用户名: 密码: 验证码:
光谱与密度泛函研究金属硫蛋白的结构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属硫蛋白(metallothionein,简称为MT),是一类具有高半胱氨酸含量(占总氨基酸含量的30%)、无芳香氨基酸、广泛存在于生物体内的低分子量金属蛋白。MT具有解重金属毒性、清除自由基和烷基化试剂的作用,在金属药物的药理研究中也具有重要地位。MT的结构研究一直是生命科学领域的研究热点。基于重金属易与MT结合,本论文研究了硫蛋白结合三种重要的金属离子——Bi3+、Pb2+和As3+的结构特性,主要结果包括:
     (1)采用基于密度泛函理论(Density functional theory)的B3LYP、 mPW1PW、OLYP和TPSSh方法,以及从头算(ab initio)的HF方法,对含主族金属铋、锑和砷的巯基小分子化合物M(SC6H5)3(M=Bi, Sb,As)的几何结构、振动频率和电子吸收光谱等进行了研究,并与文献报道的数据做了比较,确认适宜于各金属巯基化合物的最优化结构计算方法。结果显示:对于Sb(SC6H5)3和As(SC6H5)3, mPW1PW的计算精度明显高于其它四种计算方法;而对于复合物Bi(SC6H5)3, B3LYP方法能给出更高的计算精度。确定的最优计算方法将用于apo-MT结合Bi3+、Pb2+及As3+的结构研究。
     (2)采用紫外吸收光谱和CD光谱,研究了Bi3+结合脱金属硫蛋白(apo-MT)的反应过程及最终产物。确认产物中Bi3+和apo-MT的计量比为7:1,即形成Bi7-MT。CD光谱结果显示Bi7-MT具有不同于Zn7-MT和Cd7-MT的蛋白质二级结构。采用活性位点模型,利用密度泛函理论研究了Bi7-MT中Bi3+的三种可能配位结构(BiS3O1(1)、 BiS3O1(2)和BiS3O1(3)),并计算了生成络合结构的结合自由能和紫外吸收光谱。通过比较计算结果与实验光谱,揭示了Bi7-MT的内核结构模型为BiS3O1(1),其中Bi-O键中的配体氧来源于MT侧链上天冬氨酸的羧基。
     (3)采用紫外吸收光谱和圆二色光谱法研究了脱金属硫蛋白(apo-MT)及其单个结构域(apo-aMT, apo-βMT)、Zn7—MT在不同pH值下结合Pb2+的反应过程及最终产物。在pH5.4-7.0时,apo-MT结合Pb2+得到产物Pb7-MT;在pH5.4-4.0时,apo-MT结合Pb2+得到产物Pb7-MT', apo-αMT、apo-βMT及Zn7-MT结合Pb2+的产物与apo-MT相同。Pb7-MT和Pb7-MT'表现出不同的化学稳定性.Pb7-MT在pH2.5可完全脱去Pb2+,而Pb7-MT'在pH2.0时才能完全脱去Pb2+。Pb7-MT可以在低pH值转变为Pb7-MT,而Pb7-MT’具有较高的稳定性,即使在中性溶液中也能稳定存在。分别采用连续介质模型法及ONIOM分层方法处理蛋白质环境,探讨了Pb-MT和Pb7-MT'的结构及其电子吸收光谱。计算结果表明,相较于连续介质模型法,采用ONIOM方法获得的计算光谱更接近于实验光谱。中性条件下形成的产物Pb7-MT,其金属活性中心结构为Pb-S3三配位;酸性条件下形成的产物Pb7-MT',其金属活性中心结构较为复杂,同时含有Pb-S3三配位和Pb-S3O1的四配位结构,其中的配体O来自天冬氨酸残基上的羧基。Pb7-MT'较Pb7-MT更加稳定。
     (4)采用连续介质模型法和ONIOM分层方法,成功预测As6-MT的金属活性中心结构为As-S3配位的结构,该配位结构不同于Zn2+在Zn7-MT的配位结构。As3+具有与zn2+完全不同的配位结构,生物体摄入As3+后导致起酶催化的一些含锌蛋白结构发生变化,而失去生物功能,这可能是As3+具有毒性的原因之一。
Metallothionein (MT) is a class of metal protein characterized by a high cysteines content (up to30%of the amino acid residues), low molar mass and lack of aromatic amino acid residues. Chemical and spectroscopic studies have shown that MT can bind a wide range of metal ions. MT can lower heavy metals toxicology, capture harmful oxidant radicals and alkylating agent. MT also plays a central role in the pharmacology of metal-containing medicines. Due to its unique physiological functions, MT has been a hot topic in the life science. Elucidating the structure of MT is important for understanding its physiological functions. Here, the structures of three kinds of MT (Bi-MT, Pb-MT and As-MT) were investigated using spectroscopy and theoretical calculation methods. The main results were shown in the following:
     (1) The molecular geometry, vibration frequencies and electric absorption spectrum of metal thiolate complexes M(SC6H5)3(M=Bi, Sb or As) have been calculated with density functional (mPW1PW, B3LYP, TPSSh and OLYP) and ab initio method (HF), respectively. The theoretical results were compared to the available experimental data. It is demonstrated that mPW1PW functional is superior to other functionals (B3LYP, TPSSh and OLYP) and ab initio method (HF) in predicting molecular structures and vibration frequencies of Sb-thiolate and As-thiolate complexes. For Bi-thiolate complex, the hybrid density functional B3LYP gives better performance than other methods. The theoretical electric absorption spectra of Bi(SC6H5)3from B3LYP functional is similar to the available experimental data, which confirms the rationality of theoretical calculation method. The confirmed optimal theoretical calculation method for each complex will be helpful for our further understanding on the complexation structures of apo-MT binding Bi3+,Pb2+and As3+
     (2) The coordination of Bi3+to rabbit liver metal-free metallothionein was investigated using both experimental and theoretical methods. Spectral results suggest that one apo-MT can bind7Bi3+ forming the product Bi7-MT. Circular dichroism spectra indicate that Bi-MT2has a different secondary structure from those of Zn-MT2and Cd-MT2. Three possible Bi3+coordination structures (BiS3O1(1), BiS3O1(2) and BiS3O1(3)) and their relative binding free energies in Bi7-MT2were calculated using the density functional theory by active-site modes. Absorption spectra corresponding to these coordination structures were evaluated by time-dependent density functional theory. By comparison of calculated results and experimental spectra, the coordination mode in Bi7-MT2was confirmed to be BiS3O1(1), and the carboxyl group in the aspartic acid residues contributes to the Bi-O bond formation. Furthermore, the theoretical method was successfully used to predict the formation process of Bi-O bond in Bi7-metallothionein, an important product in vivo on effectively reducing side effect of metal-containing drugs.
