用户名: 密码: 验证码:
兆瓦级风电齿轮箱结构轻量化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风能作为一种清洁的可再生能源,已引起了人们的高度重视,由此促成了风力发电产业的迅猛发展。风电齿轮箱结构复杂、传动比大,在高空塔架上作业且采用侧面支承,因此导致箱体刚性较差,故障率较高。风电齿轮箱的关键技术一直是制约风电产业快速发展的重要因素,由于风电机组单机容量的不断增大,在设计制造过程中需要考虑越来越多的因素。本文以兆瓦级风电齿轮箱为研究对象,在保证风电齿轮箱结构性能的前提下,综合应用各种结构优化方法对其进行轻量化研究,主要内容如下:
     (1)风电齿轮箱静力学和动力学分析。根据风电齿轮箱组件的结构特点,在三维绘图软件SolidWorks中建立各组件的简化模型并进行总体装配,确定合理的有限元分析载荷状况和边界条件,导入CAE软件HyperWorks和Workbench中完成模型的几何清理和结构静力学分析及箱体整机模态分析,得到极限载荷工况下风电齿轮箱箱体和输入级行星架的位移场和应力场以及箱体的各阶固有频率和振型图。
     (2)风电齿轮箱结构轻量化设计。对齿轮箱箱体进行了尺寸优化、形状优化和形貌优化;对输入级行星架进行了拓扑优化和尺寸优化。根据齿轮箱的设计要求,分别确定各种设计变量进行不同的优化设计。另外,出于优化设计的考虑,本文的结构优化设计都在三倍极限载荷下进行。
     (3)基于支持向量机的结构优化。介绍了支持向量机的相关理论知识和算法领域新出现的果蝇优化算法,在此基础上编制MATLAB程序对齿轮箱箱体和输入级行星架尺寸优化中产生的样本数据进行建模和优化。优化结果表明,支持向量机有很强的泛化能力;果蝇优化算法寻优速度快,且能够很快找到全局最优解。
     (4)优化前后模型的对比分析。基于齿轮箱的优化结果,对齿轮箱箱体和输入级行星架重新进行了分析,之后分别对齿轮箱箱体整机模型进行了静力分析和模态分析,并与原箱体结构进行了对比分析。除此之外,对优化后的齿轮箱后箱体和输入级行星架进行了平行度计算,并与初始模型平行度进行了对比分析。
     综上所述,优化后的齿轮箱箱体和输入级行星架保证了原结构的性能,质量有较大幅度下降,共减重666.7kg(3.67%),达到了轻量化的效果。
As a kind of clean and renewable energy, wind power has attracted great attention of people, which leads to the rapid development of wind power generation industry. The structure of the wind power gearbox which works in the high-altitude tower is complex. Because of the use of side support and its large transmission ratio, the gearbox has poor rigidity and a high failure rate. The key technology of wind turbine gearbox has been an important factor in the rapid development of wind power industry. Especially, with the rapid increase of the wind turbine unit capacity, more and more factors need to be taken into consideration for the design and manufacture of large-scale wind turbine gearbox. In this paper, megawatt-level wind turbine gearbox is considered as the research object.Various structural optimization methods are applied to study the wind turbine gearbox when its original performance is guaranteed. The main contents are as follows:
     (1) Static and dynamic analysis of wind turbine gearbox. Simplified models of the wind turbine gearbox components are established and then assembled in the3D graphics software SolidWorks according to the structural characteristics. In addition, the reasonable boundary conditions and loads for finite element analysis are determined. Then the simplified models are imported into CAE software HyperWorks and Workbench to finish the work of geometry cleanup, static analysis and modal analysis. Finally, analysis results including displacement field, stress field, natural frequencies and vibration modes of the gearbox and input stage planet carrier under limit load condition are obtained.
     (2) Structural lightweight of wind turbine gearbox. Not only size optimization, shape optimization and topography optimization are applied to the wind turbine gearbox, but also topology optimization and size optimization are applied to the input stage planet carrier. According to the analysis results and design goal, different kinds of variables are determined to finish different optimization designs. In addition, for the consideration of optimization design, all structural optimizations are carried out under the limit load condition.
     (3) Structural optimization based on support vector machine. Relevant theory knowledge about support vector machine and fruit fly optimization algorithm which is newborn in the field of optimization algorithm is introduced. Then, programme in MATLAB to model and optimize using the sample datas generated in size optimization of the gearbox and planet carrier. As the results show, support vector machine has a strong generalization ability; fruit fly optimization algorithm has a quick optimization speed and can quickly find the global optimal solution.
