用户名: 密码: 验证码:
机刻光栅制造系统结构特性与精度控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,大型光学系统和科学仪器发展的重要趋势是:视场不断增大,分辨力不断提高,相应地要求光学元器件扩大口径和提高精度。本论文涉及的光栅是一类以机械刻划方式制造的具有宏观尺度的纳米精度周期性特种功能结构,是大型光学系统和科学仪器的核心光学元件,需要纳米级的加工精度和表面粗糙度。其制造技术的主要特点是特种功能结构精细度、超精密的制造系统与数字化制造过程等都达到了相关领域的顶尖水平。但是,基础研究方面的工作尚且存在以下问题:基于光栅光学性能的机械系统精度规划研究欠缺、光栅刻划机系统关键运动部件的动力学特性研究尚显薄弱、长行程纳米精度定位系统控制策略研究不足等。这些问题制约了大面积、高精度光栅的成功制造。
     基于上述大面积机刻光栅制造技术的研究不足,以提高机刻光栅光学性能为目标,本文拟分四个部分对机刻光栅制造系统的结构特性与精度控制展开探索:(1)机刻光栅光学性能与机械性能的映射机制;(2)衍射光栅刻划机结构特性解析;(3)基于果蝇优化算法的微位移部件多目标优化;(4)机刻光栅精密定位信号测量分析及精度控制。
     文中分析机刻光栅的加工和工作原理,以及影响光栅质量的关键性能指标。针对光栅误差特点,分析光栅刻划机系统精度规划。在此基础上分析机刻光栅光学性能与机械性能的映射机制,为光栅制造系统的进一步研究提供参考。
     鉴于光谱质量中的鬼线强度和杂散光这两个性能指标直接受到工作台定位精度的影响,分析光栅运动宏/微驱动副,包括丝杠螺母宏动机构和压电驱动微动机构的动力学特性。在光栅毛坯运动阶段充分考虑工作台在导轨上运动可能产生的爬行现象,就爬行现象出现与否展开分析。
     考虑到微位移部件驱动工作台是刻槽位置不确定度的决定性因素之一,而刻槽位置的不确定度将直接影响到杂散光性能指标,分析了果蝇优化算法求极值的快速和准确性,建立光栅工作台微位移部件-弹性片的多目标优化模型,将果蝇优化算法嵌入多目标优化中,最终得到微位移部件在约束条件下的最优解。
     针对波前质量高频部分和杂散光与光栅工作台的精密定位密切相关,以及在整个长刻划行程内必须保持低周期误差以减少杂散光的需求,分析了测量系统的精度水平,基于HHT对机刻光栅定位工作台进行非线性特征识别,将RBF神经网络与PID控制相结合作为智能控制策略,最终实现长行程、重载光栅工作台纳米精度定位运动控制,支持高质量的光栅刻划。
     本文得到国家重大科研装备研制项目(No.ZBYZ2008-1)的资助。本文的研究属于其研究内容的一部分预研工作。
Currently, the important trend in the development of the large-scale optical system and scientific instruments is that continuously increasing the field of view and improving the resolution, so it requires that optical components must expand diameter and improve accuracy. The grating manufactured by mechanical ruling in this paper has periodic special functional structure with macroscopic scale and nanometer precision. It is the core optical element of the large optical system and scientific instruments, which need nanoscale machining accuracy and surface roughness. The special function structure finesse, the ultra-precision manufacturing system and the digital manufacturing process have achieved the top level of the related fields is the main features of this grating. However, there are lots of problems have not been solved in the basic research work, such as lacking the fundamental research of the mechanical system accuracy planning based on the grating optical performance, less research of the parts dynamics of grating ruling machine, significantly weak on the research of key moving parts of the mechanical system dynamics and lack of depth of the control strategy study of the long stroke nanometer precision positioning system. All these problems restrict the large area and high-precision grating manufacturing.