     (3) The binding of apo-MT, its individual domains (apo-αMT, and apo-βMT) and Zn7-MT with Pb2+at different pH conditions have been studied by UV-vis and CD spectra. For apo-MT, the product Pb7-MT was obtained from apo-MT under pH5.4-7.0, while the product Pb7-MT' was formed under pH5.4-4.0. The spectra results from apo-αMT, apo-βMT and Zn7-MT were similar to those from apo-MT. Pb7-MT' showed better chemical stability than Pb7-MT. The structures of Pb7-MT and Pb7-MT' were investigated by continuum model method and ONIOM method, respectively. ONIOM method gave better prediction for the absorption spectra of Pb-containing MT. The consistency of computed and experimental spectra suggests that Pb2+binds thiol groups in Pb7-MT by Pb-S3coordination model and in Pb7-MT'by Pb-S3O1coordination model. The ligand O in Pb7-MT' is from the carboxyl group in the aspartic acid residues.
     (4) The structure and absorption spectra of As6-MT were investigated by continuous medium model and ONIOM method, respectively. The calculation results indicate that ONIOM method can give better prediction for the absorption spectra of As6-MT. As3+binds thiol groups in As6-MT by As-S3coordination model, which is different from the coordination model of Zn2+in Zn-containing enzyme protein. That will change the structure of the enzyme protein structure. Therefore, after the replacement of Zn2+by As3+, the changed structures of Zn-containing enzyme proteins may induce the disability on their biological functions.
引文
[1]Margoshes M., Vallee B. L. A cadmium protein from equine kidney cortex[J]. J. Am. Chem. Soc.,1957,79(17):4813-4814.
    [2]Kagi J. H. R., Nordberg M. Metallothionein[M]. Basel:Birkhauser Verlag, 1979:1-15.
    [3]Rauser W. E., Curvetto N. R. Metallothionein occurs in roots of Agrostis tolerant to excess copper[J]. Nature,1980,287(5782):563-564.
    [4]Prinz M., Vincent Manson D., Hlava P. F.,Keil K. Inclusions in diamonds: garnet lherzolite and eclogite assemblages[J]. Phys. Chem. Earth,1975,9(1): 797-815.
    [5]Lerch K. Copper metallothionein, a copper-binding protein from Neurospora crassa[J]. Nature,1980,284(5754):368-370.
    [6]Blindauer C. A., Harrison M. D., Parkinson J. A., Robinson A. K., Cavet J. S., Robinson N. J.,Sadler P. J. A metallothionein containing a zinc finger within a four-metal cluster protects a bacterium from zinc toxicity[J]. PNAS,2001, 98(17):9593-9598.
    [7]Blindauer C. A., Harrison M. D., Robinson A. K., Parkinson J. A., Bowness P. W., Sadler P. J.,Robinson N. J. Multiple bacteria encode metallothioneins and SmtA-like zinc fingers[J]. Mol. Microbiol.,2002,45(5):1421-1432.
    [8]Chan J. N., Huang Z. Y., Merrifield M. E., Salgado M. T.,Stillman M. J. Studies of metal binding reactions in metallothioneins by spectroscopic, molecular biology, and molecular modeling techniques[J]. Coordin. Chem. Rev.,2002, 233-234(1):319-339.
    [9]Kagi J.,Kojima Y. Chemistry and biochemistry of metallothionein[J]. Exp. Supp.,1987,52(1):25-61.
    [10]Fowler B., Hildebrand C., Kojima Y., Webb M. Nomenclature of metallothionein[J]. Exp. Supp.,1987,52(1):19-22.
    [11]Vasak M. Metal removal and substitution in vertebrate and invertebrate metallothioneins [J]. Method Enzymol.,1991,205(1):452-458.
    [12]Stillman M. J. Metallothioneins [J]. Coordin. Chem. Rev.,1995,144(1): 461-511.
    [13]Robbins A., Mcree D., Williamson M., Collett S., Xuong N., Furey W., Wang B.,Stout C. Refined crystal structure of Cd, Zn metallothionein at 2.0 resolution[J]. J. Mol. Biol.,1991,221(4):1269-1293.
    [14]Arseniev A., Schultze P., Worgotter E., Braun W., Wagner G, Vasak M., Kagi J.,Wuthrich K. Three-dimensional structure of rabbit liver [Cd7] metallothionein-2a in aqueous solution determined by nuclear magnetic resonance[J]. J. Mol. Biol.,1988,201(3):637-657.
