用户名: 密码: 验证码:
广义生灭过程与随机分枝树演化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十五年来,复杂网络的研究发展迅猛,但复杂网络演化的动态性及复杂性使其理论研究非常困难,有效的理论方法并不多。随机图过程作为研究复杂网络演化的主要理论工具之一,受到了众多学者的青睐。迄今,随机图过程构建的主要思路是基于离散时间马氏演化的,即在已知随机图过程当前状态的条件下,每隔一单位时间加(删)边、加(删)点来实现图过程的构建。本文突破随机图过程构建的传统思路,基于生物无性繁衍机理,用节点的出生率函数和死亡率函数刻划随机图过程的图拓扑演化特征,建立了基于生灭过程的随机分枝树演化。本文用连续时间实值随机过程刻划随机图过程的某类图拓扑演化特征来构建图过程,开创了随机图过程研究的新思路,为随机图研究领域提供了连续时间马氏或非马氏随机图过程范例,丰富了随机图过程的研究内容,提供了更为客观的生物繁衍或网络传染模型(传统的生物繁衍模型或传染模型——分枝过程和生灭过程,主要研究种群规模和种群最终灭绝概率等问题,而忽视了生物网络内部结构和个体之间关系的研究)。本文用马氏过程、图论和微分方程等理论工具,主要给出了随机分枝树的存在性定理、图拓扑结构、节点年龄结构及辈分结构等解析分析。详细内容按照章节介绍如下:
     第一章概述了本文研究背景,简述了本文主要研究内容及组织安排、主要创新和研究意义。
     第二章研究了广义生灭过程,讨论了后代数的生成函数有关的微分方程并得到方程的解,给出了后代数的分布。
     第三章研究了马氏生灭分枝树演化(基于线性生灭过程的随机分枝树演化)。(一)给出了马氏生灭分枝树的构建即存在性定理的证明;(二)给出了分枝树在不同时刻的图拓扑结构特征量解析分析:度(虚出度、拟出度、出度及入度),实节点数和虚节点数,孤立节点数,度(出度、虚出度等)为不同值的实节点数,实连通分支的个数,以各代子节点为根节点的连通分支的个数,单个连通分支的节点数;(三)用初等而简洁的方法重新得到了线性生灭过程的灭绝概率;(四)给出了分枝树在不同时刻的年龄结构和辈分结构特征量解析分析:处在不同年龄段的实节点数,适龄生的节点数(包括活着的和死亡的节点)和实节点数,超龄生的节点数和实节点数,在不同年龄段死亡的节点数,各代的子节点数,各代节点在不同年龄段的子节点数,各代节点出度(或虚出度)取不同值的节点数;(五)讨论了节点生产年龄的分布:首生年龄和末生年龄的分布,生产年龄顺序统计量的分布;(六)讨论了马氏生灭分枝树演化的拓广,其中重点给出了出生率与年龄段有关的随机分枝树演化的构建即存在性定理的证明。
     第四章将马氏生灭分枝树拓广到一胎多子的随机分枝树演化(在一胎多子的随机分枝树演化中,假定节点每次分娩的产子数是一随机变量),给出了一胎多子的随机分枝树存在性定理的证明,研究了不同时刻分枝树中活着的节点数及死亡的节点数、连通分支的个数、任一节点在活着的条件下在不同年龄时的子节点数及临死前的子节点数。
     第五章给出本文研究展望。在马氏生灭分枝树演化中,子节点的到达计数过程是时齐泊松过程,另外还可考虑子节点的到达计数过程是一般泊松过程或更新过程或其他点过程(比如具有平均发生率或发生强度的点过程)等情形。
In the last15years, the study of complex networks is developing very fast. Due toits dynamics and complexity, it is hard to do the theoretic research and we have not manyefective theory methods. As the major theory method of studying network evolution,the random graph process draws the favour of many scholars. So far, the main methodof constructing random graph process is based on the the discrete time and Markov evo-lution. Given the the current state of graph process, during a unit time one link (orone node) is added (or deleted) to realize the graph process constructing. This arti-cle, breaking through the traditional way of constructing random graph process, basedon the biological mechanism of asexual reproduction, constructs the random branchingtree evolution based on birth death process, using node birth-rate function and death-ratefunction to figure the topology evolution characteristics of random graph. This paper,viareal values stochastic process with continuous time characterize certain graph topolo-gy evolution characteristics to build graph process, pioneers new ideas about the studyof random graphs, and provides continuous time Markov random graph or non-Markovrandom graph process paradigm, and enriches the research contents of the random graphprocess, provides a more objective biological reproduction or epidemic model(The tra-ditional biological reproduction or epidemic model(branching process and birth-deathprocess) mainly study the problem such as population size and extinction probability,but ignored the internal structure of biological networks and relationships between indi-viduals). This paper using theory tools such as Markov process, graph theory and thetheory of diferential equations, study the existence theorem of random branching tree,make analytical analysis for such as graph topology structure, age structure and the re-productive structure etc.. Detailed content as follows:
     Chapter one briefly described the research background,and Outlines the main re-search contents, the organization arrangement, main innovation and research signifi-cance.
