用户名: 密码: 验证码:
船用型材冷弯成形及其检测技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国船舶工业的快速发展,型材液压冷弯成形的工艺将会得到更加广泛的应用。型材成形所使用的冷弯设备的好坏决定了型材的成形质量,进而直接影响船体建造的质量和成本。为提高中小型船厂型材成形质量的检测技术,研发相应的数控型材液压冷弯设备,提高中小型船厂的生产技术,将会产生良好的经济效益和社会效益。
     本文首先介绍了国内外造船业的发展状况,针对利用端点测量和非端点测量的两种型材成形检测方法分别作了分析,比较它们的优缺点,提出了一种新的型材成形非端点测量方法——弦角测量控制法。该方法使型材的成形检测基准不依赖于型材的端点,从而免去了液压冷弯成形设备中庞大的检测机构,简化了冷弯设备的结构。同时利用数学计算的方法证明弦角测量控制法能够唯一地确定样条曲线的形状。
     其次,利用铜线模拟型材中轴线在平面工作台上进行压弯实验,对加工过程中的加工参数诸如进料步长和支点距离进行了相应的探讨和分析。得出进料步长的大小需在样条曲线曲率较大时应相应地缩短,在曲率较小时可适当加大,支点距离则需参考进料步长来合理选取,从而避免在压弯过程中因出现多次的正反弯交替而影响曲线的成形形状。在此基础上,对加工过程中如何减小误差在单方向上的积累作了一定的分析,提出在加工中对成形控制角进行补偿,使铜线仅在样条曲线两侧的小范围内摆动,确保能较准确地达到样条曲线的形状。
     再者,在假设选取合理的加工参数的前提下,运用几何证明的方法对每一段铜线的压弯深度和其相对应的成形控制角变化值之间的关系建立简单的等式。并利用计算机绘图软件模拟铜线的成形过程,验证该等式的准确性和合理性,为型材冷弯成形自动检测控制系统提供了一定的参考依据。
     最后,结合YLW系列型材液压冷弯机的机型特点及其相关参数选取合适的检测仪器。并设想将其安装于冷弯机合理的位置,从而实现对加工中的压弯深度的精确检测及控制,以使弦角测量控制法实现于该系列的型材液压冷弯机,提高型材冷弯的生产效率和检测精度。
With the rapid development of Chinese shipbuilding industry, profiles of hydraulic cold forming process will be used more widely than before. Using cold forming equipment of profiles will determine the quality of profile forming, and thus directly affect the quality and cost of hull construction. To improve the quality of profile shape detection technology and the production technology of small and medium shipyards, research corresponding CNC profile hydraulic cold bending equipment will bring good economic and social benefits.
     Firstly, this paper describes the shipbuilding development situation of domestic and foreign, and then analyzes the use of endpoint measurements and non-endpoint measurements of the two profiles forming testing to compare their advantages and disadvantages. We propose a new profile forming non-endpoint measurement called chord-angle measurement control method. This testing method of profile forming does not depend on the detection of profile's endpoint, thereby eliminating the large testing organization of hydraulic cold forming equipment, and simplifying the structure of cold forming equipment. This method can uniquely determine the shape of the spline by using the mathematical calculations.
     Secondly, the bending experiment imitates the neutral curve in the plane work bench by using copper and analyzes such as feed step and fulcrum distance according to the processing parameters. The size of feed step in a larger spline curvature should be reduced accordingly, and in the small curvature may be increased comfortably. The fulcrum needs to refer from the feed step to select reasonable steps avoiding the bending process to affect the curve shape because of a number of alternating positive and negative bending. On this basis, this paper makes some analysis to reduce the accumulation of errors in the sole up and puts forward to compensate the control angle in the forming process. The copper only swings within a small range on both sides of the spline to make sure the shape of the copper more accurately.
     Thirdly, this paper assumes that the processing parameters are selected reasonable, and then establishes a simple equation by using geometric method for each copper bent depth and its corresponding control angle. It verifies accuracy and reasonableness of the equation by using computer graphics simulation of the copper wire forming process, which provides a certain reference for profile cold bending shape control automatic detection system.
     Finally, it selects some appropriate instrumentation according to the series of YLW profiles hydraulic bending machines'characteristics and parameters. It imagines that the instrumentation will be installed in reasonable positions of the machine. The accurate detection and control of the depth of processing will be realized. And the chord-angle measurement control method will be achieved in this series profile hydraulic bending machine. It can improve production efficiency of profiles cold forming and detection accuracy.
引文
[1]水清木化研究中心.2008-2009年中国船舶制造行业研究报告[R].深圳:水清木化研究中心,2010.
    [2]水清木化研究中心.2010年上半年中国船舶制造行业研究报告[R].深圳:水清木化研究中心,2010.
    [3]李忠林,魏莉洁,张子睿.船舶建造工艺学[M].黑龙江:哈尔滨工程大学出版社,2006.
    [4]王呈方.船舶钢料加工原理[M].大连:大连海运学院出版社,1993.
    [5]龙熙陵.“折线法”数控肋骨冷弯机的数学模型研究[J].造船技术,1984,Vol.7(6):p17-p24.
    [6]王呈方.关于应用纯弯曲原理成型加工船体肋骨的研究[J].造船工艺,1975,第1期:p1-p39.