    [15]Schultze P., Worgotter E., Braun W., Wagner G., Vasak M., Kagi J.,Wuthrich K. Conformation of [Cd7]-metallothionein-2 from rat liver in aqueous solution determined by nuclear magnetic resonance spectroscopy[J]. J. Mol. Biol.,1988,203(1):251-268.
    [16]Messerle B. A., Schaffer A., Vasak M., Kagi J. H. R.,Wuthrich K. Three-dimensional structure of human [113Cd7] metallothionein-2 in solution determined by nuclear magnetic resonance spectroscopy[J]. J. Mol. Biol., 1990,214(3):765-779.
    [17]Suzuki K. T., Imura N., Kimura M. Metallothionein Ⅲ:biological roles and medical implications[M]. Basel:Birkhauser,1993:1-25.
    [18]Vasak M., Kaegi J. H. R., Hill H. a. O. Zinc (Ⅱ), cadmium (Ⅱ), and mercury (Ⅱ) thiolate transitions in metallothionein[J]. Biochemistry,1981,20(10): 2852-2856.
    [19]Otvos J. D., Armitage I. M. Structure of the metal clusters in rabbit liver metallothionein[J]. P. Natl. Acad. Sci. USA,1980,77(12):7094-7098.
    [20]Suzuki K. T., Imura N., Kimura M. Metallothionein Ⅲ [M]. Basel: Birkhauser Verlag,1993:36-78.
    [21]Nielson K. B., Atkin C. L.,Winge D. R. Distinct metal-binding configurations in metallothionein[J]. J. Biol. Chem.,1985,260(1):532-535.
    [22]Li Y. J., Weser U. Circular dichroism, luminescence, and electronic absorption of copper binding sites in metallothionein and its chemically synthesized, alpha. and. beta. domains[J]. Inorg. Chem.,1992,31(26):5526-5533.
    [23]Pickering I. J., George G. N., Dameron C. T., Kurz B., Winge D. R.,Dance I. G X-ray absorption spectroscopy of cuprous-thiolate clusters in proteins and model systems[J]. J. Am. Chem. Soc.,1993,115(21):9498-9505.
    [24]Dance I. G., Scudder M. L.,Fitzpatrick L. J. Preparation, distorted step structure, and topological analysis of (p3-SPh)2(p-SPh)2(CuPPh3)4(tol)2 (tol= toluene)[J]. Inorg. Chem.,1985,24(16):2547-2550.
    [25]Khan M. A., Kumar R.,Tuck D. G. The direct electrochemical synthesis of adducts of bis (diphenylphosphino) methane (dppm) with copper (I) thiolates and the X-ray crystal structure of Cu4(μ-SC5H11)4(dppm)2[J]. Polyhedron, 1988,7(1):49-55.
    [26]Presta A., Fowle D. A., Stillman M. J. Structural model of rabbit liver coppermetallothionein[J]. J. Chem. Soc., Dalton Trans.,1997,6 (1):977-984.
    [27]Palacios O., Polec-Pawlak K., Lobinski R., Capdevila M.,Gonzalez-Duarte P. Is Ag (I) an adequate probe for Cu (I) in structural copper-metallothionein studies?[J]. J. Bio. Inorg. Chem.,2003,8(8):831-842.
    [28]Jiang D. T., Heald S. M., Shaw T. K., Stillman M. J. Structures of the cadmium, mercury, and zinc thiolate clusters in metallothionein:XAFS Study of Zn7-MT, Cd7-MT, Hg7-MT, and Hg18-MT formed from rabbit liver metallothionein 2[J].J. Am. Chem. Soc.,1994,116(24):11004-11013.
    [29]Ngu T. T., Easton A., Stillman M. J. Kinetic analysis of arsenic-metalation of human metallothionein:significance of the two-domain structure[J]. J. Am. Chem. Soc.,2008,130(50):17016-17028.
    [30]Ngu T. T., Stillman M. J. Arsenic binding to human metallothionein[J]. J. Am. Chem. Soc.,2006,128(38):12473-12483.
    [31]Ngu T. T., Krecisz S., Stillman M. J. Bismuth binding studies to the human metallothionein using electrospray mass spectrometry[J]. Biochem. Biophys. Res. Commun.,2010,396(2):206-212.
    [32]Sadler P. J., Li H. Y., Sun H. Z. Coordination chemistry of metals in medicine: target sites for bismuth[J]. Coordin. Chem. Rev.,1999,185-186(1):689-709.
    [33]Bernhard W., Good M., Vasak M., Kagi J. H. R. Spectroscopic studies and characterization of metallothioneins containing mercury, lead and bismuth[J]. Inorg. Chim. Acta,1983,79(1):154-155.
    [34]He W. G., Chu D. Y., Yang J. Y., Yao D. F.,Shao M. C. A novel structure motif of metallothionein:Pb-MT'[J]. Chem. J. Chin. Univ.,1999,20(2):248-250.
    [35]He W. G., Chu D. Y., Yang J. Y., Yao D. F.,Shao M. C. Lead (II) binding to thionein[J]. Chin. Chem. Lett.,1999,10(1):87-90.
    [36]Chu D. Y., Tang Y., Huan Y., He W. G.,Cao W. The microcalorimetry study on the complexation of lead ion with metallothionein[J]. Thermochimica Acta, 2000,352-353(1):205-212.
    [37]Mehra R. K., Kodati R., Abdullah R. Chain length-dependent Pb(Ⅱ)-coordination in phytochelatins.[J]. Biochem. Biophys. Res. Commu., 1995,215(2):730-736.