     Chapter two study general birth-death process. The generating function of thenumber of ofspring is mainly studied and the distribution of the number of ofspring isgot.
     Chapter3research the evolution of Markov birth-death branching tree (randombranching tree evolution based on the birth-death process).(1) the evolution of Markovbirth-death branching tree is constructed, namely the existence theorem of graph processis show;(2) make analytical analysis for some characteristic variables of graph topologystructure such as: degree(out-degree, in-degree etc.), the number of real nodes or imagi-nary nodes or Isolated nodes,the number of real nodes with diferent degree(out-degree,imaginary out-degree etc.), the number of real connected components, the number ofreal connected components which.s root node is any generation node,the number of n-odes in one connected component;(3) get the extinction probability of linear birth-death process using the elementary and concise method;(4) make analytical analysis for somecharacteristic variables of age structure and reproductive structure such as: the numberof real nodes at diferent age, the number of nodes born at appropriate age, the numberof real nodes born at appropriate age, the number of nodes born at over-age, the numberof real nodes born at over-age, the number of nodes dead at diferent age, the numberof nodes in any generation, the number of nodes at diferent age in any generation, thenumber of nodes with diferent degree in any generation;(5) study the distribution of pro-ductive age such as:first-born age and last-born age, productive age order statistic;(6)discuss the possible extension of the Markov birth death branching tree and show theexistence of the random branching tree evolution with age-dependent birth rate.
     In chapter four, the Markov birth-death branching trees evolution is extended tothe branching trees model with nodes being multiparous(In the branching trees modelwith nodes being multiparous, it is assumed that the number of son-nodes born at eachdelivery is a random variable). The existence of the model is shown, and it is studiedthat the number of alive nodes, the number of dead nodes, the number of connectedcomponents, the number of son-nodes of any node at any age or at dying moment.
     In chapter five, this paper research prospect is presented. In the Markov birth-deathbranching trees model, the arrival process of the child-nodes is homogeneous Poissonprocess. So It can be extended as that the arrival process of the child-nodes is a renewalprocess or other point process.
引文
[1] Ahuja G., Collaboration networks, structural holes, and innovation: a longitudinal study, Ad-min. Sci. Quart.45(3),2000:425-455.
    [2] Albert, R., Baraba′si, A. L., Statistical mechanics of complex networks, Rev. Mod. Phys74.2002:47-97.
    [3] Albert R, BarabSsi A.L.,Topology of Evolving Networks:Local Events and Uiversality, PhysRev Lett,2000,85:5234-5237.
    [4] Albert, R., Jeong, H., and Baraba′si, A. L., Attack and error tolerance of complex networks,Nature406,2000:378-82.
    [5] Athreya K B, Ney P E, Branching Processes, Berlin: Springer-Verlag,1972.
    [6] Athreya K B, Karlin S, On branching processes with random environments:(I),(II). Ann MathStatist,42:14991520;18431858,1971.
    [7] Bala, V., Goyal, S., A non-cooperative model of network formation, Econometrica68,2000:1181-229.