     Based on the blank of the research on the large area ruling grating manufacturing technology, there are four parts for the structural characteristics and accuracy control of the machine gratings manufacturing with the goal of improving the optical performance of the ruling grating in this paper:(1) The map mechanism between the optical performance of ruling grating and the mechanical properties of grating ruling engine;(2) The analysis of the structural characteristics of diffraction grating ruling machine;(3) Multi-objective optimization of the micro-displacement part based on the Drosophila optimization algorithm;(4) Signal measurement、analysis and precision motion control of the precision positioning system of mechanical ruling grating.
     First of all, this paper analyzes the processing and working principle of the machine gratings, and optical performance indicators which are the key factors that affect the final quality of the grating. The content analyzes the grating ruling machine system accuracy planning for gratings error characteristics. Basis on that, the paper analyzes the map mechanism between the optical performance of ruling grating and the mechanical properties of grating ruling engine to provide a reference for the research on the grating manufacturing system.
     In view of the positioning accuracy of the grating table directly affect the quality of the grating spectral stray light and ghost line intensity, the paper analyzes the dynamic characteristics of the grating macro/micro-drive device, including the screw-nut-driven mechanism and piezoelectric-driven system. Considerating the creeping phenomenon arisng from the table moving on the guide rail, the paper analyzes the presence or absence of the crawling phenomenon, and gives some preventive measures.
     The Micro-displacement of stage driving by micro-displacement structural component is the decisive factor that determines the uncertainty of the location of the groove, which will directly affect the stray light performance indicators. the paper analyzes the ability of calculate the extremum of drosophila optimization algorithm, establishs the multi-objective optimization model of the micro-displacement structural component of the grating table, embeds, and ultimately obtains the optimal solution of micro-displacement component by embedding the drosophila optimization algorithm into the multi-objective optimization model.
     Then, for the stray light and high-frequency part of the wavefront quality is closely related to the precision positioning signal of the grating table, and the requirement of low cycle error in the long ruled trip to reduce the stray light, the paper gives a detailed analysis of the level of accuracy of the measurement system, analyzes the non-linear characteristic by the combination of the Hilbert transform and empirical mode decomposition. The content also combines the RBF neural network and PID control as intelligent control strategy, and ultimately achieves the accuracy positioning motion control of the long stroke and overloaded grating stage to support the ruling of the high-quality grating.
     This research is sponsored by Chinese National Major Research Project for Equipment Development (No.ZBYZ2008-1). The research in this paper is one part of
引文
[1]Stroke G W.1967. Diffraction gratings[M]. Encyclopedia of physics.
    [2]G. R. Harrison,1972.750-mm Ruling engine producing large gratings and echelles[J]. Journal of the Optical Society of America,62:751-756.
    [3]Erwin G, Robert s., Wiley.1987. Large diffraction grating ruling engine with nanometer digital control system[J]. in Proc. SPIE, Int. Conf. Application and Theory of Periodic Structures, San Diego, pp.88-98.
    [4]T. Kita, T. Harada.1992. Ruling engine using a piezoelectric device for large and high-groove density gratings[J]. Applied Optics,31:1399-1406.
    [5]梁浩明,庄夔,张庆英,杨厚民.1981.衍射光栅刻划机[J].光学学报,1(1):51-57.
    [6]梁浩明,郝德阜.1983.衍射光栅自刻法[J].光学学报,3(7):576-583.
    [7]梁浩明.1985.国内衍射光栅刻划机概况[J].光学机械,6:1-9.
    [8]张庆英,张秀兰.1985.600线/mm大闪耀角激光光栅研制[J].光学机械,,6:25-30.
    [9]张庆英,刘桂琴.1987.铝膜厚度对刻划衍射光栅闪耀效率的影响[J].光学机械,,6:1-7.
    [10]郝德阜.1990.光栅干涉仪的运动误差原理[J].光学机械,5:46-50.
