用户名: 密码: 验证码:
Gd,Eu共掺杂LaPO_4的合成及发光性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土元素因其独特的4f电子层结构,有着优异的光学性能,在纳米发光材料领域具有很光明的应用前景。发展制备稀土纳米荧光材料的新方法,实现在纳米尺度上原子的可控排列;探索微观形貌与荧光性能的关联性;以及在实际应用上提高发光材料的稳定性和发光亮度对开展稀土发光材料的深度利用和精细研究方面具有独特的意义。
     本文采用化学沉淀法和水热法,以Eu2O_3、La(NO_3)_3·6H_2O、Gd(NO_3)_3和H3PO_4为原料,氨水控制pH,合成了Gd~(3+)和Eu~(3+)共掺杂的LaPO_4纳米材料,结合XRD、DTA、SEM和荧光测试等手段,对荧光粉的物相、形貌和发光性能进行了表征,分析了pH值、热处理温度、掺杂离子浓度、表面活性剂对产物性能的影响。
     实验结果表明:室温、强酸性溶液中,化学沉淀法合成的粉体为束状的六方相LaPO_4,长度在300-700nm之间;碱性时仍为六方相,但长径比减小,形貌类似枝杈;中性时没有明显衍射峰,变为米粒状的团簇结构。荧光性能显示pH=9时发光强度最好,(~5D_0→~7F_1)和(~5D_0→~7F_2)跃迁强度相当,Eu~(3+)为橙-红发射,不在反演中心格位。粉体经过热处理之后,物相和荧光性能都发生了变化。单斜相逐渐取代六方相,1000℃变为完全的单斜相,发光强度也最高,同时粉体的团聚也变得严重,形成了许多大的块状颗粒。比较不同离子浓度时粉体的荧光性能发现,离子在高浓度时发生了浓度猝灭,确定了最佳离子浓度为Gd~(3+)(2.5%mol),Eu~(3+)(5%mol),Gd~(3+)→Eu~(3+)的能量传递方式为共振能量传递。
     控制pH=9,用水热的方法,在不同温度下合成了LaPO_4 :Gd~(3+),Eu~(3+)纳米粉。100℃时得到六方相,不太均一的长棒状结构的LaPO_4;200℃时变为粗短的柱状结构,晶型也变为单斜相。与1000℃煅烧样品相比,晶化程度还不够高,可能是温度不够高,水热釜密封不够好,或者时间不够长所致。因为结晶性能差,发射强度也比较弱。表面活性剂PEG2000的加入,使得晶粒有从棒状生长向颗粒生长的趋势,主要是由于大分子的空间位阻效应抑制了晶粒的各向异性生长。水热条件下晶体的生长可用“生长基元”理论来解释。生长基元通过在某些界面上的叠合来控制生长速率,决定晶体的最终形貌。
Due to the unique 4f electronic shell, lanthanide elements show outstanding optical properties, which make them have bright applications prospect in nanophosphors field. Establishing new synthetic strategies of these materials to make the atomic arrangement controllable in the nano-scale; understanding the relations between morphology and luminescent properties and raising the stability and intensity of materials practically are crucial to deep processing and detailed study of rare earth phosphors.
     In this article, chemical precipitation method and hydrothermal method are used to synthesize LaPO_4 :Eu~(3+),Gd~(3+), with Eu2O_3、La(NO_3)3·6H_2O、Gd(NO_3)3 and H3PO_4 as raw materials and ammonia as pH regulator. The phase, morphology and luminescent properties of products are investigated by XRD、DTA、SEM and spectrofluorometers; the effect of pH values, thermal treatment temperature, doped concentration of ions and surfactant on the luminescent properties are studied.
     The experimental results show that the products are fasciculated hexagonal LaPO_4 synthesized by chemical precipitation method under acidic condition at room temperature, which have a length of 300-700nm; the phase is still hexagonal with a decreased length-diameter ratio under basic condition but the morphology is branch-like; when pH=7, the grain-like cluster products have no obvious diffraction peaks. Photoluminescence analysis shows that the products have the greatest luminescent properties when pH=7, and the transition intensities of (5D0→7F1) and (5D0→7F2) are equal, indicating a non-centro-symmetrical environment for Eu~(3+) with orange-red emission. The phase、morphology and luminescent properties are changeable after the thermal treatment. Monoclinic powders replace hexagonal ones gradually, and products have a totally monoclinic phase and greatest intensity after calcinations at 1000℃. Meanwhile powders gather into large massive particles. The best concentration of doped ions is confirmed by contrasting photoluminescence intensity of powders with different ion concentrations, the best values of Gd~(3+) and Eu~(3+) are 2.5%mol and 5%mol respectively. Concentration quenching occurs with increasing concentration. The energy transfer mode between Gd~(3+) and Eu~(3+) is resonance transfer dominated by electric multipole interaction.