    [38]Parson W. W. Modern optical spectroscopy:with examples from biophysics and biochemistry [M]. Verlag:Springer,2007:1-121
    [39]Kagi J. H. R., Vallee B. L. Metallothionein:a cadmium and zinc-containing protein from equine renal cortex[J]. J. Biol. Chem.,1961,236(9):2435-2442.
    [40]Stillman M. J., Cai W., Zelazowski A. J. Cadmium binding to metallothioneins:domain specificity in reactions of alpha and beta fragments, apometallothionein, and zinc metallothionein with Cd2+[J]. J. Biol. Chem., 1987,262(10):4538-4548.
    [41]Zelazowski A. J., Stillman M. J. Silver binding to rabbit liver zinc metallothionein and zinc. alpha. and. beta. fragments. Formation of silver metallothionein with silver (I):protein ratios of 6,12, and 18 observed using circular dichroism spectroscopy [J]. Inorg. Chem.,1992,31(16):3363-3370.
    [42]Li Y. J., Weser U. Circular dichroism, luminescence, and electronic absorption of copper binding sites in metallothionein and its chemically synthesized.alpha. and.beta. domains [J]. Inorg. Chem.,1992,31(26): 5526-5533.
    [43]Rupp H., Weser U. Circular dichroism of metallothioneins:a structural approach[J]. BBA-Protein Struct.,1978,533(1):209-226.
    [44]Lu W., Stillman M. J. Mercury-thiolate clusters in metallothionein. Analysis of circular dichroism spectra of complexes formed between.alpha.-metallothionein, apometallothionein, zinc metallothionein, and cadmium metallothionein and mercury(II) [J]. J. Am. Chem. Soc.,1993, 115(8):3291-3299.
    [45]Lu W., Zelazowski A. J., Stillman M. J. Mercury binding to metallothioneins: formation of the Hg18-MT species[J]. Inorg. Chem.,1993,32(6):919-926.
    [46]Stillman M. J., Thomas D., Trevithick C., Guo X.,Siu M. Circular dichroism, kinetic and mass spectrometric studies of copper (Ⅰ) and mercury (Ⅱ) binding to metallothionein[J]. J. Inorg. Biochem.,2000,79(1-4):11-19.
    [47]丁大同,固体物理讲义.天津:南开大学出版社,2001:14-65.
    [48]Hohenberg P.,Kohn W. Inhomogeneous electron gas[J]. Phys. Rev.,1964, 136(3B):B864-B871.
    [49]Kohn V. V., Sham L. J. Self-consistent equations including exchange and correlation effects[J]. Phys. Rev.,1965,140(4A):1-5.
    [50]Stratmann R. E., Scuseria G E., Frisch M. J. An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules[J]. J. Chem. Phys.,1998,109(19):8218-8224.
    [51]Runge E., Gross E. K. U. Density-functional theory for time-dependent systems[J]. Phys. Rev. Lett.,1984,52(12):997-1000.
    [52]St-Amant A., Cornell W. D., Kollman P. A.,Halgren T. A. Calculation of molecular geometries, relative conformational energies, dipole moments, and molecular electrostatic potential fitted charges of small organic molecules of biochemical interest by density functional theory[J]. J. Comput. Chem.,1995, 16(12):1483-1506.
    [53]Becke A. D. Density-functional exchange-energy approximation with correct asymptotic behavior[J]. Phys. Rev. A,1988,38(6):3098-3100.
    [54]Lee C., Yang W., Parr R. G Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Phys. Rev. B,1988,37(2):785-789.
    [55]Becke A. D. A new mixing of Hartree-Fock and local density-functional theories[J]. J. Chem. Phys.,1993,98(2):1372-1377.
    [56]Adamo C., Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models[J]. J. Chem. Phys.,1998,108(2):664-675.
    [57]Handy N. C., Cohen A. J. Left-right correlation energy[J]. Mol. Phys.,2001, 99(5):403-412.
    [58]Perdew J. P., Tao J., Staroverov V. N.,Scuseria G. E. Meta-generalized gradient approximation:explanation of a realistic nonempirical density functional[J]. J. Chem. Phys.,2004,120(15):6898-6911.
    [59]Wong M. W., Frisch M. J., Wiberg K. B. Solvent effects.1. The mediation of electrostatic effects by solvents[J]. J. Am. Chem. Soc.,1991,113(13): 4776-4782.
    [60]Tapia O., Goscinski O. Self-consistent reaction field theory of solvent effects[J]. Mol. Phys.,1975,29(6):1653-1661.
    [61]Barone V., Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. J. Phys. Chem. A,1998, 102(11):1995-2001.
    [62]Cossi M., Rega N., Scalmani G,Barone V. Energies, structures, and electronic properties of molecules in solution with the CPCM solvation model[J]. J. Comput. Chem.,2003,24(6):669-681.
    [63]Siegbahn P. E. M., Crabtree R. H. Mechanism of CH activation by diiron methane monooxygenases:Quantum chemical studies[J]. J. Am. Chem. Soc., 1997,119(13):3103-3113.
    [64]Blomberg M. R. A., Siegbahn P. E. M., Babcock G T. Modeling electron transfer in biochemistry:A quantum chemical study of charge separation in rhodobacter s phaeroides and photosystem II[J]. J. Am. Chem. Soc.,1998, 120(34):8812-8824.
    [65]Maseras F., Morokuma K. IMOMM:A new integrated ab initio+molecular mechanics geometry optimization scheme of equilibrium structures and transition states[J]. J. Comput. Chem.,1995,16(9):1170-1179.
    [66]Humbel S., Sieber S., Morokuma K. The IMOMO method:Integration of different levels of molecular orbital approximations for geometry optimization of large systems:Test for n-butane conformation and S2 reaction: RCl+Cl[J]. J. Chem. Phys.,1996,105(5):1959-1967.
