用户名: 密码: 验证码:
套袋红富士苹果发育过程中果皮超微结构变化及相关酶类研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以套袋红富士为试材,对其发育过程中果皮可溶性固形物、硬度、果皮粗纤
    维、果皮果胶及与果皮细胞壁成分相关的酶活性进行了测定,并用透射电子显微镜对套
    袋果和未套袋果发育过程中果皮细胞超微结构进行了系统观察。研究结果如下:
    1.套袋后2个月内果实硬度无变化,从第3月开始下降,到采收期套袋果与对照果硬
    度相差2.90 kg/cm2。套袋果可溶性固形物一直呈上升趋势,但始终低于对照果,且在套
    袋后第1、3月上升平缓,在第2、4月上升较快,到采收期套袋较对照相差1.88个百分点。
    2.套袋果和对照果粗纤维含量在套袋后前2个月呈下降趋势,在后2个月呈上升趋
    势,且套袋果粗纤维含量一直低于对照果。二者原果胶变化基本相同,但套袋果原果胶
    始终低于对照。套袋果可溶性果胶一直高于对照,套袋后1个月都呈上升趋势,套袋后2
    个月都呈下降趋势。
    3.套袋果的多聚半乳糖醛酸(PG)活性基本呈线性上升,且一直高于对照,在采收
    期二者相差0.04个百分点。对照果和套袋果纤维素酶(Cx)活性在整个生长过程中都是
    从低到高变化,变化幅度基本相同,且前者一直高于后者。套袋果多酚氧化酶(PPO)
    活性一直低于对照果,在前期都呈上升趋势,在中期、后期都呈下降趋势。套袋果过氧
    化物酶(POD)活性始终低于对照果,前期呈上升趋势,后期都呈下降趋势。
    4.套袋与对照果皮细胞壁结构在果实生长前期致密,电子密度高,看不到细胞壁的
    纤维素微纤丝,中胶层、次生壁和初生壁也不能区别开;在果实生长中期,套袋果细胞
    壁开始变得松散,而对照果的仍较致密;在果实生长后期,套袋果细胞壁开始大量分解,
    出现质壁分离现象,而对照果的才开始松散。
    5.套袋果叶绿体在果实生长前期以前体存在,整个基质空间被大淀粉粒占据,而对
    照叶绿体前体发达。在果实生长中期,套袋果叶绿体结构基本形成,只是其片层不发达,
    而对照果的则完全形成,且片层很发达。到采收期套袋果叶绿体由于除袋后见光,在短
    时间内已从潜在的质体中转化形成完整的片层结构,而对照果叶绿体减少,可能是参与
    花青苷合成转化。
    6.套袋果线粒体在整个果实生长过程中都较丰富、发达,采收期脂质小球丰富,但
    中央大液泡漫布整个细胞,嗜锇颗粒大量存在。对照果的线粒体、脂质小球相对较少。
The main study contents of the thesis were the changing of the fruit hardness, the soluble
    solid matter, the pericarp pectin and the coarse fibre and the activity of the enzymes involved the
    pericarp cell wall by using Red‘Fuji’apple as material during apple development. At the same
    time, the thesis observed the systemic ultrastructure changing of the pericarp of the bagged and
    unbagged apple with electron microscope. The mainly study results including:
     1. The fruit hardness was unchanged in two months after bagging, decreased after three
    months, the hardness discrepancy of the bagged and unbagged apple was 2.90 kg/cm2 at the
    harvesting time. The soluble solid matter of the bagged apple was still increasing, but always less
    than than the unbagged apple, and increasing gently at the first and third month after bagging, and
    increasing relatively quick at the second and fourth month. The soluble solid matter discrepancy
    of the bagged and unbagged apple was 1.88 percent at the harvesting time.
     2. The coarse fibre always decreased in former two months after bagging, increased at the
    third and fourth months, and the coarse fibre of the bagged apple was still less than the unbagged
    apple. The original pectin of the bagged and unbagged apple was approximately same, however
    the content of the bagged apple was always less than that of the unbagged. The soluble pectin of
    the bagged apple was still less than that of the unbagged, the content increased at first month,
    decreased in two month after bagging.
     3. The polygalacturonase activity of the bagged apple increased linearly, and always more
    than that of the unbagged apple, and the discrepancy of the bagged and unbagged apple was
    0.04 percent at the harvesting time. The cellulose enzyme activity of the bagged and
    unbagged apple changed from low to high, and the changing extent was almost same, the
    fomer was still higher than the after. The polyphenolo xidase activity of the bagged apple was
    lower than that of the unbagged apple, and increased at the former period, decrease at the
    middle and after period. The eperoxldase activity of the bagged apple was always lower than
    that of the unbagged apple, increased at the former period, and decreased at the after period.
     4. The pericarp cell wall structure of the bagged and unbagged apple was compact at the
    former period of the fruit growth, the electron density was high, the cellulose micro filament
    was invisible, the middle glue layer, the next and first cell wall were not distinguished; The
    cell wall of the bagged apple began relaxing at the middle period of fruit growth, however the
    unbagged apple’s was still relatively compact; The mostly cell wall of the bagged apple began
    decomposing, and Incipient plasrmlysis appeared, whereas the unbagged apple's just began
    relaxing.