    [11]巴音贺希格,高键翔,齐向东,李春启.2004.10.6μm激光器一级输出高衍射效率闪耀光栅的研制[J].光电子·激光,15(10):1137-1140.
    [12]巴音贺希格,高键翔,齐向东,李英海,张坊城,李春启.2005.9.77μm激光器零级耦合输出选频振荡光栅的设计和研制[J].中国激光,32(3):301-305.
    [13]巴音贺希格,高键翔,齐向东.2006.机械刻划长焦距凹面金属光栅的研制[J].光学精密工程,14(3):391-395.
    [14]巴音贺希格,朱洪春.2007.软X射线掠入射金属光栅闪耀特性的校正傅里叶展开微分法分析[J].光学精密工程,15(1):1-8.
    [15]巴音贺希格,朱洪春.2007.基于槽形函数拟合的机刻光栅衍射特性分析方法[J].物理学报,56(7):3893-3898.
    [16]Jirigalantu, Zhang Fangcheng. The design of chisel-edge ruling tool for diffraction gratings [C].2011. International Conference on Mechatropic Sciences, Electric Engineering and Computer,699-702:1-11.
    [17]陈科位,齐向东,冯树龙,张方程,王丽娟.2011.大型衍射光栅刻划机等速系统的设计[J].光学精密工程,19(12):72-77.
    [18]崔继承,刘玉娟,潘明忠,唐玉国.2012.成像光谱仪一体化设计[J].光谱学与光谱分析,32(3):839-843.
    [19]徐德维,汪贤秀,张庆英.1984.棱镜—光栅耦合器的实验研究[J].电子学报,12(6):33-36.
    [20]唐玉国,宋楠,巴音贺希格,崔继承,陈今涌.2010.中阶梯光栅光谱仪的光学设计[J].光学精密工程,18(9):1989-1995.
    [21]唐玉国,陈少杰,巴音贺希格,崔继承,陈今涌.2010.中阶梯光栅光谱仪的谱图还原与波长标定[J].光学精密工程,18(10):2130-2136.
    [22]Jian-xiang Gao.2010. Manufacture for ruling concave metal grating with a long focal length. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering[C].6(8):155-157.
    [23]姚雪峰,齐向东,冯树龙,营建新,王丽娟.2011.压电泵流量控制实验设计[J].光学精密工程,19(12):199-203.
    [24]张善文,营建新,张方程,高键翔,段佩华.2011.衍射效率等高线发在CO2激光器调谐光栅设计中的应用[J].光学精密工程,19(12):210-214.
    [25]齐向东,撖芃芃,潘明忠,崔继承.2011.凸面光栅成像光谱仪的光谱定标[J].光学精密工程,19(12):2870-2876.
    [26]潘明忠,刘玉娟,陈少杰,崔继承.中阶梯光栅光谱仪CCD相机的设计[J].光学精密工程,20(8):1725-1730.
    [27]齐向东,滕丽华,于海利.2010.丝杠精度双频激光干涉测量中的阿贝误差实时补偿[J].中国光学与应用光学,3(3):279-284.
    [28]Hai-li Yu, Yu-guo Tang.2010. Design of Diffraction Ruling Engine Micro-Displacement System Base on Computer.3rd International Conference on Computer and Electrical Engineering[C],5(11):410-413.
    [29]高键翔.1997.大型光栅刻划机工作台同步减重装置设计[J].光机电信息,14(12):19-22.
    [30]陈科位,齐向东,冯树龙,张方程,王丽娟.2011.大型衍射光栅刻划机等速系统的设计[J].光学精密工程,19(12):72-77.
    [31]Pareto V.1896.Course Economic Politique[M]. Lausanne:Rouge.
    [32]崔勋学.2006.多目标进化算法及其应用[M].北京:国防工业出版社.
    [33]郑金华.2007.多目标进化算法及其应用[M].北京:科学出版社.