    [67]Matsubara T., Sieber S., Morokuma K. A test of the new "integrated MO+ MM"(IMOMM) method for the conformational energy of ethane and nbutane[J]. Int. J. Quantum Chem.,1996,60(6):1101-1109.
    [68]Froese R. D. J., Humbel S., Svensson M.,Morokuma K. IMOMO (G2MS):A new high-level G2-like method for large molecules and its applications to Diels-Alder reactions[J]. J. Phys. Chem. A,1997,101(2):227-233.
    [69]Dapprich S., Komaromi I., Byun K. S., Morokuma K., Frisch M. J. A new ONIOM implementation in Gaussian98 Part Ⅰ:The calculation of energies, gradients, vibrational frequencies and electric field derivatives [J]. J. Mol. Struc.:THEOCHEM,1999,461-462(1):1-21.
    [70]Karadakov P. B., Morokuma K. ONIOM as an efficient tool for calculating NMR chemical shielding constants in large molecules [J]. Chem. Phys. Lett., 2000,317(6):589-596.
    [71]Vreven T., Morokuma K. On the application of the IMOMO (integrated molecular orbital+molecular orbital) method[J]. J. Comput. Chem.,2000, 21(16):1419-1432.
    [72]林梦海.量子化学计算方法与应用[M].北京:科学出版社,2004:211-214
    [73]Bakowies D., Thiel W. Hybrid models for combined quantum mechanical and molecular mechanical approaches[J]. J. Phys. Chem.,1996,100(25): 10580-10594.
    [74]Zhang R. B., Zhang X. D., Qu Z. W., Ai X. C., Zhang X. K.,Zhang Q. Y. Studies of the solvent effects on the internal reorganization energy for electron transfer of uracil and its anion with ONIOM[J]. J. Mol. Struc.: THEOCHEM,2003,624(1-3):169-176.
    [75]Senn H. M., Thiel W. QM/MM methods for biomolecular systems[J]. Angew. Chem. Int. Edit.,2009,48(7):1198-1229.
    [76]Kuno M., Hannongbua S., Morokuma K. Theoretical investigation on nevirapine and HIV-1 reverse transcriptase binding site interaction, based on ONIOM method[J]. Chem. Phys. Lett.,2003,380(3):456-463.
    [77]Rajapandian V., Hakkim V., Subramanian V. ONIOM calculation on Azurin: Effect of metal ion substitutions[J]. J. Phys. Chem. A,2009,113(30): 8615-8625.
    [78]Lundberg M., Morokuma K. Protein environment facilitates O2 binding in non-heme iron enzyme. An insight from ONIOM calculations on isopenicillin N synthase (IPNS)[J]. J. Phys. Chem. B,2007,111(31):9380-9389.
    [79]Rajapandian V., Subramanian V. Calculations on the structure and spectral properties of cytochrome c551 using DFT and ONIOM methods[J]. J. Phys. Chem. A,2011,115(13):2866-2876.
    [80]Yalovega G., Smolentsev G, Soldatov A., Chan J., Stillman M. Cd-metallothionein:Analysis of local atomic structure[J]. Nucl. Instrum Meth. A,2007,575(1-2):162-164.
    [81]Zhang L., Pickering I. J., Winge D. R., George G. N. X-ray absorption spectroscopy of cuprous-thiolate clusters in saccharomyces cerevisiae metallothionein[J]. Chem. Biodivers.,2008,5(10):2042-2049.
    [82]Jensen K. P., Rykaer M. The building blocks of metallothioneins: heterometallic Zn2+ and Cd2+ clusters from first-principles calculations[J]. Dalton T.,2010,39(40):9684-9695.
    [83]Luber S., Reiher M. Theoretical Raman optical activity study of the P domain of rat metallothionein[J]. J. Phys. Chem. B,2009,114(2):1057-1063.
    [84]Waalkes M. P., Liu J., Goyer R. A.,Diwan B. A. Metallothionein-Ⅰ/Ⅱ double knockout mice are hypersensitive to lead-induced kidney carcinogenesis: Role of inclusion body formation[J]. Cancer Res.,2004,64(21):7766-7772.
    [85]Furey W., Robbins A., Clancy L., Winge D., Wang B.,Stout C. Crystal structure of Cd, Zn metallothionein[J]. Science,1986,231(4739):704-710.
    [86]Yang N., Sun H. Biocoordination chemistry of bismuth:Recent advances[J]. Coordin. Chem. Rev.,2007,251(17-20):2354-2366.
    [87]Ge R., Sun H. Bioinorganic chemistry of bismuth and antimony:Target sites of metallodrugs[J]. Accounts Chem. Res.,2007,40(4):267-274.
    [88]Audzijonis A., Igas L., Gaigalas G, Sereika R.,Ygaitien B. Density functional calculation of the photoelectron emission spectra of BiSCl crystal and molecular clusters[J]. J. Clust. Sci.,2010,21(1):1-13.
    [89]Parr R. G,Yang W. Density-functional theory of atoms and molecules[M]. USA:Oxford University Press,1994:47-66.
    [90]Solomon E. I., Gorelsky S. I.,Dey A. Metal-thiolate bonds in bioinorganic chemistry[J]. J. Comput. Chem.,2006,27(12):1415-1428.
    [91]Fuks L., Anuszewska E., Kruszewska H., Krowczynski A., Dudek J.,Sadlej-Sosnowska N. Platinum (Ⅱ) complexes with thiourea derivatives containing oxygen, sulfur or selenium in a heterocyclic ring:computational studies and cytotoxic properties[J]. Transit. Metal Chem.,2010,35(6): 639-647.