     (4) Analysis and comparison between the original model and the optimized model. According to the structural optimization results, wind turbine gearbox and input stage planet carrier are remodeled and reanalyzed. Then static analysis and modal analysis which are compared with the original ones are carried out for wind turbine gearbox. In addition, calculation of parallelism values is applied to wind turbine gearbox and input stage planet carrier, and compare them with the original ones.
     In summary, the optimized wind turbine gearbox and input stage planet carrier ensure the performance of the original structure. What's more, the total quality decreases substantially by3.67%, which is about666.7kg, achieving the goal of lightweight.
引文
[1]曾琴琴.FRP风力机叶片设计与有限元分析[D].武汉:武汉理工大学,2008.
    [2]赵琴.多兆瓦级风力发电机行星齿轮箱的研究和行星齿轮的有限元分析[D].乌鲁木齐:新疆农业大学,2009.
    [3]闫凌宇.国内风电产业概况和存在问题的初步分析[J].电器工业,2008,(08):12-14.
    [4]ANSI/AGMA/AWEA 6006-A03, Standard for Design and Specification of Gearbox for Wind Turbine [S].2003,10.
    [5]张立勇,王长路,刘法根.风力发电及风电齿轮箱概述[J].机械传动,2008,:32(6):1-4.
    [6]李俊峰,高虎.中国风电发展报告[M].北京:中国环境科学出版社,2007.
    [7]许佳音,崔国敏,王刚.YB1502型变速器箱体的轻量化探索[J].工程机械,2011,42(10):32-35.
    [8]杨成云,林腾蛟,李润方.中心传动齿轮箱体有限元分析及结构优化设计[J].重型机械,2001,2:42-46.
    [9]曹凤利,李国璋,傅建平.基于有限元的履带车辆变速箱体强度分析[J].机械工程师,2006,(7):108-110.
    [10]褚永康,文杜林,崔中,等.基于遗传算法的汽车变速箱轻量化设计[J].合肥工业大学学报,2011,34(10):1461-1465.
    [11]赵丽娟,刘宏梅,陈令国.ANSYS在矿用减速器箱体应力分析中的应用[J].矿业研究与开发,2007(2):52-54.
    [12]孙黎,王碧石,王春秀.大型风力发电机齿轮箱的有限元分析[J].华东电力,2008,36(7):74-75.
    [13]李树吉,陈雷,杨树人.风力机齿轮箱的优化设计[J].中国新能源期刊,2000,12.
    [14]王晶晶,吴晓铃.风电齿轮箱的发展及技术分析[J].机械传动,2008,32(06):58.
    [15]董进朝.大型风电齿轮箱关键设计技术研究[D].郑州:郑州机械研究所,2007.
    [16]徐杰,曹建国,雷刚.某重型汽车变速箱箱体轻量化设计[J].现代机械,2011,(1):49-51.
    [17]李杰,王乐勤.1.5MW风力发电齿轮箱箱体的有限元分析[J].太阳能学报,2008,29(11):1438-1442.
    [18]张小蝉.风电齿轮箱箱体热结构特性分析研究[D].大连:大连理工大学,2009.
    [19]M. P.Bendsoe. Optimization of Structural Topology, Shape, and Material [J]. Berlin Heidelberg:Springer-Verlag,1995.
    [20]黄彬.基于双方向渐进优化方法的结构拓扑优化设计[D].南京:南京航空航天大学,1998.
    [21]冯培恩,邱清盈,潘双夏,等.机械广义优化设计的理论框架[J].中国机械工程,2000,11(1-2).
    [22]钱令希,钟万勰,程耿东,等.工程结构优化设计的一个途径[J].计算结构力学及其应用,1984,2.
    [23]Michell A G M. The limits of economy of material in frame structures [N]. Philosophical Magazine,1904,8(6):589-597.
    [24]Dorm. W, R. Gomer, B. Greenberg. Automatic Design of Optimal structures Mechanigue [J].1964, (2):20-21.
    [25]Lions L J. Some methods in the mathematical analysis of system and their control [J]. Beijing:Science Press,1981:15-16.
    [26]Rossow. M. P, J. E. Talylor. A Finite Element Method for the Optimal Design of Variable Thickness Sheets [J]. Mechanigue, AIAAJ,1973.
    [27]程耿东.结构优化新方法机器计算机实现[J].实践,1992,14(1):1-6.
    [28]Bendsee M. P, Kikuchi N, Generating optimal topology in structural design using a homogenization method [J]. comp. methods in apply.mech. and engrg.1988,71:197-224.
    [29]程耿东,张东旭.受应力约束的平面弹性体的拓扑优化[J].大连理工大学学报,1995,35(1):2-3.
    [30]Yang, R.J, Chuang, C.H. Optimal topology design using linear programming [J]. Computers and Structures,1994.
