用户名: 密码: 验证码:
桥联适配分子Mal在TLR4信号通路中的结构和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Toll样受体(Toll-like receptors,简称TLRs)是一类在脊椎动物和无脊椎动物中广泛分布的模式识别受体,其在宿主抵御病原微生物入侵的自然免疫中发挥了重要作用。TLR通过其胞外结构域识别病原体相关的分子模式,引起自身二聚化激活,从而导致其胞内TIR(Toll/interleukin-1receptor)结构域重新排列组合以募集适配分子来起始细胞质中的信号传导,进而促进炎症因子和抑菌蛋白的表达,并进一步诱发获得性免疫反应。TLR起始信号复合物组装是通过相同类型和不同类型的TIR-TIR结构域之间特异性的相互作用实现的。
     TIR结构域是一类α/p型球状蛋白,其二级结构元件之间通过变化各异的loop区连接。不同TLR信号通路的特异性依赖于受体募集不同的包含TIR结构域的适配分子。目前已经发现的包含TIR结构域的适配分子共有五个,分别为:MyD88, Mal,TRIF, TRAM和SARM。其中,Mal又被称为TIRAP,它是在TLRs识别病原体入侵而激活之后,协助TLR2和TLR4募集适配分子MyD88进行胞内信号传导的过程中起关键作用的桥联适配分子。细胞内TLR2/4信号传导起始的关键分子机制是TLR2/4,Mal和MyD88三者的TIR结构域的特异性的组装。然而,这些特异性的TIR-TIR相互作用的分子机制目前仍然还是个悬而未决的问题。
     本论文解析了人源Mal的TIR结构域(简称Mal-TIR)2.40A分辨率的晶体结构。通过结构分析发现Mal-TIR的结构明显地区别于其他的TIR结构域,其含有结构上独特的AB loop,而缺少了仅B螺旋和BB loop这两个结构元件。通过进一步的基于结构的功能研究发现在Mal-TIR的结构表面有两个关键的功能区域:其中一个关键区域是Mal-TIR结构上特征性的AB loop区域,依据定点突变和体外直接相互作用实验证实了Mal-TIR通过AB loop与TLR4和MyD88二者的TIR结构域发生直接相互作用;另一关键区域是Mal的二聚体界面,本文通过生化和细胞的实验证实Mal-TIR以背靠背的方式协助Mal分子在执行功能时组装成轴对称性的二聚体。由此,本论文揭示了Mal在TLR4信号通路中行使桥联适配分子的生物学功能的分子机制——Mal分子自身形成背靠背的二聚体,并通过其两个分子的AB loop协助TLR4募集MyD88。
     此外,有多项研究表明Mal的自然变异跟一些免疫性疾病有关。其中最受关注的是Mal的单核苷酸突变体S180L,因为S180L突变杂合子的携带者对菌血症,侵袭性肺炎球菌感染,疟疾和过敏性皮炎等传染性免疫疾病具有更强的抵抗力。另一个突变体D96N,有研究表明由于D96N突变影响了对适配分子MyD88的募集和自身的翻译后修饰而导致了Mal的功能缺陷。由此本论文解析了这两个突变体的晶体结构,分别为2.75A和3.10A,为Mal相关的传染性免疫疾病的分子机制研究提供了结构基础。
     本论文结合x射线晶体学、生物化学和细胞生物学的研究方法,揭示了Mal在TLR4信号通路中执行适配分子功能的结构特征和分子机制,为进一步研究TIR结构域的特异性组装以及免疫性疾病相关的分子机制提供了结构基础。
The Toll-like receptors (TLRs) are an important group of pattern recognition receptors (PRRs) that play a critical role in host defense against pathogens throughout the animal kingdom. In response to various extracellular ligands, the ectodomain of a TLR dimerizes, leading to the rearrangement of its cytoplasmic Toll/interleukin-1receptor (TIR) domains to create a signaling platform for the recruitment of adaptor proteins. This rearrangement is followed by the transcription of inflammatory and antimicrobial genes in the initiation of the adaptive immune response. The homo-and heterotypic TIR-TIR domain interactions play a pivotal role in the assembly of the TLR signalosomes and in initiation of the signaling pathway.