     5. The chloroplast of the bagged and unbagged apple existed with the orginal chloroplast
    form at the former period of fruit growth, and its all space was held by the large starch grain,
    however the unbagged apple's was development. The chloroplast structure of the bagged
    apple was primarily formed at the middle period of fruit growth, just the segment
    layer structure was not development, whereas that of the unbagged apple was already intact.
    Because the bagged apples were expose to the sun after removing the paper bag, the potential
    
    
    plastid changed into the intact segment layer structure at the short time, however that of the
    unbagged apple was largely decreasing, maybe it participate in the anabolism and
    transforming.
     6. The mitochondrion of the bagged apple was abundance and development during all
    course of fruit growth, the lipid bodies were richness, the central big vacuole besprinkled the
    all cell, the osmiophilic globules abounded at the harvesting time, whereas the mitochondrion
    and the lipid body of the unbagged apple were relatively less.
引文
[1] 王小兵,李莉.我国苹果产业发展与展望.中国果树,2003(2): l~3
    [2] 李正理等编著.植物解剖学.北京:高等教育出版社,1984
    [3] 李雄彪等.西葫芦花粉壁和非壁蛋白中苹果酸脱氢酶的研究.植物生理学通讯,
     1985, 11(2):180~187
    [4] 胡适宜著.被子植物胚胎学.北京:高等教育出版社,1982
    [5] 李雄彪等编著.植物细胞壁.北京:北京大学出版社,1993
    [6] 尹增芳,樊汝文.植物细胞壁的研究进展 . 植物研究. 1999,10,19(4):407-414
    [7] 陆胜民, 金勇丰, 张耀洲. 果实成熟过程中细胞壁组成的变化. 植物生理学通讯.
     2001,6,37(3):246-249
    [8] 刘兴华,饶景萍. 果品贮藏与加工. 西安: 陕西科技出版社,1998
    [9] 夏春森,王兰英. 红星苹果在贮藏中果肉发绵生理过程的研究. 园艺学报,1981,
     27(2):29-36
    [10]田建文,许明宪,贺普超. 柿果实采收后生理分析. 植物生理学通讯,1991,27 (2):
     109-117
    [11]方健雄,华雪增,刘愚. 贮藏温度和气体状况对苹果果胶酶、PG酶变化的影响. 植
     物生理学报,1991,14(2):33-37
    [12]关军锋,马智宏. 苹果果实软化与果胶含量、质膜透性和钙溶性的关系. 果树学报,
     2001,18(1):11-14
    [13]吕昌文,齐灵,修德仁等. 桃波动温度贮藏及其机理研究. 华北农学报,1994,
     9(1):75-80
    [14]童斌. 柿子成熟衰老中果肉起超微结构变化及其生理生化代谢的关系[学位论文].
     陕西杨凌: 西北农林科技大学园艺学院,1999
    [15]文颖强,任小林,马锋旺等. 热处理对梨枣果实冷藏效果和品质的影响. 西北农业
     学报,2002,11(4):81~83
    [16]彭丽桃. 油桃后熟软化机理及GA3处理效应研究[学位论文]. 陕西杨凌: 西北农林
     科技大学园艺学院,2000
    [17]王贵禧,韩雅珊,于梁. 猕猴桃软化过程中阶段性专一酶活性变化的研究. 植物学
     报,1995,37(3):198-203
    [18]李雄彪.纤维素的化学结构、生物合成和糖化研究.大自然探索,1992,11(39):
     56-62
    [19]李雄彪.半纤维素的化学结构和生理功能. 植物学通报,1994,11(l):7~23
    [20]李雄彪.伸展蛋白的分子间异二酪氨酸交联.植物生理学报.1993.19(1):89~91
    [21]李雄彪等.伸展蛋白的结构、功能、交联和生物合成.植物生理学通讯,1990(3):
     7~13
    
    
    参考文献29
    [22]汪沛洪主编. 植物生物化学. 北京: 中国农业出版社,1995
    [23]杨世杰主编. 植物生物学. 北京: 科学出版社,2000
    [24]李雄彪,植物伸展蛋白的基因及其表达的调控.植物生理学通讯,1990(5):1-5
    [25]生吉萍, 申琳, 罗云波. 果实成熟衰老相关酶的研究进展. 食品与机械. 2000, 3
     (77):7-9
    [26]颜季琼,张孝琪,龙程. 高等植物细胞壁的结构和功能的分子生物学基础. 见:余