    [34]Holland J H.1975. Adaption in Natural and Artificial Systems[M]. Michigan: The University of Michigan Press.
    [35]Schaffer J D.1985. Multiple object optimization with vector evaluated genetic algorithms. Proceedings of 1st International Conference on Genetic Algorithms and Their applications. Hillsdale:Lawrence Erlbaum Associates, Inc.,1985:93-100.
    [36]Goldberg D E.1989. Genetic Algorithms in Search, Optimization and Machine Learning[M]. Boston:Addison Wesley Longman Publishig Co. Inc.
    [37]Laumanns M, Thiele L, DebK, et al.2002. Combining convergence and diversity in evolutionary multi-objective optimization[J]. Evolutionary Computation,10(3):263-282.
    [38]Brokoff D, Zitzler E.2006. Are all objective necessary on dimensionality reduction in evolutionary multi-objective optimization[C]. Proceedings of 9th International Conference on Parallel Problem Solving from Nature.4193:533-542.
    [39]Y.D. Bertrand, D. Barba.1998. Feature selection by a genetic algorithm application to seed discrimination by artificial vision[J]. J. Science Food Agric,76:77-86.
    [40]Y.W. Leung, Y. Wang.2001. An orthogonal genetic algorithm with quantization for global numerical optimization[J]. IEEE Trans. Evolution. Comput,5:41-53.
    [41]M. Dorigo, L.M. Gambardella.1997. Ant colony system:a cooperative learning approach to the travelling salesman problem[J]. IEEE Trans. Evol. Comput,1(1):53-66.
    [42]B. Bullnheimer, R. Hart1, C. Strauss.1999. An improved ant system algorithm for the vehicle routing problem[J]. Ann. Oper. Res,89:319-328.
    [43]Y. Fukuyama, H. Yoshida,2001. A particle swarm optimization for reactive power and voltage control in electric power systems [J]. IEEE Trans, on Power Systems,15(4): 1232-1239.
    [44]D. Srinivasan, W.H. Loo, R.L. Cheu,2003. Traffic incident detection using particle swarm optimization. Swarm Intelligence Symposium[C], Proceedings of the 2003 IEEE,144-151.
    [45]Coello Coello C A, Pulido G T, Lechuga M S.2004. Handing multiple objectives with particle swarm optimization[J]. IEEE Transactions on Evolutionary Computation,8(3): 256-279.
    [46]Jiao L C, Gong M G, Shang R H, et al.2005. Clonal selection with immune dominance and anergy based multi-objective optimization[C]. Proceedings of 3rd International Conference on Evolutionary Multi-criterion Optimization,474-489.
    [47]Gong M G, Jiao L C, Du H F, et al.2008. Multiobjective immune algorithm with nondominated neighbor-based selection[J]. Evolutionary Comptation,16(2):225-255.
    [48]公茂果.2009.人工免疫系统动力学建模与计算[D]:[博士].沈阳:东北大学.
    [49]Zhou A M, Zhang Q F, Jin Y, et al. Global multi-objective optimization via estimation of distribution algorithm with biased initialization and crossover[C]. Proceedings of the Genetic and Evolutionary Computation Conference,617-622.
    [50]Zhang Q F, Zhou A M, Jin Y.2007. A regularity model based multi-objective estimation of distribution algorithm[J]. IEEE Transactions on Evolutionary Computation,12(1):41-47.
    [51]Zhang Q F, Li H.2007. A multi-objective evolutionary algorithm based on decomposition^. IEEE Transactions on Evolutionary Computation,11(6):712-731.
    [52]Pan Wen Tsao.2012. A new Fruit Fly Optimization Algorithm:Taking the financial distress model as an example[J]. Knowledge-Based Systems,26:69-74.
    [53]李泓泽,郭森,李春杰.2012.果蝇优化最小二乘支持向量机混合预测模型——以我国物流需求量预测为例[J].经济数学,29(3):103-107.