     A TIR domain has a globular fold with α/β secondary structure elements linked together by variable loops. The specificity of TLR signaling depends on the action of different TIR domain-containing adaptor proteins. Five TIR domain-containing adaptor proteins are currently known:myeloid differentiation factor88(MyD88), MyD88adaptor-like protein (Mal), TIR domain-containing adaptor-inducing interferon-b (TRIF), the TRIF-related adaptor molecule (TRAM) and the sterile and HEAT/armadillo (ARM) motif protein (SARM). Mal, which is also identified as the TIR domain-containing adaptor protein (TIRAP) is a crucial adaptor that acts as a bridge to recruit the MyD88molecule to activated TLR4receptors in response to invading pathogens. The specific assembly of theTIR domains of TLR4, Mal and MyD88is responsible for proper signal transduction in the TLR4signaling pathway. However, the molecular mechanism for the specificity of these TIR-TIR domian interactions remains unelusive.
     In this research, we examined the structure of wild-type Mal-TIR at a resolution of2.4A. Unexpectedly, Mal-TIR exhibits an extraordinarily long AB loop, but no aB helix or BB loop, distinguishing it from other TIR domains. More importantly, the Mal-TIR AB loop is capable of mediating direct binding to the TIR domains of TLR4and MyD88simultaneously. We also found that Mal-TIR can form a back-to-back dimer that may resemble the dimeric assembly of the entire Mal molecule. Our results show the specificity of the TIR domains and the bridging role of the Mal molecule.
     Recently, several studies have associated natural variants of Mal with various infectious diseases. The most interesting single nucleotide polymorphism (SNP) is S180L in Mal. Heterozygous carriers of this variant are protected against some infectious diseases, including bacteremia, invasive pneumococcal disease, malaria and atopic dermatitis. The D96N mutation has also been shown to impair recruitment of MyD88to the plasma membrane and to influence the post-translational modification of Mal. To further understand the molecular mechanism underlying these associations in the Mal-TIR mutants D96N and S180L, we determined the crystal structures of these mutants at a resolution of2.75A and3.10A respectively, to provide structural information for studying the molecular mechanism of infectious diseases association.
     In present study, we use the methods of X-ray crystalgraphy, biochemistry and cell biology to reveal the molecular basis of the bridging role of Mal in connecting TLR4and MyD88, and to provide structural basic for the further study of the specificity of TIR domain assembly and the molecular mechanism of infectious diseases association.
引文
[1]Kawai T. and S.Akira.TLR signaling. Cell Death Differ,2006,13(5):816-25
    [2]Christmas P. Toll-Like Receptors:Sensors that Detect Infection. Nature Education,2010, 3(9):85
    [3]Janeway J.C. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp on Quant Biol,1989,54(Pt 1):1-13
    [4]Beck G. and GS. Habicht. Immunity and the invertebrates. Scientific American,1996, (275):60-66
    [5]Hashimoto C., K.L. Hudson and K.V. Anderson. The Toll gene of Drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell,1988, (52):269-279
    [6]Lemaitre B.,E. Nicolas, L. Michaut, et al. The Dorsoventral Regulatory Gene Cassette spatzle/Toll/cactus Controls the Potent Antifungal Response in Drosophila Adults. Cell, 1996,86(6):973-983
    [7]Medzhitov R., P. Preston-Hurlburt and C.A. Janeway, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature,1997, 388(6640):394-7
    [8]Rock F.L., G. Hardiman, J.C. Timans,et al. A family of human receptors structurally related to Drosophila Toll. Proc Natl Acad Sci U S A,1998,95(2):588-593
    [9]Poltorak A., X. He, I. Smirnova, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice:mutations in Tlr4 gene. Science,1998,282(5396):2085-2088
    [10]Werts C., S.E. Girardin and D.J. Philpott. TIR, CARD and PYRIN:three domains for an antimicrobial triad. Cell Death Differ,2006,13(5):798-815
    [11]Beutler B. Inferences, questions and possibilities in Toll-like receptor signalling. Nature, 2004,430(6996):257-263