    [8] Baraba′si, A. L., Linked: The New Science of Networks[M], Cambridge, MA,2002.
    [9] Baraba′si, A. L., Albert R., Emergence of scaling in random networks, Science286,1999:509-512.
    [10] Baraba′si, A. L., Albert, R., Jeong, H., Mean-field theory for scale-free random networks,Physica A272,1999:173-87.
    [11] Baraba′si, A. L., Albert, R., Jeong, H., Scale-free characteristics of random networks: Thetopology of the World Wide Web, Physica A281,2000:69-77.
    [12] Baraba′si, A. L., Albert, R., Jeong, H., and Bianconi, G., Power-law distribution of the WorldWide Web, Science287,2000.
    [13] BarabSsi A L,Ravasz E,Vicsek T, Deterministic Scale-free Networks.Physica A,299,2001:559-564.
    [14] Baraba′si, A. L., Bonabeau., E., Scale-Free Networks. Scientific American288,2003:60-9.
    [15] Bellman R, Harris T, On age-dependent binary branching processes, Ann Math,55:280-295(1952)
    [16] Bloch, F., Jackson, M. O., Definitions of Equilibrium in Network Formation Games, Interna-tional Journal of Game Theory34(3),2006:305-18.
    [17] Bloch, F., Jackson, M. O., The Formation of Networks with Transfers among Players, Journalof Economic Theory133,2007:83-110.
    [18] Bolloba′s, B., Modern Graph Theory[M], Springer, New York,1998.
    [19] Bolloba′s, B., Random Graphs (2nd)[M], Academic Press, New York,2001.
    [20] Bolloba′s, B., The evolution of random graphs. Trans. Amer. Math. Soc.286,1984:25774.
    [21] Bollobasi B. Random Graphs[M]. New York:Academic Press,2001.
    [22] Burt, R.S., Structural Holes[M], Academic Press, New York,1992.
    [23] Burt, R.S., Structural Holes and Good Ideas, A. J. of Sociology110,2004:349-99.
    [24] Capobianco M, Frank C.Graph evolution by stochastic additions of points and times,DiscreteMaths,1983,46,133-143
    [25] Da L, Costa F, Rodrigues F A, Travieso G. and P.R. Villas Boas, Advances in Physic-s,56(1),2007(167)
    [26] Dorogovtsev, S.N., Mendes, J. F. F., Evolution of Networks: From Biological Nets to theInternet and WWW[M], Oxford University Press, Oxford,2003.
    [27] Erdo¨ s, R e′nyi, On random graphs I, Publ. Math. Debrecen6,1959:290-97.
    [28] Erd o¨ s, R e′nyi, Publ. Math. Inst. Hung. Acad. Sci.5(1960)17.
    [29] Fan Z P,Chen G R,Evolving Networks:from Topology to Dynamics,Journal of Control Theoryand Application,2004,2:60-64.
    [30] Feller W, Die Grundlagen der Volterraschen Theorie Des Kampfes Ums Dasein in Wahrschein-lichkeitstheoretischer Behandlung, Acta Biotheoretica,1939,5(1):11-40.
    [31] Francesc Comellas,Michael Sampels, Deterministic Small-world Networks,Physica A,2002,309:231-235.
    [32] Fu yunbin,Yan Yunzhi, Tang yan,Lu Guilin, Hu Xi,Wang Hanxing,a kind of model for birth-death processess, Acta Mathematicae Applicatae Sinica(English Series)§2013§(1^).
    [33] Fu yunbin,Yan Yunzhi,Lu Guilin,Wang Hanxing,Network Game And Network Formation WithSynergy Efect,2012International Conference on Business Computing and Global Informati-zation2012:871-4.
    [34] Galeotti, A., Goyal, S., Jackson, M. O., Vega-Redondo, F., and Yariv, L., Network Games, TheReview of Economic Studies77(1),2010:218-44.
    [35] Georg Simmel, How is society possible?, American Journal of Sociology16,1910:372-391.
    [36] Goyal, S., Connections: an introduction to the economics of networks[M], Princeton Univer-sity Press,2007.