     叔文,汤章城主编植物生理与分子生物学(第二版). 北京:科学出版杜,1998,
     93-112
    [27]刘愚. 果实的成熟及其调节. 植物生理与分子生物学(余叔文编). 北京: 科学出
     版社,1992
    [28]徐荣江.香蕉的后熟及其催熟.中国果品研究,1983,(22):7-9
    [29]叶钢,缪颖,毛节锜橘果采后钙处理对纤维素酶和果胶酶的影响.浙江农业大学学
     报,1993, 19(4):450-454
    [30]周培根,罗祖友,戚晓玉,等.桃成熟期间果实软化与果胶及有关酶的关系.南京农
     业大学学报,1991, 14(2):33-37
    [31]田建文. 柿子常温贮藏保鲜的研究[学位论文]. 陕西杨凌: 西北农业大学园艺系,
     1991
    [32]闫爱民. 柿子脱涩过程中的生理生化变化及其与果实软化的关系[学位论文]. 陕
     西杨凌: 西北农业大学基础科学系,1993
    [33]钱永华. 柿子采后主要生理生化变化及AOA处理对其的影响[学位论文]. 陕西杨凌:
     西北农业大学基础科学系,1993
    [34]王俊宁. 1-MCP处理对油桃果实软化衰老的影响[学位论文]. 陕西杨凌: 西北农林
     科技大学园艺学院,2002
    [35]周宏伟,吴根西. 长把梨贮藏过程中多聚半乳糖醛酸酶与果胶甲酯酶的作用. 山东
     农业大学学报. 1992,23(1):67-70
    [36]茅林春,张上隆. 果胶酶与桃果实冷害的关系. 植物生理学通讯.2000, 36(3): 266
     -271
    [37]王贵禧,韩雅珊. 猕猴桃果实中PME,PG及其抑制因子的研究. 中国农业大学学报,
     1998, 3(1):88-94
    [38]张广华, 葛会波, 张进献. 草莓果实软化机理及调控研究进展. 果树学报. 2001,
     18(3):172-177
    [39]吴彩娥,王文生,寇晓虹. 果实成熟软化机理研究进展. 果树学报. 2001,18(6):
     365-369
    [40]茅林春,张上降. 果胶酶和纤维素酶在桃果实成熟和絮败中的作用. 园艺学报,
     2001, 28(2):107-111
    
    
    30 套袋红富士苹果发育过程中果皮超微结构变化及相关酶类研究
    [41]石海燕,冯双庆.气调贮藏对紫花芒果PG、纤维素酶及果实硬度的影响.园艺学报,
     1997, 24(4):407-409
    [42]杨虎清,应铁进,向庆宁等. 转反义LeETRl基因番茄采后生理特性的研究. 园艺学
     报2003, 30(4):404 - 408
    [43]罗自生. MA贮藏对桑果细胞壁组分和水解酶活性的影响. 果树学报. 2003.20(3):
     214-217
    [44]殷晓军,张继澍. 热处理对脱涩后火柿生理生化变化的影响. 西北植物学报. 2001,
     21(6):1152-1156
    [45]谢春艳, 宾金华, 陈兆平. 多酚氧化酶及其生理功能. 生物学通报. 1999, 34(6):
     1-13
    [46]胡平平,付时雨. 漆酶催化活性中心结构及其特性研究进展. 林产化学与工业.
     2000,21(1):69-75
    [47]梁艳荣,胡晓红,张颖力等. 植物过氧化物酶生理功能研究进展. 内蒙古农业大学
     学报. 2003,24(2):110-113
    [48]文颖强.梨枣采后热处理的生理效应及成熟衰老期细胞超微结构变化[学位论文].
     陕西杨凌: 西北农林科技大学园艺学院,2003
    [49]陈安均,蒲彪,罗云波等. 不同熟期桃果实超微结构及相关代谢的研究. 果树学报.
     2002,19(1):67-69
    [50]关雪莲,朱澂,张进仁. 锦橙汁囊的超微结构. 植物学报. 1995, 37(8):613-617
    [51]张大鹏,李珉,王毅. 葡萄果实发育过程中果肉细胞超微结构的观察. 植物学报.
     1997, 39(5):389-396
    [52]彭宜本, 张大鹏. 发育过程中苹果果皮和果肉细胞的超微结构. 植物学报. 2000,
     42(8):794-802
    [53]齐灵,吕昌文,修得仁. 桃冷害细胞学表现于品质劣变关系的研究. 园艺学报.1994,
     21(2):134-138
    [54]屈红霞,唐友林,谭兴杰等. 低温贮藏对菠萝细胞壁降解的影响. 园艺学报. 2000,
     27(1):23-36
    [55]杨德兴,戴京晶,庞向宇等. 猕猴桃衰老过程中PG、果胶质和细胞壁超微结构的变
     化. 园艺学报. 1993,20(4):341-346
    [56]吕英民,张大鹏,严海燕. 苹果果皮韧皮部及其周围薄壁细胞的超微结构观察和功
     能分析. 植物学报, 2000, 42(1):32-42
    [57]任小林等. 杏果实成熟衰老过程中活性氧和几种生理指标的变化. 植物生理学通
     讯,1991,27(1):34-36
    [58]王仁才,熊兴耀,课兴和等. 美味猕猴桃果实采后硬度与细胞超微结构变化. 湖南
     农业大学学报(自然科学版),2002,26(6):457-460
    
    
    参考文献 31
    [59]席玙芳,应铁进等. 振动胁迫对桃果实衰老的影响. 园艺学报,1997,
     24(2):137-140
    [60]周淑霞,王勇,张祖仁. 套袋对红富士成熟度影响的研究. 烟台果树,
     2001(1):19-20
    [61]王少敏,高华君,刘嘉芬. 套袋短枝红富士果实内含物及果皮色素的变化. 果树科
     学,2000,17(1):76-77
    [62]高华君,王少敏,刘嘉芬. 红色苹果套袋与除袋机理研究概要. 中国果树,2000,
     (2):46-48.