    [92]Becke A. D. Density-functional thermochemistry. IV. A new dynamical correlation functional and implications for exact-exchange mixing[J]. J. Chem. Phys.,1996,104(3):1040-1046.
    [93]Sommer H., Eichhofer A., Fenske D. Synthesis and crystal structures of bismuth chalcogenolato compounds Bi(SC6H5)3, Bi(SeC6H5)3 und Bi(S-4-CH3C6H4)3[J]. J. Inorg. Gen. Chem.,2008,634(3):436-440.
    [94]Clegg W., Elsegood M. R. J., Farrugia L. J., Lawlor F. J., Norman N. C.,Scott A. J. Neutral thiolates of antimony (Ⅲ) and bismuth (Ⅲ)[J]. J. Chem. Soc. Dalton,1995, (13):2129-2135.
    [95]Pappalardo G., Chakravorty R., Irgolic K., Meyers E. Tris (phenylthio) arsine, C18H15AsS3[J]. Acta Crystallogr. C,1983,39(12):1618-1620.
    [96]Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Montgomery J. J. A., Vreven T., Kudin K. N., Burant J. C., Millam J. M., Iyengar S. S., Tomasi J., Barone V., Mennucci B., Cossi M., Scalmani G., Rega N., Petersson G. A., Nakatsuji H., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Klene M., Li X., Knox J. E., Hratchian H. P., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Ayala P. Y, Morokuma K., Voth G. A., Salvador P., Dannenberg J. J., Zakrzewski V. G., Dapprich S., Daniels A. D., Strain M. C., Farkas O., Malick D. K., Rabuck A. D., Raghavachari K., Foresman J. B., Ortiz J. V., Cui Q., Baboul A. G, Clifford S., Cioslowski J., Stefanov B. B., Liu G, Liashenko A., Piskorz P., Komaromi I., Martin R. L., Fox D. J., Keith T., Al-Laham M. A., Peng C. Y., Nanayakkara A., Challacombe M., Gill P. M. W., Johnson B., Chen W., Wong M. W., Gonzalez C. and Pople J. A. Gaussian 03 (Revision E.02)[CP]. Wallingford CT:Gaussian Inc.,2004.
    [97]Peterson K. A. Systematically convergent basis sets with relativistic pseudopotentials. I. Correlation consistent basis sets for the post-d group 13-15 elements[J]. J. Chem. Phys.,2003,119(21):11009-11112.
    [98]Gorelsky S. I. SWizard program(Revision 4.6)[CP]. Ottawa:University of Ottawa,2010.
    [99]Burford N., Carpenter Y.-Y., Conrad E., Saunders C. D. L. The chemistry of arsenic, antimony and bismuth[M]. Chichester:John Wiley & Sons Ltd.,2010: 1-18.
    [100]Poater J., Sola M., Rimola A., Rodriguez-Santiago L.,Sodupe M. Ground and low-lying states of Cu2+-H2O. A difficult case for density functional methods[J]. J. Phys. Chem. A,2004,108(28):607-6078.
    [101]Matito E., Sola M., Salvador P., Duran M. Electron sharing indexes at the correlated level. Application to aromaticity calculations[J]. Faraday Discuss., 2006,135(1):325-345.
    [102]Ludwig C., Dolny M.,Gotze H. J. Fourier transform Raman and infrared spectra and normal coordinate analysis of organo-arsenic(Ⅲ),-antimony(Ⅲ) and -bismuth(Ⅲ) thiolates[J]. Spectrochim. Acta A,2000,56(3):547-555.
    [103]Sommer H., Eichhofer A., Fenske D. Synthesis and crystal structures of bismuth chalcogenolato compounds [J]. J. Inorg. Gen. Chem.,2008,634(3): 436-440.
    [104]Orio M., Pantazis D. A., Neese F. Density functional theory[J]. Photosynth. Res.,2009,102(2):443-453.
    [105]Asato E., Katsura K., Mikuriya M., Turpeinen U., Mutikainen I.,Reedijk J. Synthesis, structure, and spectroscopic properties of bismuth citrate compounds and the bismuth-containing ulcer-healing agent colloidal bismuth subcitrate (CBS).4. Crystal structure and solution behavior of a unique dodecanuclear cluster (NH4)12[Bi12O8(cit)8](H2O)10[J]. Inorg. Chem.,1995, 34(9):2447-2454.
    [106]Kepp K. P.. Full quantum-mechanical structure of the human protein metallothionein-2[J]. J. Inorg. Biochem.,2012,107(1):15-24.
    [107]Kagi J. H. R.,Vallee B. L. Metallothionein:a cadmium and zinc-containign protein from equine renal cortex. II. Physico-chemical properties[J]. J. Biol. Chem.,1961,236(12):2435-2442.
    [108]Barone V., Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. J. Phys. Chem. A,1998, 102(11):1995-2001.
    [109]Eyer P., Worek F., Kiderlen D., Sinko G., Stuglin A., Simeon-Rudolf V.,Reiner E. Molar absorption coefficients for the reduced Ellman reagent: reassessment[J]. Anal. Biochem.,2003,312(2):224-227.
    [110]Brahms S., Brahms J. Determination of protein secondary structure in solution by vacuum ultraviolet circular dichroism[J]. J. Mol. Biol.,1980, 138(2):149-178.
    [111]Nordberg G. F., Nordberg M., Piscator M.,Vesterberg O. Separation of two forms of rabbit metallothionein by isoelectric focusing[J]. Biochem. J.,1972, 126(3):491-498.