    [12]O Neill L. The Toll/interleukin-I receptor domain:a molecular switch for inflammation and host defence. Biochemical Society Transactions,2000,28(5):557-562
    [13]Akira S. and K. Takeda. Toll-like receptor signalling. Nat Rev Immunol,2004,4(7): 499-511
    [14]Bell J.K., G.E.D. Mullen, C.A. Leifer, et al. Leucine-rich repeats and pathogen recognition in Toll-like receptors. Trends in Immunol,2003,24(10):528-533
    [15]West A.P., A.A. Koblansky and S. Ghosh. Recognition and signaling by toll-like receptors. Annu Rev Cell Dev Biol,2006,22:409-437
    [16]Akira S., S. Uematsu and O. Takeuchi. Pathogen recognition and innate immunity. Cell, 2006,124(4):783-801
    [17]Jin M.S., S.E. Kim, J.Y. Heo, et al. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell,2007,130(6):1071-1082
    [18]Kang J.Y., X. Nan, M.S. Jin, et al. Recognition of lipopeptide patterns by Toll-like receptor 2 Toll-like receptor 6 heterodimer. Immunity,2009,31(6):873-884
    [19]Barbie D.A., P. Tamayo,J.S. Boehm, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature,2009,462(7269):108-112
    [20]Chuang T.-H. and R.J. Ulevitch. Identification of hTLR10:a novel human Toll-like receptor preferentially expressed in immune cells. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression,2001,1518(1):157-161
    [21]Park B.S., D.H. Song, H.M. Kim, et al. The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature,2009,458(7242):1191-1195
    [22]Ohto U.,K. Fukase,K. Miyake,et al. Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proc Natl Acad Sci U S A,2012,109(19): 7421-7426
    [23]Imai Y, K. Kuba,G.G.Neely, et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell,2008,133(2):235-249
    [24]Yoon S.I., O. Kurnasov, V. Natarajan, et al. Structural basis of TLR5-flagellin recognition and signaling. Science,2012,335(6070):859-864
    [25]Yarovinsky F., D. Zhang, J.F. Andersen, et al. TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science,2005,308(5728):1626-1629
    [26]Takeuchi O. and S. Akira. Pattern recognition receptors and inflammation. Cell,2010, 140(6):805-820
    [27]Choe J., M.S. Kelker and I.A. Wilson. Crystal structure of human toll-like receptor 3 (TLR3) ectodomain. Science,2005,309(5734):581-585
    [28]Liu L., I. Botos, Y. Wang, et al. Structural basis of toll-like receptor 3 signaling with double-stranded RNA. Science,2008,320(5874):379-381
    [29]Mancuso G., M. Gambuzza, A. Midiri, et al. Bacterial recognition by TLR7 in the lysosomes of conventional dendritic cells. Nat Immunol,2009,10(6):587-594
    [30]Tanji H., U. Ohtp, T. Shibata, et al. Structural reorganization of the Toll-like receptor 8 dimer induced by agonistic ligands. Science,2013,339(6126):1426-1429
    [31]Haas T., J. Metzger, F. Schmitz, et al. The DNA sugar backbone 2' deoxyribose determines toll-like receptor 9 activation. Immunity,2008,28(3):315-323
    [32]Coban C.,Y. Igari, M. Yagi, et al. Immunogenicity of whole-parasite vaccines against Plasmodium falciparum involves malarial hemozoin and host TLR9. Cell Host Microbe, 2010,7(1):50-61
    [33]Barton GM. and J.C. Kagan. A cell biological view of Toll-like receptor function:regulation through compartmentalization. Nat Rev Immunol,2009,9(8):535-542
    [34]Kim Y.M., M.M. Brinkmann, M.E. Paquet, et al. UNC93B1 delivers nucleotide-sensing toll-like receptors to endolysosomes. Nature,2008,452(7184):234-238
    [35]Asagiri M., T. Hirai, T. Kunigami, et al. Cathepsin K-dependent toll-like receptor 9 signaling revealed in experimental arthritis. Science,2008,319(5863):624-627
    [36]Sepulveda F.E., S. Maschalidi, R. Colisson, et al. Critical role for asparagine endopeptidase in endocytic Toll-like receptor signaling in dendritic cells. Immunity,2009,31(5): 737-748
    [37]Slack J.L., K. Schooley,T.P. Bonnert, et al. Identification of two major sites in the type I interleukin-1 receptor cytoplasmic region responsible for coupling to pro-inflammatory signaling pathways. J Biol Chem,2000,275(7):4670-4678
    [38]Xu Y., X. Tao,B. Shen, et al. Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature,2000,408(6808):111-115