    [63]卜万锁,牛自勉,赵红钰.套袋处理对苹果芳香物质含量及果实品质的影响.中国农
     业科学,1998,31(6):88-90
    [64]王少敏,王忠友,赵红军.短枝型红富士苹果果实套袋技术比较试验. 山东农业科
     学,1998(3):28-30
    [65]孙庆忠,陈宏,吴建军. 套袋对提高惠民短枝红富士苹果品质的效应. 中国果树,
     1995(2):36-38
    [66]段学武,张昭其,季作梁. PG酶与果实的成熟软化. 果树学报. 2001,18(4):229-233
    [67]王贵禧,韩雅珊,于梁.称猴桃总淀粉酶活性与果实软化的关系. 园艺学报,1994, 21
     (4):329-333
    [68]蔺占兵,马庆虎,徐洋. 木质素的生物合成及其分子调控. 自然科学进展,2003,
     13(5):455-461
    [69]李秀菊,刘用生,束怀瑞. 套袋对红富士苹果果皮细胞超微结构的影响. 园艺学报,
     2000, 27(3):202-204
    [70]韩明玉,李丙智,范崇辉等. 水果套袋理论与实践. 陕西科学技术出版社,2004
    [71] Lamport D.T.A. et al. Glycoproteins and enzymes of the cell Walls, In: Encyclopedia of
     plant physiology(new series) plant Carbohydrates, Tanner W. et al.(eds.),1981, vol. 13
     B:133-165
    [72] Cassab G.I.et al.Cell wall proteins, Ann, Rev. plant physiol. Plant Mol. Biol., 1988, 39:
     321-353
    [73] Lamport D.T.A. et al. The protein component of primary cell walls, In: Advances in
     botanical research, vol.2, Preston R.D.(ed.), Academic Press, 1965:151-218
    [74] Huber DJ. The mie of cell wall hydrolases in fruit softening. Hortic Rev, 1983,5:169-219
    [75] Lamport D.T.A. The primary cell wall: a new model. In: Yong RA, Rowell RM(eds).
     Cellulose: Structure, Modification and Hydrolysis. New York: John Wiley & Sons,
     1988:332-365
    [76] Jarvis M.C. Structure and properties of pectin gels in plant cell walls, Plant Cell Env.
     1984,7:153-164
    
    
    32 套袋红富士苹果发育过程中果皮超微结构变化及相关酶类研究
    [77] Hubber D.J. Polyuronide degradation and hemicellulose modifications in rinening tomato
     fruit, J. Am Soc Hortic. Sci., 1983,108:405-409
    [78] Fry SC. The growing plant cell wall: chemical and metabolic analysis. New York: John
     Wiley & Sons, 1988:332-365
    [79] Juvis MC., Hall MA., Threlfall DR et al. The polysaccharide structure of potaid cell
     walls: chemical fractionation. Planta, 1981,152:93-100
    [80] Fils-lycanon B, Buret M. Loss of firmness and changes in pectic fractions during
     ripening and overripening of sweet cherry. Hortscience. 1990, 25(7): 777-778
    [81] Dawson D.M, Walkins C.B, Melton L.D. Intermittent harming affects cell wall
     compositions of “Fantasia” nectarines during ripening and storage. Jour Amer soc Hort
     Sci, 1995, 120(6):1057-1062
    [82] Ning B, Kubo Y, et al. Softening characteristics of Chinese peer ‘YaLi’ fruit with
     special relation to changes in cell wall polysacchariches and their degrading enzymes.