    [54]潘文超.2011.应用果蝇优化算法优化广义回归神经网络进行企业经营绩效评估[J].太原理工大学学报(社会科学版),29(4):1-6.
    [55]T.K. Caughey.1963. Equivalent linearisation techniques[J]. Journal of the Acoustical Society of America,35:1706-1711.
    [56]W D Iwan.1973. A generalization of the concept of equivalent linearization[J]. International Journal of Non-Linear Mechanics,8:279-287.
    [57]R Rosenberg.1962. The normal modes of nonlinearn degree of freedom systems[J]. Journal of Applied Mechanics,29:7-14.
    [58]S W Shaw, C Pierre.1993. Normal modes for non-linear vibratory systems[J]. Journal of Sound and Vibration,164:85-124.
    [59]A F Vakakis, L I Manevitch, Y V Mikhlin, et al.1996. Normal Modes and Localization in Nonlinear Systems[M]. New York:Wiley.
    [60]A F Vakakis.1997. Non-linear normal modes and their applications in vibration theory:an overview[J]. Mechanical Systems and Signal,11:3-22.
    [61]H S Y Chan, K W Chung, Z Xu.1996. A perturbation-incremental method for strongly non-linear oscillators[J]. International Journal of Non-Linear Mechanics,31:59-72.
    [62]J F Rhoads, S W Shaw, K L Turner, et al.2005. Tunable MEMS filters that exploit parametric resonance[J]. Journal of Vibration and Acoustics,127(5):423-430.
    [63]A F Vakakis, O Gendelman.2001. Energy pumping in nonlinear mechanical oscillators:Part Ⅱ-resonance capture[J]. Journal of Applied Mechanics,68:42-48.
    [64]A F Vakakis, D M McFarland, L A Bergman, et al.2004. Isolated resonance captures and resonance capture cascades leading to single-or multi-mode passive energy pumping in damped coupled oscillators[J]. Journal of Vibration and Acoustics,126:235-244.
    [65]G Kerschen, Y S Lee, A F Vakakis, et al.2005. Irreversible passive energy transfer in coupled oscillators with essential nonlinearity[J]. SIAM Journal on Applied Mathematics,66(22): 648-679.
    [66]G Kerschen, et al.,2006. Past, present and future of nonlinear system identification in structural dynamics[J]. Mechanical Systems and Signal Processing,20:505-592.
    [67]M. Feldman.1997. Non-linear free vibration identification via the Hilbert transform[J]. Journal of Sound and Vibration,208:475-489.
    [68]N. E. Huang, et al.1998. The empirical mode decomposition and Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proc. R. Soc. London, A454:903-995.
    [69]Chen Li, Xinglong Wang, Zhiyong Tao, et al.2011. Extraction of time varying information from noisy signals An approach based on the empirical mode decomposition[J]. Mechanical Systems and Signal Processing.25:812-820.
    [70]Yujun Li, Peter W Tse, XinYang, et al.2010. EMD-based fault diagnosis for abnormal clearance between contacting components in a diesel engine[J]. Mechanical Systems and Signal Processing.24:193-210.
    [71]曹冲锋.基于EMD的机械振动分析与诊断方法研究[D]:[博士].浙江:浙江大学,2009.
    [72]J. N. Yang, Y. Lei, S. Lin and N. Huang.2003. System identification of linear structures based on Hilbert-Huang spectral analysis. Part1:normal modes[J]. Earthquake Eng. Struct. Dyn.,32: 1443-1467.
    [73]G. Kerschen, A. F. Vakakis, Y. S. Lee, et al.2008. Toward a fundamental understanding of the Hilbert-Huang transform in nonlinear structure dynamics[J]. Journal of Vibration and Control, 14:77-105.
    [74]李天云,赵妍,李楠.2005.基于EMD的HILBERT变换应用于暂停信号分解[J].电力系统自动化.29(4):49-52.