     In the second part, LaPO_4 :Eu~(3+),Gd~(3+) phosphors(pH=9) are synthesized by hydrothermal method at different temperatures. The obtained LaPO_4 is hexagonal phase and inhomogenous linear structure after 100℃. When the temperature is 200℃, the phase turns to monoclinic, and the morphology turns to smooth columnar. Compared with ones calcined at 1000℃, products synthesized by hydrothermal method have a low degree of crystallization and a low luminescence intensity, which caused by low temperature, bad sealed autoclave, or not long time. Products have a growth trend from linear ones to particles with the addition of PEG2000. This is because Steric Hindrance Effect of macromolecule suppresses the anisotropy growth.“Growth unit”theory is used to explain the growth of crystal under hydrothermal condition. The“unit”control the rate of reaction ions by aggregating on some interfaces to determine the final morphology of crystals.
引文
[1]王振领,乔自文,权泽卫,林君. LaPO_4: Eu~(3+)纳米粒子的多醇法合成及其光致发光性能研究[J].中国稀土学报, 2006 , 24 (3): 269-272
    [2]杨定明.纳米级稀土发光材料的制备及发光性能研究[D].成都:四川大学(博士学位论文),2005:55-62
    [3] Hongwu Zhang, Xiaoyan Fu, Shuyun Niu, Gongquan Sun, Qin Xin, Photoluminescence of YVO_4:Tm phosphor prepared by a polymerizable complex method[J]. Solid State Communication, 2004,132 (8):527-531
    [4] WULED LENGGORO I, XIA B, HIROAKI M, et al. Synthesis of LaPO_4:Ce,Tb Phosphor Particles by Spray Pyrolysis[J]. Materials Letters,2001,(50):92-96
    [5] KANG Y C,KIN E J,LEE D Y, et al. High Brightness LaPO_4:Ce,Tb Phosphor Particles with Spherical Shape[J].Journal of Alloys and Compounds,2002,(347):266-270
    [6] HAASE M,RIWOTZKI K,MEYSSAMY H, et al. Synthesis and Properties of Colloidal Lanthanide-doped Nanocrystals[J]. Journal of Alloys and Compounds, 2000, (303-304): 191-197
    [7] DEXPERT G J,MAURICOT R,FAUCHER M D. Spectroscopy of Eu~(3+) Ions in Monazite Type Lanthanide Orthophosphates LnP04, Ln=La or Eu[J]. Journal of Luminescence, 1996, (69):203-215
    [8]綦艳,孟建新,刘敏.纳米LaPO_4:Ce,Tb的明胶网格沉淀法制备及发光研究[J].稀土,2006,27(1):15-18
    [9]曹锡章,张晼蕙,杜尧国;;无机化学.高等教育出版社,1983,520-546
    [10]江祖成,蔡汝秀,张华山,稀土元素分析化学.科学出版社,北京,2006,6-7
    [11] A. Jouini, J. C. Gacon, M. Ferid, et al, Luminescence and scintillation properties of praseodymium poly and diphosphates [J]. Optical Materials, 2003 ,24 (2):175-180
    [12] Hongbin Liang, Ye Tao, Wenxuan Chen, et al. The luminescent properties of lanthanide ions activated BaBPO5 in VUV-Vis rang [J]. J. Physics and Chemistry of Solids, 2004, 65 (6):1071-1076
    [13] M. Haase, K. Riwotzki, H. Meyssamy, et al. Synthesis and properties of colloidal lanthanide-doped nanocrystals [J]. J. Alloy and Compounds, 2000, 303-304:191-197
    [14]周永慧,林君,张洪杰.纳米发光材料研究的若干进展[J],化学研究与应用,13(2001)117-122
    [15]张若桦.稀土元素化学[M].天津:天津科技出版社,1988
    [16] Ssferreira R A, Carlos L D, Goncualves R R, Ribeiro S J L, Bermudez V Z. Energy-transfer mechanisms and emission quantum yields in Eu-based siloxane-poly(oxyethylene) nanohybrids[J]. Chem. Mater., 2001,13:2991-2998
    [17]孙江亭.具有宽带红外发射的掺铒硼硅玻璃的研究[D].长春:中国科学院研究生院,长春光学精密接卸与物理研究所(博士学位论文), 2005:32-51
    [18]苏锵.稀土化学[M].郑州:河南科学出版社,1989
    [19] Chen S J, Chen X T, Yu Z, et al. Preparation and characterization of fine Sr2CeO_4 blue phosphor powders[J]. Sol. Sta. Commun. 2004, 3-4(130):281-285
    [20] Dijken A van, Meulenkamp E A, Vanmaekelbergh D, et al.. The luminescence of nano-crystalline ZnO particles: the mechanism of the Ultraviolet and visible emission[J]. J. Lumin.. 2000, 87-89:454-456
    [21]张洪武.纳米稀土钒酸盐、磷酸盐发光材料的合成及性能研究[博士学位论文].大连:中国科学院大连化学物理研究所,2005
    [22] van Uitert L G, Johnson L F, J.Chem.Phys., 1966,44:3514.