    [112]Enescu M., Renault J. P., Pommeret S., Mialocq J. C.,Pin S. Ab initio study of Cd-thiol complexes:application to the modelling of the metallothionein active site[J]. Phys. Chem. Chem. Phys.,2003,5(17):3762-3767.
    [113]Phillips H. A., Burford N. Identification of bismuth-thiolate-carboxylate clusters by electrospray ionization mass spectrometry[J]. Inorg. Chem.,2008, 47(7):2428-2441.
    [114]Boudjouk P., Remington Jr M. P., Grier D. G., Jarabek B. R.,Mccarthy G. J. Tris (benzylthiolato) bismuth. Efficient precursor to phase-pure polycrystalline Bi2S3[J]. Inorg. Chem.,1998,37(14):3538-3541.
    [115]Harrison R. M., Laxen D. P. H.,Wilson S. J. Chemical associations of lead, cadmium, copper, and zinc in street dusts and roadside soils[J]. Environ. Sci. Technol.,1981,15(11):1378-1383.
    [116]Hilburn M. E. Environmental lead in perspective[J]. Chem. Soc. Rev.,1979, 8(1):63-84.
    [117]Stillman M. J., Shaw C. F., Suzuki K. T. Metallothionein:Synthesis, structure, and properties of metallothioneins, phytochelatins, and metal-thiolate complexes[M]. New York:Wiley-VCH,1992:98-125.
    [118]李铉,郝守进,刘颖,茹炳根.金属硫蛋白的结构域与铅结合形式及稳定性的研究[J].卫生研究,2001,30(4):198-200.
    [119]魏欣,茹炳根.二价铅离子与金属硫蛋白相互作用的研究[J].中国生物化学与分子生物学报,1999,15(2):289-294.
    [120]季清洲,王立波,茹炳根.兔肝金属硫蛋白结合铅离子的圆二色性光谱研究[J].中国生物化学与分子生物学报,1999,15(6):928-932.
    [121]Nielson K. B., Winge D. Preferential binding of copper to the beta domain of metallothionein[J]. J. Biol. Chem.,1984,259(8):4941-4946.
    [122]Mehra R. K., Kodati V. R.,Abdullah R. Chain length-dependent Pb(II)-coordination in phytochelatins[J]. Biochem. Biophys. Res. Commun., 1995,215(2):730-736.
    [123]Jiang L. J., Vasak M., Vallee B. L.,Maret W. Zinc transfer potentials of the α-and β-clusters of metallothionein are affected by domain interactions in the whole molecule[J]. PNAS,2000,97(6):2503-2508.
    [124]Riek R., Precheur B., Wang Y., Mackay E. A., Wider G., Gu ntert P., Liu A., Ka gi J. H. R.,Wu thrich K. NMR structure of the sea urchin (Strongylocentrotus purpuratus) metallothionein MTA[J]. J. Mol. Biol.,1999, 291(2):417-428.
    [125]Bernhard W., Good M., Vasak M., Kagi J. H. R. Spectroscopic studies and characterization of metallothionein containing mercury, lead and bismuth[J]. Inorg. Chem. Acta,1983,79(3):154-155.
    [126]Stillman M. J. Metallothioneins [J]. Coordin. Chem. Rev.,1995,144(1): 461-511.
    [127]Tokar E. J., Diwan B. A., Waalkes M. P. Early life inorganic lead exposure induces testicular teratoma and renal and urinary bladder preneoplasia in adult metallothionein-knockout mice but not in wild type mice[J]. Toxicology, 2010,276(1):5-10.
    [128]Fulton J. R., Taylor M. J., Saunders A. J., Coles M. P. Low-coordinate tin and lead cations[J]. Organometallics,2011,30(6):1334-1339.
    [129]Gonick H. C. Lead-binding proteins:A review[J]. J. Toxicol.,2011,2011(1): 1-10.
    [130]Magyar J. S., Weng T. C., Stern C. M., Dye D. F., Rous B. W., Payne J. C., Bridgewater B. M., Mijovilovich A., Parkin G., Zaleski J. M., Penner-Hahn J. E.,Godwin H. A. Reexamination of lead (II) coordination preferences in sulfur-rich sites:implications for a critical mechanism of lead poisoning[J]. J. Am. Chem. Soc.,2005,127(26):9495-9505.
    [131]Jarzecki A. A. Lead-poisoned zinc fingers:Quantum mechanical exploration of structure, coordination, and electronic excitations[J]. Inorg. Chem.,2007, 46(18):7509-7521.
    [132]Rajapandian V., Subramanian V. Calculations on the structure and spectral properties of cytochrome c 551:Using DFT and ONIOM methods[J]. J. Phys. Chem. A,2011,115(13):2866-2876.
    [133]Maseras F., Morokuma K. IMOMM:A new integrated ab initio molecular mechanics geometry optimization scheme of equilibrium structures and transition states[J]. J. Comput. Chem.,1995,16(9):1170-1179.
    [134]Claudio E. S., Ter Horst M. A., Forde C. E., Stern C. L., Zart M. K.,Godwin H. A.207Pb-1H two-dimensional NMR spectroscopy:A useful new tool for probing lead(II) coordination chemistry[J]. Inorg. Chem.,2000,39(7): 1391-1397.
    [135]Neupane K. P.,Pecoraro V. L. Probing a homoleptic PbS3 coordination environment in a designed peptide using Pb NMR spectroscopy: Implications for understanding the molecular basis of lead toxicity[J]. Angew. Chem. Int. Edit.,2010,49(44):8177-8180.