    [75]HUANG N E, NⅡ O A-O.2005. The Hilbert-Huang Transform in Engineering[M], Boca Raton:Taylor & Francis.
    [76]李欣,梅德庆,陈子辰.2011.基于经验模态分解和希尔伯特—黄变换的精密孔镗削颤振特征提取[J].光学精密工程,19(6):1291-1297.
    [77]LI X, MEI D Q, CHEN Z CH.2011. Feature extraction of chatter for precision hole boring processiong based on EMD and HHT[J]. Opt. Precision Eng.,19(6):1291-1297. (in Chinese)
    [78]易伟建,段素萍.2008.带裂缝钢筋混凝土梁的非线性振动特征识别[J].振动与冲击,27(3):26-30.
    [79]Mak Williams, Peter Faill, Paul Bisehoff, et al.1997. Six degree of freedom mag-lev stage development[C], SPIE,3051:856-867.
    [80]Shinno, Hidenofi, Hashizume.1999. Nanometer positioning of a linear motor-driven ultraprecision aerostatic table system with electrorheological fluid dampers[J], CIRP Annals-Manufacturing Technology,48(1):289-292.
    [81]Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe.2003. Precision positioning of a DC-motor driven aerostatic slide system[J], Precision Engineering,27:32-41.
    [82]Mekid, Samir, Higll.2000. Precision linear slide. Part Ⅰ:Design and construction [J]. International Journal of Machine Tools and Manufacture,40(7):1039-1050.
    [83]Heui Jae Pahk, Dong Sung Lee, Jong Ho Park.2001. Ultra precision positioning system for servo motor-piezo actuator using the dual servo loop end digital filter implementation [J]. International Journal of Machine Tools & Manufacture,41:51-63.
    [84]朱煜,尹文生,段广洪.2004.光刻机超精密工件台研究[J].电子工业专用设备,109(2):25-28
    [85]李鸣鸣.2007.大行程纳米定位系统若干关键技术研究[D]:[博士].上海:上海大学.
    [86]严乐,卢秉恒,丁玉成等.2004.冷压印光刻工艺精密定位工作台的研制[J].中国机械工程,15(1)75-78
    [87]节德刚.2006.宏/微驱动高速高精度定位系统的研究[D]:[博士].哈尔滨:哈尔滨工业大学.
    [88]E. Kouno.1982. A fast response piezoelectric actuator for servo correction of systematic errors in precision machining[J]. Ann. CIRP,33(1):369-372.
    [89]J. F. Cuttino, A. C. Miller, and D. E. Schinstock.1991. Performance optimization of a fast tool servo for single-point diamond turning machines[J]. IEEE/ASME Trans. Mechatron., 4(2):169-179.
    [90]Shakir H, Kim WJ.2006. Nanoscale path planning and motion control with maglev positioners[J]. IEEE/ASME Trans. Mechatron.,11(5):625-633.
    [91]Bashash, Saeid, Jalili, Nader.2009. Robust Adaptive Control of Coupled Parallel Piezo-Flexural Nanopositioning Stages[J]. IEEE/ASME Trans. Mechatron.,14(1):11-20.
    [92]K. Kuhnene and H. Janocha,2001. Inverse feedforward controller for complex hysteretic nonlinearities in smart-material systems[J]. Control Intell. Syst.,29(3):74-83.
    [93]刘栋材.2012.光栅刻划机建模与仿真方法研究[J].计算机工程,138(4):31-34.
    [94]刘栋材,申远,钟俊等.2011.大型衍射光栅刻划机控制系统研究[J].中国科学技术大学学报,41(6):560-564.
    [95]刘栋材.2011.光栅刻划机虚拟样机技术及应用研究[D]:[博士].合肥:中国科学技术大学.
    [9I6]钟俊.2011.宏观尺度的纳米级定位控制技术研究[D]:[博士].合肥:中国科学技术大学.