    [23]朱汇,熊光楠,Eu2+在磷酸镧中的发光及Ce~(3+)-Eu2+的能量传递,发光学报,2003, 24 (3): 234-237
    [24]张思远,王庆元,白云起,武士学.发光与显示,1983,4:31
    [25]张思远,王庆元,武士学,白云起.物理学报,1984,33:874
    [26]马尔富宁A C.矿物的谱学、发光和辐射中心.蔡秀成等译.北京:科学出版社,1984.
    [27]徐长远,王永生,黄最明,等.发光材料研究进展[J].光电子技术与信息,1997,10(l):8-12
    [28]孙家跃,杜海燕等.固体发光材料[M].北京:化学工业出版社,2003, 89
    [29] Blasse C, Grabmaier B C, Luminescent materials [M]. Springer-Verlag, Beilin Heidelberg, NewYork, 1994
    [30]刘强. LaPO_4:Eu~(3+)纳米制备及发光性能研究[D].青岛:中国海洋大学(硕士学位论文). 2010:38-40
    [31] Bae J S and Jeong J H, et al Improved photoluminescence of pulsed-laser-ablated Y2O3: Eu~(3+) thin-film phosphors by Gd substitution [J]. Appl Phys Lett, 2003, 82 (21): 3629-3631
    [32] Yan Chun Hua, Sun Ling Dong, Liao Chun Sheng, et al. Eu~(3+) ion as fluorescent probe for detecting the surface effect in nanocrystals [J]. Appl. Phys. Lett. 2003, 82 (20): 3511-3514
    [33] Tao Y, Zhao G Zhang W, et al. Combustion synthesis and photoluminescence of nanocrystalline Y2O3: Eu Phophors [J]. Mater Res Bull, 1997, 32 (5): 501-506
    [34] Palilla F C, Levine A K. YVO(4):Eu: a highly efficient, red-emitting phosphor for high pressure mercury lamps[J]. Appl. Opt., 1966, 5(9):1467-1468
    [35]张忠义,李晓丽,沈雷军,韩莉,周永波. (Y, Gd)BO3: Eu~(3+)的结构和发光性质[J].稀土,2010,31(5),19-23
    [36]于立新,曹林,杨殿范,张东丽. CaSi03:Eu的发光性质[J].硅酸盐学报,2003, 31 (9): 900-902
    [37]李锋,郭兴家,王猛,徐淑坤. GdPO_4: Eu~(3+)和GdPO_4: Ce~(3+), Tb~(3+)纳米晶多元醇的合成与表征[J].无机化学学报,2009,25(6),968-972
    [38] Hao J H and Gao J. Abnormal reduction of Eu ions and luminescence in CaB2O_4: Eu thin films [J]. Appl. Phys. Lett. 2004, 85 (17): 3720-3723
    [39] Nogami M, Ohno A, et al. Laser-induced SnO2 crystallization and fluorescence properties in Eu~(3+)-doped SnO2-SiO2 glasses [J]. Phys Rev B, 2003, 68: 104204-104211
    [40] Yanes A C, Castillo J Del, et al. Nanocrystal-size selective spectroscopy in SnO2: Eu~(3+) semiconductor quantum dots [J]. Appl Phys Lett, 2004, 85 (12): 2343-2346
    [41] You H P and Nogami M. Local structure and persistent spectral hole burning of the Eu~(3+) ion SnO2-SiO2 glass containing SnO2 nanocrystals [J]. J Appl Phys, 2004, 95 (5): 2781-2786.