    [37] Goyal, S., Vega-Redondo, F., Structural holes in social networks, J. Econ. Theory137,2007:460-492.
    [38] Granovetter, Mark, The strength of weak ties. American Journal of Sociology,78,1973:1360-80.
    [39] Harris T E, The Theory of Branching Processes[M], Berlin: Springer-Verlag,1963.
    [40] Jackson, M. O., Social and Economic Networks[M], Princeton University Press,2008.
    [41] Jackson, M. O., An Overview of Social Networks and Economic Applications, in The Hand-book of Social Economics, ed: Benhabib, J., Bisin, A., and Jackson, M. O., North HollandPress,2010.
    [42] Jackson, M. O., Watts, A., The evolution of social and economic networks, J. Econ. Theory106(2),2002:265-95.
    [43] Jackson, M. O., Wolinsky, A., A Strategic Model of Social and Economic Networks, Journalof Economic Theory71,1996:44-74.
    [44] Kallenberg O.Foundations of Modern Probability[M], Springer,1997,120-121
    [45] Kendall D G, On the Generalized”Birth-and-Death” Process. Annals of Mathematical Statis-tics,1948,19(1):1-15.
    [46] Klebaner,F. C..Geometric Rate of Growth in Population-Size-Dependent Branching Process-es,J. Appl. Prob.,21,1984:40-49.
    [47] Le Gall J F, Random trees and applications, Probab. Surveys,2,2005:245-311.
    [48] Liu Jie,Su Chun,Chen Yu,Limiting theorems for the nodes in binary search trees,Science inChina Series A:Mathematics,2008,51(1):101-114.
    [49] Lyons R, Peres Y, Probability on Trees and Networks[M], Cambridge University Press,2008.
    [50] Ma Shixia, Wang Yongjin, On the Limit Behavior of the Population-Size-Dependent BisexualBranching Processes, Chinese Journal of Applied Probability and Statistics,2007,23(4):352-360.
    [51] Molina M,Mota M,Ramos A,Bisexual Galton-Watson branching process with population-size-dependent mating,J. Appl. Prob.,2002,39,479-490.
    [52] Neveu J§Arbres et processus de Galton-Watson, Ann. inst. H.PoincarWProbab.Statist,1986,22(2),199-207
    [53] Newman M.E.J., Watts D.J.. Renormalization Group Analysis of the Small-world NetworkModel, Physics Letters A,1999,263:341-346.
    [54] Newman, M. E. J., Scientific collaboration networks: I. Network construction and fundamentalresults, Phys. Rev. E64,016131,2001:1-8.
    [55] Newman, M. E. J., The structure and function of complex networks, SIAM Review45,2003:167-256.
    [56] Newman, M. E. J., Power laws, Pareto distributions and Zipf’s law, Contemporary Physics46,2005:323-51.
    [57] Newman, M. E. J., The physics of networks, Physics Today,2008:33-8.
    [58] Newman, M. E. J., Watts, D., and BarabSsi, A.-L., The Structure and Dynamics of Networks,Princeton University Press,2006.
    [59] Nowak M A, Sigmund K, Evolutionary dynamics of biological games, Science303,2004:793799.(doi:10.1126/science.1093411)
    [60] Nowak M A, Sigmund K,Evolution of indirect reciprocity, Nature427,2005:12911298.(doi:10.1038/nature04131)
    [61] Nowak M A, Evolutionary dynamics. Cambridge, MA: Harvard University Press,2006.