    [97]Dongcai Liu, Yuan Shen, Jun Zhong, et al.2011. Control System Development of Grating Ruling Engine based on MATLAB Simulink[C], Applied Mechanics and Materials,110-116: 4788-4794.
    [98]Jingshu Wang, Liting Sun, Changan Zhu.2011. Modeling and Validation of Ultra Precision Positioning System[C]. Applied Mechanics and Materials,87:200-205.
    [99]Liting Sun, Jingshu Wang, Changan Zhu.2011. Active Vibration Suppression Based on Intelligent Control for a Long-range Ultra-precise Positioning System[C]. Applied Mechanics and Materials,87:123-128.
    [100]Jun Zhong, Guoliang Ding, Guofu Lian, et al.2010. Control System Development of Large and High-groove Density Grating Ruling Engine Based on Real-time Virtual Hardware-in-the-loop Simulation[C]. International Conference on Computer Design and Applications,3:403-407.
    [101]Jun Zhong, Yi Jin, Guofu Lian, et al.2010. Efficient Control System Development Using Real-time Virtual Hardware-in-the-loop Simulation[C],11th International Conference on Control, Automation, Robotics and Vision,2231-2236.
    [102]于海利.2011.基于双频激光干涉测量的大行程纳米定位技术及其应用研究[D]:[博士].长春:长春光学精密机械与物理研究所.
    [103]Jiwei Zhu, Lijuan Wang, Peihua Duan, et al.2011. The Design of the Diffraction Ruling Engine Control System Based on Dsp[C]. International Conference on Micro/Nano Optical Engineering,19(7):316-321.
    [104]Hongzhu Yu.2010. DsPIC-based mini gas densencess monitor[C]. International Conference on Computer, Mechatronics, Control and Electronic Engineering,4(8):322-324
    [105]巴音贺希格,李燕,吴娜,等.2009.紫外平面刻划光栅杂散光数值分析及测试[J].光学精密工程,17(8):1783-1789.
    [106]高波,李瑞洁、魏小红,等.2010.关于光学元件面形评价参数峰谷值(PV)的分析[J].应用光学,31(6):1046-1049.
    [107]万敏,苏毅,张卫,等.光学器件面形误差对光束质量的影响[J].光学学报,2002,22(4):495-500.
    [108]祝绍箕,邹海兴,包学诚等.1986.衍射光栅[M].北京:机械工业出版社.
    [109]C. L. Chen, M. J. Jang and K. C. Lin.2004. Modleling and high-precision control of a ball-screw-driven stage[J]. Precision Engineering,28:483-495.
    [110]S. Dejima, W. Gao and K. Katakura.2005. Dynamic modeling, controller design and experimental validation of a planar motion stage for precision positioning[J]. Precision Engineering,29:263-271.
    [111]C. L. Chu, S. H. Fan.2006. A novel long-travel piezoelectric-driven linear nanopositioning stage[J]. Precision Engineering,30:85-95.
    [112]Y. Tian, D. Zhang, B. Shirinzadeh.2011. Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation[J]. Precision Engineering,35:554-565.
    [113]J. S. Chen, I. C. Dwang.2000. A ballscrew drive mechanism with piezo-electric nut for preload and motion control[J]. International Journal of Machine Tools and Manufacture,40: 513-526.
    [114]M. Holmes, R. Hocken, D. Trumper.2000. The long-range scanning stage:a novel platform for scanned-probe microscopy[J]. Precision Engineering,24:191-209.
    [115]J. Mao, H. Tachikawa, A. Shinokohbe.2003. Precision positioning of a dc-motor-driven aerostatic slide system[J]. Precision Engineering,27:32-41.
    [116]K. Kawashima, T. Arai, K. Tadano.2010. Evelopment of coarse/fine dual stage using pneumatically driven bellows actuator and cylinder with air bearings[J]. Precision Engineering,34:526-533.
