Eur.J Med Chem,1995,30:3-13.
    [84]James T C, Wojtyk, Peter M, et al. Modulation of the Spiropyran Merocyanine Reversion via Metal-Ion Selective Complexation:Trapping of the "Transient" cis-Merocyanine[J].Chem. Mater.2001,13: 2547-2551.
    [85]Maksim V K, Alexey V U, Irina A. S, et al. A Convenient Synthesis of Cyanine Dyes:Reagents for the Labeling of Biomolecules[J].Eur. J. Org. Chem.,2008,2107-2117.
    [86]Lopalco M, Eftychia N K, Cho J K, et al. Catch and release microwave mediated synthesis of cyanine dyes[J].Org. Biomol.Chem.,2009,7:856-859.
    [87]Angela J W, Fleming N, Hart K, et al. Microwave Synthesis of Quaternary Ammonium Salts[J]. Molecules,2008,13:2107-2113.
    [88]Keuma S R, Ku B S, Lee M H, et al. Deuterated dicondensed indolinobenzospiropyran formed from the reaction of Fischer base-d2 and salicylaldehyde:Mechanism involving a carbinol intermediate[J].Dyes and Pigments,2009,80:26-29.
    [89]Michael E. J, Kim W J. Practical syntheses of dyes for di(?)erence gel electrophoresis[J]. Bioorganic&Medicinal Chemistry,2006,14:92-97.
    [90]Katrina M M, Michael G. E, David A W. A Rapid, Simple Spectrophotometric Method for Simultaneous Detection of Nitrate and NitriteBiology and Chemistry[J].2001,1(5):62-71.
    [91]Deligeorgieva T, Minkovskab S, Jejiazkova B, et al. Synthesis of photochromic chelating spironaphthoxazines[J].Dyes and Pigments,2002,53:101-108.
    [92]Giorgini E, Petrucci R, Astolfi P, et al. On the Role of Nitrogen Monoxide (Nitric Oxide) in the Nitration of a Tyrosine Derivative and Model Compounds[J].Eur. J. Org. Chem.,2002,4011-4017.
    [93]Son Y A, Park Y M, Choi M S, et al. Synthesis of hetero-bi-functional dye having photochromism and electrochromism. Part 1:Characteristics and its sensing properties[J].Dyes and Pigments,2007,75:279-282.
    [94]Shikano K, Masumoto K, Ohtsuk Ti, et al. Production and purification of organic reagents labeled with radioisotopes produced by an accelerator[J].Journal of Radioanalytical and Nuclear Chemistry, 1999,1 (241):75-82.
    [95]Roni A.K, Sean M. S, Natia L. F, et al. Tunable Photochromism of Spirooxazines via Metal Coordination[J]. J. Am. Chem. Soc.,2003,125:13684-13685.
    [96]Alexander K,Chibisov, Gorner H, et al. Photoprocesses in Spirooxazines and Their Merocyanines [J].J. Phys. Chem. A,1999,103:5211-5216.
    [97]Rafail F. K, Keturah G, James K H, et al. Photochromism of Spirooxazines in Homogeneous Solution and Phospholipid Liposomes[J].J.Am.Chem.Soc.,1998,49(120):12708-12713.
    [98]Poisson L, Kevin D R, Soep B, et al. Gas-Phase Dynamics of Spiropyran and Spirooxazine Molecules[J]. J. Am. Chem. Soc.,2006,128,3169-3178.
    [99]Berkovic G, Krongauz V, Weiss V. Spiropyrans and Spirooxazines for Memories and Switches [J].Chem.Rev.,2000,100:1741-1753.
    [100]Ratner J, Kahana N, Warshawsky A. Photochromic Polysulfones.2.Photochromic Properties of Polymeric Polysulfone Carrying Pendant Spiropyran and Spirooxazine Groups[J].Ind. Eng. Chem. Res.,1996,35:1307-1315.
    [101]Warshawsky a, Kahana J N, Buchholtz F, et al. Photochromic Polysulfones.1.Synthesis of Polymeric Polysulfone Carrying Pendant Spiropyran and Spirooxazine Groups[J].Ind. Eng. Chem. Res.,1995,34: 2825-2832.
    [102]Atassi Y, Delaire J A, Nakatani K.Coupling between Photochromism and Second-Harmonic Generation in Spiropyran-and Spirooxazine-Doped Polymer Films[J].J. Phys. Chem.,1995,99: 16320-16326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700