    [42] Chunfang Wu, Yuhua Wang, Wei Jie. Hydrothermal synthesis and luminescence properties of LnPO_4:Tb(Ln=La, Gd) phosphors under VUV excitation[J]. Journal of Alloys and Compounds. 2007,436,383-386
    [43]李岚,李光,王达健,陶怡,张晓松.真空紫外光激发下GdPO_4:RE~(3+)荧光材料的能量传递过程[J].中国科学E辑. 2006,36(11),1313-1319
    [44]彭智伟,王玲玲,刘晃清,黄维清,邹炳锁. Gd2O3: Eu~(3+)纳米晶的燃烧合成及光致发光性质[J].物理学报. 2007,56(2),1162-1165
    [45] S. Hachani, B. Moine, A. El-akrmi, M. Ferid. Luminescent properties of some ortho- and pentaphosphates doped with Gd~(3+)-Eu~(3+): Potential phosphors for vacuum ultraviolet excitation[J]. Optical Materials. 2008
    [46]周东方,施朝淑,张庆礼,陈永虎.稀土Gd~(3+)掺杂对PbWO_4发光的增强[J].发光学报. 2001.22(3),248-251
    [47]林福东,唐子龙,张中太. Gd掺杂对Ce0.67Tb0.33MgAl11O19发光性能的影响[J].稀有金属材料与工程. 2004,33(10),1116-1119
    [48]袁剑辉,袁红辉,张振华,程玉民,王晓军.痕量双掺Sm~(3+)和Gd~(3+)对Y2O2S: Eu~(3+)发光特性的影响[J].中国稀土学报. 2005,23(4),421-424
    [49] Ssferreira R A, Carlos L D, Goncualves R R, Ribeiro S J L, Bermudez V Z. Energy-transfer mechanisms and emission quantum yields in Eu~(3+)-based siloxane-poly(oxyethylene) nanohybrids[J]. Chem. Mater., 2001, 13:2991-2998
    [50]张新奇,俞建长,张国清,陈崇城. pH值对六方相磷酸铈纳米材料微观形貌和荧光发射性能的影响[J].硅酸盐学报. 2008,36(4),565-568
    [51]钱立武.稀土化合物纳米材料的液相控制合成、形成机理及性能研究[D].上海:上海交通大学[博士学位论文]. 2009,38-40
    [52]吉林大学,四川大学.物理化学与胶体化学.人民教育出版社.1980,422
    [53] Zhenxiao Fu, Wenbo Bu, High efficiency green-luminescent LaPO_4: Ce, Tb hierarchical nanostructures: Synthesis, characterization, and luminescence properties, Solid State Sciences 2008, 10 (8): 1 062-1067
    [54] Lixin Yu, Hongwei Song, Shaozhe Lu, Zhongxin Liu, Linmei Yang. Influence of shape anisotropy on photoluminescence characteristics in LaPO_4: Eu nanowires. Chemical Physics Letters, 2004, 399 (4-6): 384-388
    [55] Yue-ping Fang,An-Wu Xu, Rui-Qi Song, Hua-Xin Zhang, Li-Ping You, Jimmy C. Yu, and Han-Qin Liu. Systematic Synthesis and Characterization of Single-Crystal Lanthanide Orthophosphate Nanowires. J. Am. Chem. Soc. 2003, 125 (51): 16025-16034
    [56] Yun Chan Kang, Eun Joung Kim, Dong Youl Lee, Hee Dong Park.High brightness LaPO_4: Ce, Tb phosphor particles with spherical shhape. Alloys and Compounds, 2002, 347 (1-2): 266-270
    [57] Lixin Yu, Hongwei Song, Shaozhe Lu, Zhongxin Liu, Linmei Yang,and Xianggui Kong. Luminescent Properties of LaPO_4:Eu Nanoparticles and Nanowires. [J]. Phys. B2004, 108,16697-16702
    [58]彭宏博,魏坤,孙日圣.非球磨稀土磷酸盐绿色的研制[J].江西化工,2000,4:16-19.