    [31]Xie Y. M., Steven G. P. A simple evolutionary procedure for structural optimization [J].Comp, and struct.1993,49(5):885-896.
    [32]王伟.大展弦比飞翼结构拓扑形状与尺寸优化设计[D].西安:西北工业大学,2007.
    [33]苏胜伟.基于Optistruct拓扑优化的应用研究[D].哈尔滨:哈尔滨工程大学,2008.
    [34]Bendsoe M. P, O. Sigmund. Topology Optimization Theory [J]. Methods and Applications, 2000, (3):22-23.
    [35]Sigmund.0, Design of multiphysics actuators using topology optimization [J]. part II:Two-material structures,2000,15(3):158-159.
    [36]罗鹰,段宝岩.结构拓扑优化设计的三角网格进化法[J].应用力学学报,2002,19(3):52-53.
    [37]SamyMissoum, Zai't'erGurdal. Topology design using a two-level displacement-based approach [J], Mechanique, AIAA2002-1340-2002.
    [38]邓扬晨,刘晓欧,朱继宏.飞机加强框的一种结构拓扑优化方法[J].飞机设计,2004,4:11-16.
    [39]荣见华,唐国金,杨振兴. 一种三维结构拓扑优化方法[J].固体力学学报,2005,26(3):289-297.
    [40]李震,孙宝元,钱敏,等.基于节点密度的柔性机构的拓扑优化设计[J].计算力学学报,2007,2(2):132-133.
    [41]舒磊,方宗德.复合域结构的重构拓扑优化方法设计及应用研究[J].中国机械工程,2008,19(14):88-89.
    [42]李凌飞.基于密度法的结构拓扑优化研究[D].长春:吉林大学,2007.
    [43]赵宇.基于ANSYSWorkbench的汽乍铝合金车轮强度分析[D].天津:河北工业大学,2010.
    [44]王卡.麦弗逊式悬架结构的有限元分析[D].成都:西南交通大学,2008.
    [45]陈立周.机械优化设计方法[M].北京:冶金工业出版社,2005.
    [46]梁醒培,王辉.基于有限元法的结构优化设计、原理与工程应用[M].北京:清华大学出版社,2010.
    [47]刘惟信.机械最优化设计[M].北京:清华大学出版社,1994.
    [48]秦东杰.某越野车单纵臂拓扑优化设计[D].南京:河海大学,2007.
    [49]张胜兰,郑冬黎,郝琪,等.基于HyperWorks的结构优化设计技术[M].北京:机械工业出版社,2007.
    [50]陈慧珍.某钻机车架结构有限元分析及优化设计[D].南京:南京航空航天大学,2010.
    [51]Bendsae M P,Kikuchi N. Generating optimal topologies in structural design using a homogenizat ion method [J]. Computer Methods in Applied Mechanics and Engineering. 1988(2):197-224.
    [52]李震.柔性机构拓扑优化方法及其在微机电系统中的应用[D].大连:大连理工大学,2005.
    [53]杨姝.复杂机械结构拓扑优化若干问题研究[D].大连:大连理工大学,2007.
    [54]吝战军.结构拓扑优化设计密度惩罚法与水平集法[D].济南:山东建筑大学,2010.
    [55]郭进彪.机翼弹性比例模型结构拓扑优化设计[D].大连:大连理工大学,2007.
    [56]王玉兴.内燃机薄壁件噪声和密封性能的仿真分析及结构优化设计[D].浙江:浙江大学,2()1().
    [57]杨陈.低噪声轻量化单缸柴汕机的虚拟设计技术研究[D].浙江:浙江大学,2009.
    [58]曾力.基于HyperWorks的卡车车身有限元分析及改进研究[D].成都:西南交通大学,2010.
    [59]李博.基于HyperWorks的某雷达零部件的拓扑优化设计[D].合肥:合肥工业大学,2009.
    [60]邓士娟.基于数据挖掘技术的轴承寿命预测的研究[D].大连:大连海事大学,2006.
    [61]Vapnik Vladimir N统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
    [62]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004.
    [63]李林.基于可靠性的TBM刀盘轻量化设计[D].大连:大连理工大学,2010.
    [64]袁艳.先进控制理论在复杂工业控制系统中的应用研究[D].长沙:中南大学,2006.
    [65]潘文超.果蝇优化算法[M].台中:沧海出版社,2011.
    [66]许本文,焦群英.机械振动与模态分析基础[M].北京:机械工业出版社,1998.
    [67]邱宣怀.机械设计(第四版)[M].北京:高等教育出版社,1997.
    [68]林循泓.振动模态参数识别及应用[M].南京:东南大学出版社,1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700