     Scientific Reports of the Faculty of Agriculture Okayama Uinversity, 1997, 86:71-78
    [83] Koch J.L, Nevins D.J. The tomato fruit cell wall Ⅱ polyuronide metabolism in
     non-softening tomato mutant. Plant Physiol, 1990, 92(3):642-647
    [84] Stoddart R.W. The biosynthesis of polysaccharides, Croom Helm Ltd., 1984
    [85] Sarke A. Recent X-ray crystal-graphic studies of cellulose, In: cellulose, Structure,
     Modification and Hydrolysis, Young R.A. et al. (eds.), John Wiley & Sons, Inc., 1986,
     29-41
    [86] Delmer D. P. Cellulose biosynthesis, Ann. Rev. Plant Physiol, 1987, 38: 259-290
    [87] Hopp H. E. et al. Synthesis of cellulose precursors, The involvement of lipid-linked
     sugars, Eur. J. Biochem. 1978, 84:561-571
    [88] Vamer JE, Lin LS. Plant cell wall architecture. Cell, 1989,56:231-239
    [89] Hubber D.J. Polyuronide degradation and hermicellulose modifications in rinening
     tomato fruit, J. Am Soc Hortic. Sci., 1983, 108:405-409
    [90] Hayashi T. Xyloglucans in the pricary cell wall, Ann.Rev. Plant Mol. Biol., 1989,
     40:139-168
    [91] McNeil M, Darvill AG, Fry S et al. Structure and function of the primary cell walls of
     plants. Arnw Rev Biochem. 1984,53:625-663
    [92] Fry SC. The structure and function of xyloglucan. J Exp Bor, 1989,40:1-11
    [93] Tierney M.L. et al. The extensin, Plant Physiol. 1987,84:1-2
    [94] Showalter A.M. et al. Tomato extensin and extensin-like cDNAs: Structure and
     expression in response to wounding, Plant Mol. Biol. 1991,16:547-565
    [95] Fischer R L, Bennett A B. Role of cell wall hydrolyses in fruit ripening. Annu. Rev. Plant
    
    
    参考文献 33
     Physiol. Plant Mol. Biol., 1991,42:675-703
    [96] Lashbrook C C, Brummell D A, Rose J K C, et al. Non pectolytic cell wall metabolism
     during fruit ripening. In: J Giovannoni J, ed. Fruit Ripening Molecular Biology. UK:
     Harwood Academic Reading, 1997:163-168
    [97] Brady C, McAlpine G, McGlasson W. Polygalacturonases in tomato fruit and the
     induction of ripening. Aust. J. Plant Physiol., 1982, 9:171-178
    [98] Brady C, McGlasson W, Pearson J, et al. Interaction between the amount and molecular
     forms of polygalacturonase, calcium, and firmness in tomato fruit. J. Amer. Soc. Hort.
     Sci., 1985,110:254-258
    [99] Bennett A B, DellaPenna D. Polygalacturonase: Its importance and regulation in ripening.
     In: Thomson ww et al(eds). Plant senescence, Its Biochemistry and physiology. The Amer.
     Soc. Plant Physiol., 1987:98-107
    [100] Huber D J, O’Donoghue E M. Polyuronides in avocado and tomato fruits exhibit
     markedly different patterns of molecular weight downshifts during ripening. Plant
     Physiol., 1993, 102:473-480
    [101] Dawson D M, Melton L D, Watkins C B, et al. Cell wall changes in nectarines
     solubilization and depolymerization of pectic and neutral polymers during ripening and
     in mealy fruit. Plant Physiol., 1992, 100:1203-1210
    [102] Rose J K C, Hadfield K A, Bennett A B, et al. Temporal sequence of cell wall disasse
     mbly in rapidly ripening melon fruit. Plant Physiol., 1998, 117: 345-361
    [103] Redgwell R J, Mac Rae E, Hallett L, et al. In viw and in vitro swelling of cell walls
     during fruit ripening. Planta, 1997, 203:162-173
    [104] Lester D R, Sherman W B. Endopolygalacturonase and the melting flesh locus in peach.
     J. Amer. Soc. Hort. Sci, 1996,121:231-235
    [105] Wu Q, Szakacs-Dobozi M, Hemmat, et al. Endopolygalacturonase in apples and its
     expression during fruit ripening. Plant Physiol., 1993, 102:219-225
    [106] Nogata Y, Ohta H, Voragen A G J. Polygalacturonase in strawberry fruit.
     Phytochemistry, 1993, 34:617-620
    [107] Ranwala A P, Suematsu C, Masuda H. The role of β-galactosidases in the modification
     of cell wall components during muskmelon fruit ripening. Plant Physiol., 1992,
     100:1318-1325
    [108] Hadfield K A, Rose J K C,Yaver D S,et al . Polygalacturonase gene expression in ripe
     melon fruit supports a role for polygalac-turonase in ripening associated pectin
     disassembly. Plant Physiol,1998,117:363-373
    [109] Crtovannoi J,IkllaPenna D, Bennett A, et al . Expression of a chimeric
    
    
    34 套袋红富士苹果发育过程中果皮超微结构变化及相关酶类研究
     olygalacturonase gene in transgenic rin tomato fruit re-sults in polyuronide degradation
     but not fruit softening. Plant Cell,1989,1:53-63
    [110] Smith C J S,Watson C F,Ray J, et al. Antisense RNA inhibition of polygalacturonase
     gene expression in transgenic tomatoes. Nature,1988,334: 724-726
    [111] 41 Smith C J S,Watson C F,Morris P C,et al. Inheritance and effect on ripening of
     antisense polygalacturonase genes in transgenic tomatoes. Plant Mol. Biol,1990,
     14:369-379
    [112] Kramer M, Sanders R, Boekan H, et al. Postharvest evaluation of transgentic tomatoes
     with reduced levels of polygalacturonase:processing, firmness and disease resistance.