    [59]赵小山,陈其安.用稀土草酸盐作前驱物合成磷酸镧铈铽[J].稀土,2002,23(3):12-15
    [60]刘南生,孙日圣,彭宏博等.共沉淀法制备不球磨稀土磷酸盐绿色荧光粉研究[J].发光学报,200l,22(4):412-416
    [61] S. Buddhudu, C. H. Kam, S. L. Ng, et al. Green color luminescence in Tb~(3+)(La,Ln)PO_4 (Ln=Gd or Y) photonic materials[J]. Materials Science and Engineering,2000,B72:27-30
    [62]于广聪.新型稀土磷酸盐体系绿色荧光粉的研究[J].稀有金属材料与工程,1997,26(1):44-47
    [63]孙曰圣,屈芸,张小林等.稀土绿色荧光粉LaPO_4:Ce~(3+),Tb~(3+)的锻烧条件研究[J].液晶与显示,2002,17(3):175-181
    [64]孙曰圣,张小林,邹建国等.绿色荧光粉LaPO_4:Ce~(3+),Tb~(3+)的发光性能研究[J].2003,24(3):16-19
    [65] S. Erdei, F. W. Ainger, D. Ravichandram, et al. Preparation of Eu~(3+):YVO_4 red and Ce~(3+), Tb~(3+): LaPO_4 green phosphors by hydrolyzed colloidal reaction technique[J]. Materials Letters,1997,30:389-393
    [66] I. Wuled Lenggoro, Bin Xia, Hiroaki Mizushima et al. Synthesis of LaPO_4:Ce~(3+),Tb~(3+) phosphor particles by spray pyrolysis[J]. Materials Letters, 2001,50:92-96
    [67] Yun Chan Kang, Eun Joung Kim, Dong Youl Lee, et al. High brightness LaPO_4:Ce~(3+),Tb~(3+) phosphor particles with spherical shape[J]. Journal of Alloys and Compounds, 2002,347:266-270
    [68] U. Rambabu, D. P. Amalnerkar, B. B. Kale, et al. Optical properties of LnaPO_4:Tb(Ln=Y, La and Gd) powder phosphor[J]. Materials Chemistry and Physics. 2001,70:1-6
    [69]徐文国,田一光,刘淼等.稀土磷酸盐发光材料的微波合成[J].高等学校化学学报,1996,17(10):1513-1515
    [70]徐华蕊,李凤生,陈舒林等,化工进展.1996,(5),29
    [71]姚连增,晶体生长基础.中国科学技术大学出版社,1995,258.
    [72]李愁强,硅酸盐学报,1994,22(l),85
    [73] S. L. Jones,C. J. Norman. J. Am. Ceram. Soc.,1988,71(4),C-190
    [74] W. H. Rhodes. J. Am. Ceram. Soc.,1981,64,19
    [75]吴虹.机遇与挑战(二).专家视点. 2010,5:24-27
    [76]杨丽格,周泊,陆天虹,蔡称心.稀土磷酸盐纳米发光材料的研究展望[J].应用化学. 2009,26(1),2-6
    [77]李建宇.稀土发光材料及其应用.北京:化学工业出版社. 2003
    [78] Sun Yuesheng, Zhang Xiaolin, Zhou Jianguo. Study on luminescence properties of green-emitting phosphors LaPO_4: Ce,Tb [J]. Chin. Rare Earths. 2003, 24 (3): 16-19
    [79] Meyssamy H, Riwotzki K. Wet-chemical synthesis of doped colloidal nanomaterials: particles and fibers of LaPO_4:Eu, LaPO_4:Ce and LaPO_4:Ce, Tb [J]. Adv. Mater., 1999,11:840
    [80] MURRAY C B,NORRID J,BAWENDI M G. Synthesis and characterization of nearly monodisperse CdE(E=S,Se,Te)semiconductor nanocrystallites[J]. J. Am. Chem. Soc.,1993,115(19):8 706–8 715
    [81] KANE R S,COHEN R E,SILBEY R. Theoretical study of the electronic structure of PbS nanoclusters[J].J Phys. Chem,1996,100(19):7 928–7 932
    [82] H wu, J M et al. Mater Res Bull[J]. 2005,40:1662
    [83] Y.J. Zhang, H.M. Guan, The growth of lanthanum phosphate (rhabdophane) nanofibers via the hydrothermal method, Materials Research Bulletin 40(2005)1536-1543
    [84] Liwu Qian, Weiming Du, Qiang Gong, Xuefeng Qian. Conrolled synthesis of light rare earth phosphate nanowires via simple solution route.Materials Chemistry and Physics ,2008, xxx: 6
    [85] Poznyak S K, Talapin D V and Kulak A I. Structural, optical, and photoelectrochemical properties of nanocrystalline TiO2-In2O3 composite solids and films prepared by sol-gel method [J]. J. phys. Chem, 2001, 105:4816-4823