    [7]Duxbury,G.1;McDonald,B.D.;Van Gogh, M.; Alijah, A.;Jungen, C.; Palivan, H. The effects of vibrational resonances on Renner-Teller coupling in tratiomic molecules:the stretch-bender approach[J]. Journal of Chemical Physics, 1988.Vol.108(6):p8-p50.
    [8]南开大学数学系自动控制专业,数控肋骨冷弯机的数学模型[J].应用数学学报,1977,第3期:pl-p11.
    [9]杨启,王呈方.数控肋骨冷弯机自动控制检测方法的改进[J].船舶工程,2000,第4期:p16-p18.
    [10]董华富,刘集善.“逆直线”法加工型材[J].造船技术,1992,第3期:p18-p20.
    [11]柏俊波.船体型材加工逆直线及划线机研究.武汉:武汉理工大学毕业论文[D],2003.
    [12]Li, Pei-yong; Wang, Chengfang;Mao,Yunsheng;Hu, Yong;Zhou, Yongqing. Research and Development of CNC Cool Frame Bender[J]. Journal of ship production,2008, Vol.24 (1):p7-p11.
    [13]Serrette, R;Lam, I;Qi, H;Hernandez, H;Toback, A. Cold-Formed Steel Frame Shear Walls Utilizing Structural Adhesives[J]. Journal of Structural Engineering,2006, Vol. 4(132):P591-p599.
    [14]龙熙陵.试论数控肋骨冷弯机的检测控制方法[J].造船技术,1983,第6期:p38-p39.
    [15]南开大学数学系自动控制专业.数控肋骨冷弯机的数学模型[J].应用数学学报,1977,第3期:.p1-p11.
    [16]杨启,王呈方.数控肋骨冷弯机自动控制检测方法的改进[J].船舶工程,2000,第4期:p50-p54.
    [17]Van Tyne, C.J.1; Hokook Lee; Field, D. Finite element bending analysis of oval tubes using rotary draw bender for hydro forming applications[J]. Journal of Materials Processing Technology,2005, Vol.168 (2):p327-p350.
    [18]王勇毅.船体建造工艺学[M].北京:人民交通出版社,1989.
    [19]石强.计算机视觉检测在逆直线法肋骨冷弯加工中的应用研究[D].武汉:武汉理工大学硕士学位论文,2004.
    [20]凌玲,何鑑鑫,李湘伟,吴百海,曾源圣.用弦角测量控制法确定型材成形的模拟实验与分析[J].机床与液压.2011,第39卷299期:p63-p65.
    [21]王呈方.用逐步逼近弯曲求解型材弯曲弹复曲率的方法[J].中国造船,1984,15(2):p81-p85.
    [22]戴毓芳.型材冷弯成形进料长度[J].武汉水运工程学院学报,1994,18(1)期:plll-p115.
    [23]郭应征.材料力学[M].北京:中国电力出版社,2010.
    [24]谢步瀛.画法几何[M].上海:同济大学出版社,2010.
    [25]吴卓,王林军,秦小琼.画法几何及机械制图[M].北京:北京理工大学出版社,2010.
    [26]李培勇,周永清等.数控肋骨冷弯机成型控制参数实时计算与控制研究[J].武汉理工大学学报(交通科学与工程版),2009,33(2):p271-p274.
    [27]王呈方,周永清等.“肋骨冷弯加工机器人”的研制[J].中国造船,2008,49(4):p123-p128.
    [28]吴建平.传感器原理及应用[M].北京:机械工业出版社,2008.
    [29]童敏明,戴新联.现代传感器技术[M].徐州:中国矿业大学出版社,2006.
    [30]Liang wei, Que Pei-wen. Optimal scale wavelet transform for the identification of weak ultrasonic signals[J]. Measurement.2009,42(1):p21-p29.
    [31]Hanxin Chen; Ming J. Zou; Xxiaodong Wangl Mohammad R. Hoseini. An adaptive Morlet wavelet filter for time-of-flight estimation in ultrasonic damage assessment[J]. Measurement.2010,43(4):p62-p67.
    [32]Sho Hasegawa; Yoshiki Nagatani; Katsunori Mizuno; Mami Matsukawa. Wavelet Transform Analysis of Ultrasonic Wave Propagation in Cancellous Bone[J]. Japanese journal of applied physics.2010,49(7 pt.2):p15-p23.
    [33]严金坤.带磁致伸缩传感器液压缸[J].液压气动与密封,2003,第3期(总第99期):p19-p21.
    [34]赵坚.磁致伸缩位移传感器的最新发展及应用[J].测控技术,1998,17(2)期:p20-p21.
    [35]施湧潮,梁福平,牛春晖.传感器检测技术[M].北京:国防工业出版社,2007.
    [36]Dwayne W H. Improved affordability of high precision submarine technology [J]. IEEE,2000,15(3):p404-p410.
    [37]Kajioka K. Application of fiber optic gyros at JAE [J]. SPIE,1996,2837:p61-p71.
    [38]Sanders G A. Fiber optic gyros application [J]. SPIE.1996,2873:p61-p71.
    [39]Patterson R A. IFOG technology for embedded GPS/INS applications [J].SPIE.1996, 2837:p113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700