     Postharvest Biol. Tech., 1992,1:241-255
    [113] Dahodwalas, Humphrey A, Weibel M. Pectic enzymes in dividual and concerted kinetic
     behavior of pectinesterase and pectinase. Jour Food Sci, 1974,39:920-926
    [114] Hobson GE. The firmness of tomato fruit in relation to polygalactur-onase activity. J
     Biochem,1963,86:365-385
    [115] Paull RE. Postharvest variation in all wall-degrading enzyme of pa-paya during fruit
     ripening. Plant Physiol, 1983, 72:382-385
    [116] Awad M. Postharvest variation in cellulase, polygalacturonase and pectinmethy
     lesterase in avocado fruits in relation to respiration and ethylene production. Plant
     Physiol, 1979, 64:306-308
    [117] Pawll, R.E. and chan,N,J.Plant Physiol., 1983,72:382-385
    [118] Awad M., et al. Plant physiol,1979,64:306-308
    [119] Redgwell R J, Fry S C. Xyloglucan endotransglycosylase activity increases during
     kiwifruit(Actinidia deliciosa) ripening. Plant Physiol,1993,103:1399 –1406
    [120] Wegrzyn T F, MacRac E A. Pectinesterase, Polygalacturonase, and β-galactosidase
     during softening of ethylene-treated kiwifruit. Hortiscience, 1992, 27(8):900-902
    [121] King G A, Davies M, Cloning of a harvest-induced β-galactosidase from tips of
     harvest asparagus spears. Plant physiol,1995,108:419-420
    [122] Thakor B R, Singh R K, Handa A K. Effect of an antisense pectin methylesterase gene
     on the chemistry in pectin in tomato juice. Joural of Agriculture and Food
     chemistry,1996, 44(2):628-630
    [123] Awad M. Postharvest variation in cellulose, polygalacturonase and pectinmethy
     lesterase in avocado fruits in relation to respiration and ethylene production. Plant
     Physiol,1979,64:306-308
    [124] Abeles FB, Takeda T. Cellulase activity and ethylene in ripening strawberry
     and apple fruits. Sci Hort,1990,42:269-275
    
    
    参考文献 35
    [125] Barnes MF, Patchett. BJ Cell wall degrading enzymes and the softening of
     senescent strawberry fruit. J Food Sci, 1976,41:1392-1395
    [126] Huber DJ. Strawberry fruit softening: the potential roles of polyur-onides
     and hemicelluloses.J Food Sci, 1984,49:1310-1315
    [127] Huber DJ. The Role of cell wall hydrolases in fruit softening. Horticultural Reviews,
     1983, 5:169-219
    [128] Olah A F,et al. Ultrastructural localization of oxidative and peroxidative activities in
     carrot suspension cell culture.Protoplas ma,1981,106:231-248
    [129] Vaughn K C,et al.Tentoxirrinduced loss of plastidic polyphenol oxidase.
     Physiol.Plant 1981 ,53 :421-428
    [130] Vaughn K C,et al.Tissue localization of polyphenol oxidase in Sorghum.
     Protoplas ma,1981,108:319-327
    [131] Vaughn K C,et al.Polyphenol oxidase :the chloroplast oxidase with no established
     function.Physiol Plant,1988,72:659-665
    [132] Arnon D I.Copper enzymes in isolated chloroplasts :polyphenol oxidase in
     Beta vulgaris.Plant Physiol,1949,24:1-15
    [133] Henry E N,et al.Sorbitol-disrupted spinach( Spinacia oleracea L) chloro-
     plasts:cytoche mical localization of polyphenol oxidase in discontinuous sucrose density
     gradient fractions .J Sub micros Cytol,1981,13:365-371
    [134] Shahar T,et al.The tomato 66.3-kD polyphenol oxidase gene:molecular
     identification and developmental expression .Plant Cell,1992,4 :135-147
    [135] Vaughn K C,et al. Function of polyphenol oxidase in higher plants.Physiol
     Plant,1984,60:106-112
    [136] Martyn R D,et al.Ultrastructural localization of polyphenol oxidase
     activity in leaves of healthy and diseased waterhyaciath.Phytopathology,1979,
     69:1278-1287
    [137] Mueller W C,et al.Ultrastructural localization of polyphenol oxidase and
     peroxidase in roots and hypocotyls of cotton seedlings .Can.J Bot,1978,56:
     1579-1587
    [138] Vaughn K C,et al.Tentoxin effects on Sorghum :the role of polyphenol
     oxidase.Protoplas ma,1982,110:48-53
    [139] Vaughn K C,et al.Tentoxin stops the processing of polyphenol oxidase into
     an active enzyme.Physiol Plant,1984,60:257-261
    [140] Duke S O,et al. Lack of involvement of polyphenol oxidase in orthohydroxylation of
     phenolic compounds in mung bean seedlings. Physiol Plant,1982, 54:382-385
    
    
    36 套袋红富士苹果发育过程中果皮超微结构变化及相关酶类研究
    [141] Fujiyanma K, Taakemura H, Shibayama S, et al. Stucture of the horseradish peroxidase
     isozye c genes. Eur J Biochem, 1988,173:681-687
    [142] Siegel B Z, Plant peroxidases-an organic perspectives, Plant Growth Regulation,
     1993,12 :303-312
    [143] Van Huyster R B, Some molecular adpects of plant peroxidase: biosynthetic studies.
     nn Rev Plant Physiol, 1987,38:205-219
    [144] Obinger C, Burner U, Ebermann R, Plant Peroxidases: Biochemistry and Physiology.