    [86] Peng Z A, Peng X G. Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 2001, 123:1389-1395
    [87] Peng Z A, Peng X G. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124: 3343-3353
    [88] Wang X, Li Y D. Synthesis and characterization of lanthanide hydroxide single-crystal nanowires. Angew. Chem. Int. Ed. 2002, 41: 4790-4793
    [89] Fang Y P, Xu A W, Song R Q, et al. Systematic synthesis and characterization of single-crystal lanthanide orthophosphate nanowires. J. Am. Chem. Soc. 2003, 125: 16025-16034
    [90] Blasse G. Chemistry and physics of R2activated phosphors [J ] . Handbook on the Physics and Chemistry of Rare Earths , 1979 , 4 :2372274
    [91] Xiaokong Liu, Qifeng Wang, Zhongmin Gao, Junqi Sun, Jiacong Shen. Fabrication of Lanthanide Phosphate Nanocrystals with Well-controlled Morphologies by Layer-by-layer Adsorption and Reaction Method at Rom Temperature[J]. Crystal Growth and Design. 2009,9(8):3707-3713
    [92] H. Song, L. Yu, S. Lu, T. Wang, Z. Liu, L. Yang, Remarkable differences in photoluminescent properties [J]. Appl. Phys. Lett, 2004, 85: 470-472
    [93] Wei, Z.; Sun, L.; Liao, C.; Yin, J.; Jiang, X.; Yan, C. J. Phys. Chem. B 2002, 106, 10610
    [94] (a) Hoefdraad, H. E. J. Solid State Chem. 1975, 15, 175. (b) Tao, Y.; Zhao, G.; Ju, X.; Shao, X.; Zhang, W.; Xia, S. Mater. Lett. 1996, 28, 17
    [95] Mullica D F, Milligan W O, Grossie D A, et al. Ninefold coordination in LaPO_4-pentagonal interpenetrating tetrahedral polyhedron. Inorg, Chim. Acta, 1984, 95 (4): 231
    [96] Mooney R C L. X-ray diffraction study of cerous phosphate and related crystals. hexagonal modification. Acta Crystallogr, 1950, 3: 337
    [97]张吉林,洪广言.稀土纳米发光材料研究进展[J].发光学报. 2005,26(3):285-290
    [98] Reisfeld R, Greenberg E, Velapold R. J. Chem. Phy.[J], 1972, 53: 1698
    [99] S. Buddhudu, M. Morita, Temperature-dependent luminescence and energy transfer in europium and earth codoped nanostructured xeroel and sol-gel silica glasses[J], Journal of Luminescence, 1999:83
    [100] Haase M, Riwotaki K, Synthesis and properties of colloidal lanthanide doped nanocrystals[J], Journal of Alloys and Compounds, 2000:191
    [101] FANG Y P, XU A W, SONG R Q, et al, Systematic Synthesis and Characterization of Single-crystal Lanthanide Orthophosphate Nanowires [J]. J. Am. Chem. Soc, 2003, (125): 1-5
    [102]肖进新.表面活性剂应用原理.北京:化学工业出版社,第1版. 2003
    [103]莫小刚,刘尚营.非离子表面活性剂浊点的研究进展[J].化学通报. 2001,8:483-487
    [104]卫芝贤,欧海峰,宫喜军,孙新建,朱振晓.表面活性剂PEG在掺锑纳米SnO2粉末氧化共沉淀制备中的作用[J].过程工程学报. 2005, 5(3):305-308
    [105]张文文,孟建新,曹利伟,刘应亮. LaPO_4:Eu~(3+)的PEG2000辅助水热法制备及发光特性[J].光谱学与光谱分析. 2008, 28(5): 1023-1025
    [106]施尔畏,夏长泰,王步国,仲维卓.水热法的应用与发展[J].无机材料学报.1996,11(2):194
    [107]晶体生长机理的研究综述[J].郝保红,黄俊华.北京石油化工学院学报.2006,14(2):58-63
    [108]晶体生长理论研究现状与发展[J].郑燕青,施尔畏,李汶军,王步国,胡行方.无机材料学报.1998,14(3):321-329
    [109]仲维卓,人工晶体,第二版。北京:科学出版社,1994.515

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700