    [136]Messiha H. L., Bruce N. C., Sattelle B. M., Sutcliffe M. J., Munro A. W.,Scrutton N. S. Role of active site residues and solvent in proton transfer and the modulation of flavin reduction potential in bacterial morphinone reductase[J]. J. Biol. Chem.,2005,280(29):27103-27110.
    [137]Schuchardt K. L., Didier B. T., Elsethagen T., Sun L., Gurumoorthi V., Chase J., Li J.,Windus T. L. Basis set exchange:A community database for computational sciences[J]. J. Chem. Inf. Model.,2007,47(3):1045-1052.
    [138]Feller D.. The role of databases in support of computational chemistry calculations[J]. J. Comput. Chem.,1996,17(13):1571-1586.
    [139]Bauernschmitt R., Ahlrichs R. Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory[J]. Chem. Phys. Lett.,1996,256(4-5):454-464.
    [140]Sutherland D. E. K., Stillman M. J.. The "magic numbers" of metallothionein[J]. Metallomics,2011,3(5):444-463.
    [141]Rappe A., Casewit C., Colwell K., Goddard Iii W.,Skiff W. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations[J]. J. Am. Chem. Soc.,1992,114(25):10024-10035.
    [142]Rappe A. K., Goddard Iii W. A. Charge equilibration for molecular dynamics simulations[J]. J. Phys. Chem.,1991,95(8):3358-3363.
    [143]Hasnain S. S., Kiakun G P. EXAFS studies of metallothionein[J]. Exper. suppl.,1987,52(1):227-236.
    [144]Penfold R., Warwicker J.,J Nsson B. Electrostatic models for calcium binding proteins[J]. J. Phys. Chem. B,1998,102(43):8599-8610.
    [145]Rigby K. E., Chan J., Mackie J.,Stillman M. J. Molecular dynamics study on the folding and metallation of the individual domains of metallothionein[J]. Proteins:Structure, Function, and Bioinformatics,2005,62(1):159-172.
    [146]Davidovich R. L., Stavila V., Marinin D. V., Voit E. I.,Whitmire K. H. Stereochemistry of lead(II) complexes with oxygen donor ligands[J]. Coordin. Chem. Rev.,2009,253(9-10):1316-1352.
    [147]Payne J. C., Horst M. a. T., Godwin H. A. Lead fingers:Pb2+ binding to structural zinc-binding domains determined directly by monitoring lead-thiolate charge-transfer bands[J]. J. Am. Chem. Soc.,1999,121(29): 6850-6855.
    [148]Grimes S. M., Johnston S. R., Abrahams I. Characterisation of the predominant low-pH lead(II)-hydroxo cation, [Pb4(OH)4]4+; crystal structure of [Pb4(OH)4][NO3]4 and the implications of basic salt formation on the transport of lead in the aqueous environment[J]. J. Chem. Soc. Dalton,1995, 12(1):2081-2086.
    [149]Lyczko K., Starosta W., Persson I. Influence of pH and counteranion on the structure of tropolonato-lead (Ⅱ) complexes:Structural and infrared characterization of formed lead compounds[J]. Inorg. Chem.,2007,46(11): 4402-4410.
    [150]Fang C., Chen Z., Liu X., Yang Y., Deng M., Weng L., Jia Y.,Zhou Y. Synthesis and crystal structures of four pH-dependent Pb (Ⅱ) and Cd (Ⅱ) phosphonates based on a novel ligand,3-phosphono-benzoic acid[J]. Inorg. Chim. Acta,2009,362(7):2101-2107.
    [151]Mead M. N. Arsenic:in search of an antidote to a global poison[J]. Environ. Health. persp.,2005,113(6):A378-A386.
    [152]Hughes M. F. Arsenic toxicity and potential mechanisms of action[J]. Toxicol. Lett.,2002,133(1):1-16.
    [153]Manley S. A., George G. N., Pickering I. J., Richard S., Prenner E. J., Yamdagni R., Wu Q.,Gailer J. The seleno bis (S-glutathionyl) arsinium ion is assembled in erythrocyte lysate[J]. Chem. Res. Toxicol.,2006,19(4): 601-607.
    [154]Jiang G., Gong Z., Li X. F., Cullen W. R.,Le X. C. Interaction of trivalent arsenicals with metallothionein[J]. Chem. Res. Toxicol.,2003,16(7): 873-880.
    [155]Merrifield M. E., Ngu T., Stillman M. J. Arsenic binding to Fucus vesiculosus metallothionein[J]. Biochem. Biophys. Res. Commun.,2004,324(1): 127-132.
    [156]Toyama M., Yamashita M., Hirayama N., Murooka Y.. Interactions of arsenic with human metallothionein-2[J]. J. Biochem.,2002,132(2):217-221.
    [157]Liu J., Liu Y., Goyer R. A., Achanzar W.,Waalkes M. P. Metallothionein-Ⅰ/Ⅱ null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals[J]. Toxicol Sci,2000,55(2):460-467.
    [158]Ngu T. T., Stillman M. J. Arsenic binding to human metallothionein[J]. J. Am. Chem. Soc.,2006,128(38):12473-12483.
    [159]Ngu T. T., Easton A.,S tillman M. J. Kinetic analysis of arsenic-metalation of human metallothionein:Significance of the two-domain structure[J]. J. Am. Chem. Soc.,2008,130(50):17016-17028.
    [160]Godwin H. A.. The biological chemistry of lead[J]. Curr. Opin. Chem. Biol., 2001,5(2):223-227.
    [161]Warren M. J., Cooper J. B., Wood S. P.,Shoolingin-Jordan P. M. Lead poisoning, haem synthesis and 5-aminolaevulinic acid dehydratase[J]. Trends Biochem. Sci.,1998,23(6):217-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700