     Pro-ccedings: IV International Symposium 1996. Vienna: University of Agriculture, 1996
    [145] Burel C, Berthe T, Mery J C, et al. Isoelectric focusing analysis of peroxidases in flax
     seedling hypocotyls grow in different light condition. Plant Physiol Biochem, 1994,
     32:853-860
    [146] LeeM Y, Choi Y, Kim S S. Purification and immuunological relationships of six radish
     isoperoxidases. Plant Physiol Biochem, 1994, 32:259-265
    [147] Asada K. Ascorbate peroxidases hydrogen peroxide-scavenging enzyme in plants.
     Physiol Plant, 1992, 85:235-241
    [148] Sato Y, Sugiyama M, Takashi S, et al. Purification of cationic peroxidases bound
     ionically to the cell walls from the roots of Zinia elegans. J Plant Res, 1995,
     108:463-468
    [149] Quesada M A, Tigier H A, Bukovac M J, et al. Purification of an anionic isoperoxidase
     from peach seeds and its immunologica comparison with other anionic isoperoxidases.
     Physiol Plant, 1992, 79:623-628
    [150] Kawaoka A, Kawomoto T, Ohta H, et al. Wound-induced expression of horseradish
     perox idase. Plant Cell Reports, 1994,13:149-154
    [151] Lagrimin L M, Rothstein S. Tissue specificity of tobacco peroxidase isozymes and their
     induction by wounding and tobacco mosaic virus infection. Plant Physiol,
     1987,84:438-442
    [152] Brownleader M D, Hopkins J, Mobasheri A, et al. Role of extensin peroxidase in
     tomato (Lycopersicom esculenturn Mill.) seedling growth. Planta, 2000, 210:668-676
    [153] Mensen R, Hager A, Salzer P. Elicitor-induced change of wall-bound and secreted peroi
     dase activities in suspension cultured spruce(Picea abies) cells and attenuated by auxins.
     Physiol Plant, 1998, 102:539-546
    [154] Vera P, Tornero P, Corejero U. Cloning and expression analysis of a viroid-induced pero
     idase from tomato plants. Mol Plant Microbe Interact, 1993, 6:790-794
    [155] Morgens P H, Callahan A M, Dunn L J, et al. Isolation and sequencing of cDNA clones
     endoing ethylene-induced putative peroxidases from cucumber cotyptiles. Plant Mol Biol,
     1990, 14:715-725
    
    
    参考文献 37
    [156] Roberts E, Kolattukudy P E. Molecular cloning nucleotide, sequence, and abscisic acid
     induction of a suberization associated highly anionic peroxidase. Mol Gen Genet, 1989,
     217: 223-232
    [157] Quiroga M, Guerrero C, Botella M A, et al. A tomato peroxidase involved in synthesis
     of lignin and suberin. Plant Physiol, 2000, 122:1119-1127
    [158] Prosad T, Anderson M D. Stewart C R. Localization and characterization of peroxidases
     in the mitochondria of chilling acclimated seedlings. Plant Physiol, 1995, 108: 1597-605
    [159] Zapata J M, Sabater B, Martin M. Identification of a thylakoid peroxidase of barley whi
     -ch oxidasizes hydroquinone. Phytochemistry, 1998, 48:1119-1123
    [160] Lewis N, Yamamoto E. Lignin: occurrence, biogenesis and biodegradation. Ann Rev
     Plant Physiol Plant Mol Biol, 1990, 41:455-496
    [161] Christensen J H, Bauw G, Welinder K G, et al. Purification and characterization of
     peroxidases correlated with lignification in poplar xylem. Plant Physiol, 1998, 118:125
     -135
    [162] Graham M Y, Graham T L. Rapid accumulation of anionic peroxidases and phenolic
     poly mers in soybean cotyledon tissues following treatment with Phytophthora
     megasperma f. sp. Glycines wall glucan. Plant Physiol, 1991, 97:1445-1455
    [163] Casal J J, Mella R A, Ballari C L, et al. Phytochrome-mediated effects on extracellular
     peroxidase activity, lignin content and bending resistance in etiolated Vicia faba
     epicotyls. Physiol Plant, 1994, 92:555-562
    [164] Lagrimini L M. Wound-induced deposition of polyphenols in transgenic plants overexp-
     ressing peroxidase. Plant Physiol, 1991, 96:577-583
    [165] Nicholson R L, Hammerschmidt R. Phenolic compounds and their role in disease resist-
     ance. Ann Rev Phytopathol, 1992, 30:369-389
    [166] Sato Y, Sugiyama M, Gorecki R J, et al. Interrelationship between lignin deposition and
     the activities of peroxidase-isoenzymes in differentiating tracheary elements of Zinnia.
     Planta, 1989, 189:584-589
    [167] Imberty A, Goldberg R, Catesson A M. Isolation and characterization of Populus isoper
     oxidases involved in the last step of lignin formation. Planta, 1995, 164:221-226
    [168] Bouranis D J, Niavis C A. Cell wall metabolism in growing and ripening store fruits[J].