    [39]O'Neill L.A. and A.G Bowie. The family of five:TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol,2007,7(5):353-364
    [40]Watters T.M.(E.F. Kenny and L.A. O'Neill. Structure, function and regulation of the Toll/IL-1 receptor adaptor proteins. Immunol Cell Biol,2007,85(6):411-419
    [41]Kawagoe T.. S. Sato, K. Matsushita, et al. Sequential control of Toll-like receptor-dependent responses by IRAKI and IRAK2. Nat Immunol,2008,9(6):684-691
    [42]Lin S.C., Y.C. Lo and H. Wu. Helical assembly in the MyD88-IRAK4-IRAK2 complex in TLR/IL-1R signalling.Nature,2010,465(7300):885-890
    [43]Xia Z.P., L. Sun, X. Chen, et al. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature,2009,461(7260):114-119
    [44]Schmitz R, A. Heit, S. Guggemoos, et al. Interferon-regulatory-factor 1 controls Toll-like receptor 9-mediated IFN-beta production in myeloid dendritic cells. Eur J Immunol, 2007,37(2):315-327
    [45]Yamamoto M., S. Sato, H. Hemmi, et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science,2003,301(5633):640-643
    [46]Hacker H., V. Redecke, B. Blagoev, et al. Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6. Nature,2006,439(7073):204-207
    [47]Tenoever B.R., S.L. Ng, M.A. Chua, et al. Multiple functions of the IKK-related kinase IKKepsilon in interferon-mediated antiviral immunity. Science,2007,315(5816): 1274-1278
    [48]Horng T., GM. Barton and R. Medzhitov. TIRAP:an adapter molecule in the Toll signaling pathway. Nat Immunol,2001,2(9):835-841
    [49]Fitzgerald K.A., E.M. Palsson-McDermott, A.G Bowie, et al. Mal (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature,2001,413(6851):78-83
    [50]Schilling D., K. Thomas, K. Nixdorff, et al. Toll-like receptor 4 and Toll-IL-1 receptor domain-containing adapter protein (TIRAP)/myeloid differentiation protein 88 adapter-like (Mal) contribute to maximal IL-6 expression in macrophages. J Immunol,2002, 169(10):5874-5880
    [51]Yamamoto M., S. Sato, H. Hemmi, et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature,2002,420(6913):324-329
    [52]Horng T., GM. Barton, R.A. Flavell, et al. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature,2002,420(6913):329-333
    [53]Zhu J. and C. Mohan. Toll-like receptor signaling pathways-therapeutic opportunities. Mediators Inflamm,2010,2010:781235
    [54]Khor C.C., S.J. Chapman, F.O. Vannberg, et al. A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis. Nat Genet,2007,39(4):523-528
    [55]An Y., H. Ohnishi, E. Matsui, et al. Genetic variations in MyD88 adaptor-like are associated with atopic dermatitis. Int J Mol Med,2011,27(6):795-801
    [56]Ferwerda B., S. Alonso, K. Banahan, et al. Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock. Proc Natl Acad Sci U S A,2009,106(25):10272-10277
    [57]George J., A.V. Kubarenko, A. Rautanen, et al. MyD88 Adaptor-Like D96N Is a Naturally Occurring Loss-of-Function Variant of TIRAP.J Immunol,2010,184(6):3025-3032
    [58]Nagpal K., T.S. Plantinga, J. Wong, et al. A TIR domain variant of MYD88 adapter-like (MAL)/TIRAP results in loss of MYD88 binding and reduced TLR2/TLR4 signaling. J Biol Chem,2009,284(38):25742-25748
    [59]Dissanayeke S.R., S. Levin, S. Pienaar, et al. Polymorphic variation in TIRAP is not associated with susceptibility to childhood TB but may determine susceptibility to TBM in some ethnic groups. PLoS ONE,2009,4(8):e6698
    [60]Kagan J.C. and R. Medzhitov. Phosphoinositide-mediated adaptor recruitment controls Toll-like receptor signaling. Cell,2006,125(5):943-955
    [61]Mansell A., E. Brint, J.A. Gould, et al. Mal interacts with tumor necrosis factor receptor-associated factor (TRAF)-6 to mediate NF-kappaB activation by toll-like receptor (TLR)-2 and TLR4.J Biol Chem,2004,279(36):37227-37230
    [62]Gray P., A. Dunne, C. Brikos, et al. MyD88 adapter-like (Mal) is phosphorylated by Bruton's tyrosine kinase during TLR2 and TLR4 signal transduction. J Biol Chem,2006,281(15): 10489-10495
    [63]Piao W., C. Song, H.Chen, et al. Tyrosine phosphorylation of MyD88 adapter-like (Mal) is critical for signal transduction and blocked in endotoxin tolerance. J Biol Chem,2008, 283(6):3109-3119