    [62] Nowak M A, Five rules for the evolution of cooperation,Science314,2006:15601563.(doi:10.1126/science.1133755)
    [63] Ohtsuki H, Nowak M A,Evolutionary games on cycles, Proc. R. Soc. B273,2006:22492256.(doi:10.1098/rspb.2006.3576)
    [64] Ohtsuki H, Nowak M A, The replicator equation on graphs, J. Theor. Biol.243,2006:8697.(doi:10.1016/j.jtbi.2006.06.004)
    [65] Ohtsuki H, Nowak M A, Evolutionary stability on graphs, J. Theor. Biol.251,2008698707.(doi:10.1016/j.jtbi.2008.01.005)
    [66] Ohtsuki H, Hauert C, Lieberman E, Nowak M A, A simple rule for the evolution of cooperationon graphs and social networks, Nature441,2006:502505.(doi:10.1038/nature04605)
    [67] Ohtsuki H, Pacheco J, Nowak M A, Evolutionary graph theory: breaking the sym-metry between interaction and replacement, J. Theor. Biol.246,2007:681694.(doi:10.1016/j.jtbi.2007.01.024)
    [68] Ronald Heiner,uncertainty,behavior and economy theory, American economic review§1985.
    [69] Rub′-Barcelo′A, Structural holes and densely connected communities, DEA Working Papers,2008.
    [70] Sebastian Schnettler, A structured overview of50years of small-world research, social net-works31,2009:165-78.
    [71] Smith W L, Wilkinson W E, On branching processes in random environments, Ann MathStatist,40,1969:814-827.
    [72] Thomas Arthur Ryan,On age-dependent branching processes[M].Cornell University,1968.
    [73] Vega-Redondo F, Complex Social Networks, Econometric Society Monographs[M], Cam-bridge Univ. Press, Cambridge,2007.
    [74] Wang Hanxing, Dai Yonglong, Population-size-dependent branching processes in Markovianrandom environments, Chinese Science Bulletin,43(8),1998:635-638.
    [75] Wang Hanxing, Extinction of P-S-D branching processes in random environments, J. Appl.Prob.36(1),1999:146-154.
    [76] Wang Hanxing, Fang Dafang, Asymptotic behaviour for P-S-D branching processes in Marko-vian random environments, J.Appl.Prob.36(2),1999:611-619.
    [77] Wang Hanxing, Zhao Fei, Lu Jinyu,A note on asymptotic behavior of Galton Watsonbranching processes in random environments, J. Shanghai University(EnglishEdition),10(2),2006:95-99.
    [78]Wang X F.Complex Networks:Topology,Dynamics and Synchronization,Int J of Bifurcation and Chaos,5(12)2002:885-916.
    [79]Watts, A., A Dynamic Model of Network Formation, Games and Economic Behavior34(2),2001:331-41.
    [80]Watts, D. J., Networks, dynamics, and the small world phenomenon, Am. J. Sociol.105,1999:493-592.
    [81]Watts, D. J., Strogatz, S. H., Collective dynamics of small-world networks, Nature393,1998:440-42.
    [82]Xiang Xing KONG, Zhen Ting HOU, Ding Hua SHI, Quan Rong CHEN, Qing Gui ZHAO: Markov Chain-based Degree Distributions of Evolving Networks, Acta Mathematica Sinica, English Series, Oct.,2012, Vol.28, No.10, pp.1981-1994.
    [83]Xing Y S,Wang T J,On the Extinction of one Class of Population-Size-Dependent Bisexual Branching Processes J. Appl. Prob.,2005,42:174-185.
    [84]爱德华.O.威尔逊著,毛盛贤等译,社会生物学——新的综合[M],北京:北京理工大学出版社,2008.
    [85]白小瑜,从社会网络的”洞”中获利-伯特的”结构洞”理论评析,重庆邮电大学学报(社会科学版)2009,21(4):98-102.
    [86]邦迪,J.A.,默蒂,U.S.R.,图论及其应用[M](中译本),科学出版社,1984.
    [87]巴拉巴西,A.L.(著),徐彬(译),链接:网络新科学[M],湖南科技出版社,长沙,2007.
    [88]伯特,R.(著),任敏,李璐,林虹(译),结构洞:竞争的社会结构[M],格致出版社,上海人民出版社,上海,2008.
    [89]蔡青松,牛建伟,基于边独立演化的机会网络时间演化图模型,计算机工程,2011,37(15).
    [90]陈关荣,复杂网络及其新近研究进展介绍,力学进展[J],2008,38(25):653-660.
    [91]窦影,结构洞:东北农村民间借贷行为研究,社科纵横,2009,24(7):40-42.