    [117]A.T. Elfizy, G.M. Bone, M.A. Elbestawi.2005. Design and control of a dual-stage feed drive[J]. International Journal of Machine Tools and Manufacture,45:153-165.
    [118]C. H. Liu and W. Y. Jywe.2010. Design and control of a long-traveling nano-positioning stage[J]. Precision Engineering,34:497-506.
    [119]M. Feldman.1994. Nonlinear system vibration analysis using Hilbert transform-I. Free vibration analysis method 'FREEVIB' [J]. Mechanical Systems and Signal Processing,8: 119-127.
    [120]Qingyi Gu, Takeshi Takaki, Idaku Ishii.2013. Fast FPGA-Based Multi-Object Feature Extraction[J]. IEEE Transactions on Circuits and Systems for Video Technology,23(1): 30-45.
    [121]Hao Gao, Qingyi Gu, Takeshi Takaki, Idaku Ishii.2012. A Self-Projected Light-Section Method for Fast Three-Dimensional Shape Inspection[J]. International Journal of Optomechatronics,6(4):289-303.
    [122]Lei Chen, Hua Yang, Takeshi Takaki, and Idaku Ishii.2012. Real-Time Optical Flow Estimation Using Multiple Frame-Straddling Intervals[J]. Journal of Robotics and Mechatronics,24(4):686-698.
    [123]Ikuya Ohara, Takeshi Takaki, Idaku Ishii.2012. High-Speed Target Tracking Using Vibration-Based Image Features[J]. Transactions of the Japan Society of Mechanical Engineers Series C,78(788):1143-1153.
    [124]Lei Chen, Takeshi Takaki, Idaku Ishii.2012. Accuracy of Gradient-Based Optical Flow-Estimation in High-Frame-Rate Video Analysis[J]. IEICE Transactions on Information and Systems, E95-D(4):1130-1141.
    [125]Qingyi Gu, Takeshi Takaki, Idaku Ishii.2012. A Fast Multi-Object Extraction Algorithm Based on Cell-Based Connected Components Labeling[J]. EEICE Transactions on Information and Systems, E95-D(2):636-645.
    [126]Idaku Ishii, Taku Taniguchi, Kenkichi Yamamoto, et al.2012. High-Frame-Rate Optical Flow System[J]. IEEE Transactions on Circuits and Systems for Video Technology,22(1): 105-112.
    [127]Idaku Ishii, Tetsuro Tatebe, Qingyi Gu, et al.2012. Color-Histogram-Based Tracking at 2000 fps, Journal of Electronic Imaging,21,013010.
    [128]Yao-Dong Wang, Idaku Ishii, Takeshi Takaki.2011. HFR-Video-Based Machinery Surveillance for High-Speed Periodic Operations[J]. Journal of System Design and Dynamics, 5(6):1310-1325.
    [129]Yuman Nie, Takeshi Takaki, Idaku Ishii, et al.2011.Algorithm for Automatic Behavior Quantification of Laboratory Mice Using High-Frame-Rate Videos[J]. SICE Journal of Control, Measurement, and System Integration,14(5):322-331.
    [130]Hua Yang, Takeshi Takaki, Idaku Ishii.2011. A Structural Damage Quantification Method for HFR-Video-Based Modal Testing[J]. Journal of System Design and Dynamics,5(4): 624-641.
    [131]Yao-Dong Wang, Idaku Ishii, Takeshi Takaki, and Kenji Tajima.2011. An Intelligent High-Frame-Rate Video Logging System for Abnormal Behavior Analysis[J]. Journal of Robotics and Mechatronics,23(1):53-65.
    [132]Hua Yang, Takeshi Takaki, Idaku Ishii.2011. Simultaneous Dynamics-Based Visual Inspection Using Modal Parameter Estimation[J]. Journal of Robotics and Mechatronics, 23(1):180-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700