     Plant Cell Physiol, 1992, 33:999-1008
    [169] Ben Arie, R., L, Sonego. Changes is pectic substances in ripening pears. J Amer, Soc,
     Hort. Sci., 1979, 104:500-505
    [170] Crookes, P R, D. Grierson. Ultrsructure of tomato fruit ripening and the role of poly-ga
     lacturonase isoenzymes in cell wall degradation. Plant physiol, 1983, 72:1088-1093
    
    
    38 套袋红富士苹果发育过程中果皮超微结构变化及相关酶类研究
    [171] Platt Aloia, K A, W. W Thomson. Ultrstructure of the mesocarp of mature avocado fruit
     and changes associated with ripening. Ann Bot., 1981, 48:451-465
    [172] Buescher R W, Furmanski R J. Role of pectinesterase and polygalacturonase in the form
     -ation of woolliness in peaches. J. Food Sci,1978,43:264-266
    [173] Pressey R, Avants J K. Difference in polygalacturonase composition of clingstone and
     freestone peaches. J. Food Sci, 1978, 43:1415-1417,1423
    [174] Arakawa O,Ue matsu N,NaKajima H. Effect of bagging on fruit quality in apples. Bulle
     -tin of the Faculty of Agriculture. Hirosaki University,1994 ,57:25-32
    [175] Flefcher L A, A preliminary study of the factorsaffecting red color of apples. Proc Amer
     Soc Hort Sci, 1929, 26:191-196
    [176] Cynfhia L B.Accumulation of antiosidants in apple popel as related to pre-harvest facto-
     rs and superficial scald susceptibility of thefruit.J Amer Soc Hort Sci,1994, 119(2):
     264-269.
    [177] Knee M,Bartely I M.Rescent Advances in the Biochemisty of Fruits and Vegetables.
     London: Acedem is Press, 1981
    [178] ARMANDO CARRILLO-LOPEZ, ANDRES CRUZ-HERNANDEZ. Hydrolytic Acti-
     vity and Ultrastructural Changes in Fruit Skins from Two Prickly Pear (Opuntia sp.)
     Varieties during Storage Journal of Agricultural and Food .chemistry, 2002, 50(6) :
     1681-1685
    [179] Ali ZA,Brady CJ. Purification and characterization of the polygalacturonases of tomato
     fruits. Aust J Plant Physiol, 1982,9:155一169
    [180] Neelam P, Sanwal GG, Pathak N. Multiple forms of polygalacturonase from banana
     fruit. Phytochemistry, 1998, 48(2):249-255
    [181] Tonutti P, Bonghi C,Vidrih R, et al. Biochemical and molecular aspects of peach fruit
     ripening.COST 94. The postharvest treatment of fruit and vegetables:quality criteria.
     Proceedings a workshop, Slovenia, 1994.Brussel:Directorate-General Informatio,
     Communication,culture andAudiovidual,commission of the European Communities, 1994,
     101-104
    [182] Nogata Y, Ohta H,Voragen AGJ. Polygalacturonase in strawberry fruit. Pytochemistry,
     1993, 34:617-620
    [183] Della PD,Bennett AB.In vitro synthesis and processing of tomato fruit polygalacturon
     -ase. Plant Physiol, 1988,86:1057-1063
    [184] Osteryoung KW,Toenjes K, Hall B, et al. Analysis of tomato polygalacturonase expre-
     ssion in transgenic tobacco. Plant Cell, 1990, 2:1239-1248
    [185] Brady CJ, Macalpine G,Mcglasson WB, et al. Polygalacturonase in tomato fruits and
    
    
    参考文献 39
     the induction of ripening. Aust J Plant Physiol, 1992, 9:171-179
    [186] Rose JKC,Hadfield KA, Labavitch JM, et al. Temporal sequence of cell wall
     disassembly in rapidly ripening melon fruit. Plant Physio1, 1998, 117 2):345-361
    [187] Bonghi C,Ruzzon S,Tonutti P, et al. Peach fruit ripening: the involvement of cellulase
     and polygalacturonase. Proceedings of the third congress of the European Society for
     Agronomy, Abano Padova,1994.Colmar:European Society of Agronomy, 1994, 580-581
    [188] Chin LH,Ali Z M,Lazan H, et al. Cell wall modifications ,degrading enzymes and
     sofening of Carambolu fruit during ripening. Journal of Expremental Botany.1999,
     50(335):767-775
    [189] Ralph J, et a1. NMR characterization of altered lignins extracted from tobacco plants
     down-regulated for lignification enzymes cinnamyl-alcohol dehydrogenase and
     cinnamoylCoA rductase. Proc Natl Acad Sci, 1998, 95:12803
    [190] Christensen J H, Bauw G, Welinder K G, et al. Purilication and characterization of
     peroxidases correlated with lignification in poplar xylem. Plant Phsiol, 1998, 118:125
     -135
    [191] Quiruga M, Guerrero C, Botella M A, et al. A tomato peroxidase involved in the
     aynthesis of lignin and suberin. Plant Physiol, 2000, 122:1119-1127
    [192] Sato Y, Sugiyama M, Gorecki R J, et al. Interrelationship between lignin deposition and
     the activities of peroxidase-isoenzymes in differentiaing tracheary elements of Zinnie.
     Planta, 1989, 189:584-589

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700