    [92]迪克西特,斯克,(著),蒲勇健等(译),策略博弈(第二版)[M],中国人民大学出版社,北京,2009.
    [93]方锦清等,一门崭新的交叉科学:网络科学,物理学进展,2007,27(3).
    [94]方大凡,王汉兴,独立平稳随机环境中的P-S-D分枝过程,应用概率统计,1999,15(4):345-350.
    [95]傅云斌,唐堰,生灭分枝树的连通分支的平均规模,上海大学学报(自然科学),2013,19(2):160-165.
    [96]格兰诺维特,M.(著),张文宏等(译),找工作:关系人与职业生涯的研究[M],格致出版社,上海人民出版社,上海,2008.
    [97]郭雷,许晓鸣,复杂网络[M],上海:上海科学教育出版社,2006.
    [98]郝柏林,科学,1999,3.
    [99]何大韧,刘宗华,汪秉宏编著,复杂系统与复杂网络,北京:高等教育出版社,2009。
    [100]胡杨利,吴庆平,李应求,随机环境中依赖年龄的分枝过程的爆炸问题,数学学报2010,53(5):1027-1034.
    [101]胡迪鹤,随机环境中的马尔可夫过程[M],北京:高等教育出版社,2011.
    [102]劳斯著,何声武等译,随机过程[M],北京:中国统计出版社,1997.
    [103]Linton C.Freeman著,张文宏等译,社会网络分析发展史[M],北京:人民大学出版社,2008.
    [104]林聚任,社会网络分析:理论、方法与应用[M],北京师范大学出版社,2009.
    [1051刘军,社会网络分析导论[M],社会科学文献出版社,2006.
    [106]刘贵兰.随机环境中分枝过程的若干问题的研究[D].长沙:长沙理工大学,2010
    [107]罗家德,社会网络分析讲义[M],北京:社会科学文献出版社,2010.
    [108]李应求,胡杨利,张影,随机环境中两性分枝过程的马氏性与灭绝,应用数学学报,2010(3):490-499.
    [109]李应求,李旭,刘全升,随机环境中随机游动上的随机分枝系统,中国科学A辑:数学37(3)2007:341-347.
    [110]李应求,刘全升,随机环境中依赖年龄的分枝过程,中国科学A辑:数学38(7),2008:799-818.
    [111]卢准炜,随机环境中的分枝过程,应用概率统计;1998,3.
    [112]唐堰,基于分枝树模型的传销网络分析(硕士学位论文),云南财经大学,2012.
    [113]王汉兴,随机环境中多物种分枝紧邻游动,科学通报,40(7),1995:586-589.
    [114]王汉兴,傅云斌,颜云志等,出生率与年龄段有关的生灭分枝树,中国科学(数学),(2013:43(4):383-398).
    [115]王汉兴.平稳随机环境中的P-S-D分枝模型[J].自然杂志,1997.
    [116]王汉兴,方大凡,有限状态马氏环境中的随机环境中的P-S-D分枝过程,自然杂志,1998,20(5):300-301.
    [117]汪丹,结构洞算法的比较与测评,现代情报9,2008:153-6.
    [118]汪丹,结构洞理论在情报分析中的应用与展望,情报杂志1,2009:183-6.
    [119]汪丁丁,行为经济学讲义:演化论视角[M],世纪出版社,上海人民出版社,2011.
    [120]Watts D J著,陈禹译,小小世界:有序与无序之间的网络动力学,北京:中国人民大学出版社,2006.
    [121]汪小帆,李翔,陈关荣,复杂网络:理论与应用[M].北京:北京清华大学出版社,2006.
    [122]怀特,(著),张文宏等(译),机会链:组织中流动的系统模型[M],格致出版社,上海人民出版社,上海,2009.
    [123]雍炯敏,刘道百,数学金融学,上海人民出版社,2003.
    [124]于娜,独立马氏链边随机图过程和随机分枝树研究(博士学位论文),上海大学,2012.
    [125]约翰·斯科特(著),刘军(译),社会网络分析方法[M],重庆大学出版社,重庆,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700