    [64]Mansell A., R. Smith, S.L. Doyle, et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat Immunol,2006, 7(2):148-155
    [65]Miggin S.M., E. Palsson-McDermott, A. Dunne, et al. NF-kappaB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proc Natl Acad Sci USA,2007,104(9):3372-3377
    [66]Nyman T., P. Stenmark, S. Flodin, et al. The crystal structure of the human toll-like receptor 10 cytoplasmic domain reveals a putative signaling dimer. J Biol Chem,2008,283(18): 11861-11865
    [67]Ohnishi H., H. Tochio,Z. Kato, et al. Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proc Natl Acad Sci U S A,2009,106(25): 10260-10265
    [68]Chan S.L., T. Mukasa, E. Santelli, et al. The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci, 2010,19(1):155-161
    [69]Bernoux M., T. Ve, S. Williams, et al. Structural and Functional Analysis of a Plant Resistance Protein TIR Domain Reveals Interfaces for Self-Association, Signaling, and Autoregulation. Cell Host Microbe,2011,9(3):200-211
    [70]Radhakrishnan G.K., Q. Yu, J.S. Harms, et al. Brucella TIR domain-containing protein mimics properties of the toll-like receptor adaptor protein TIRAP. J Biol Chem,2009, 284(15):9892-9898
    [71]Chan S.L., L.Y. Low, S. Hsu, et al. Molecular mimicry in innate immunity:crystal structure of a bacterial TIR domain. J Biol Chem,2009,284(32):21386-21392
    [72]Dunne A., M. Ejdeback, P.L. Ludidi, et al. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88. J Biol Chem, 2003,278(42):41443-41451
    [73]Loiarro M., C. Sette, G Gallo, et al. Peptide-mediated interference of TIR domain dimerization in MyD88 inhibits interleukin-1-dependent activation of NF-{kappa}B. J Biol Chem,2005,280(16):15809-15814
    [74]Toshchakov V.U., S. Basu, M.J. Fenton, et al. Differential involvement of BB loops of toll-IL-1 resistance (TIR) domain-containing adapter proteins in TLR4-versus TLR2-mediated signal transduction. J Immunol,2005,175(1):494-500
    [75]Li C.,J. Zienkiewicz and J. Hawiger. Interactive sites in the MyD88 Toll/interleukin (IL) 1 receptor domain responsible for coupling to the ILlbeta signaling pathway. J Biol Chem, 2005,280(28):26152-26159
    [76]Jiang Z.,P. Georgel, C. Li, et al. Details of Toll-like receptor:adapter interaction revealed by germ-line mutagenesis. Proc Natl Acad Sci U S A,2006,103(29):10961-6.
    [77]Kim H.M., B.S. Park, J.I. Kim, et al. Crystal structure of the TLR4-MD-2 complex with bound endotoxin antagonist Eritoran. Cell,2007,130(5):906-917
    [78]Tao X., Y. Xu, Y. Zheng, et al. An extensively associated dimer in the structure of the C713S mutant of the TIR domain of human TLR2. Biochem Biophys Res Commun,2002, 299(2):216-221
    [79]Nunez Miguel R., J. Wong, J.F. Westoll, et al. A dimer of the Toll-like receptor 4 cytoplasmic domain provides a specific scaffold for the recruitment of signalling adaptor proteins. PLoS ONE,2007,2(8):e788
    [80]Toshchakov V.Y., H. Szmacinski, L.A. Couture, et al. Targeting TLR4 Signaling by TLR4 Toll/IL-1 Receptor Domain-Derived Decoy Peptides:Identification of the TLR4 Toll/IL-1 Receptor Domain Dimerization Interface. J Immunol,2011,186(8):4819-4827
    [81]Kawamoto T., M. Ii, T. Kitazaki, et al. TAK-242 selectively suppresses Toll-like receptor 4-signaling mediated by the intracellular domain. Eur J Pharmacol,2008,584(1):40-48
    [82]Altschul S.F., W. Gish, W. Miller, et al. Basic local alignment search tool. J Mol Biol, 1990,215(3):403-410
    [83]Larkin M.A., G Blackshields, N.P. Brown, et al. Clustal W and Clustal X version 2.0. Bioinformatics,2007,23(21):2947-2948
    [84]Linding R., R.B. Russell, V. Neduva, et al. GlobPlot:Exploring protein sequences for globularity and disorder. Nucleic Acids Res,2003,31(13):3701-3708
    [85]Linding R., L.J. Jensen, F. Diella, et al. Protein disorder prediction:implications for structural proteomics. Structure,2003,11(11):1453-1459
    [86]Bergfors T.M. Protein Crystalization. USA:International University Line,2009
    [87]McPherson A. Introduction to macromolecular crystallography. USA:Wiley-Blackwell, 2011
    [88]Mullin J.W. Crystallization. UK:Butterworth-Heinemann,2001
    [89]卢光莹和华子千.生物大分子晶体学基础.北京:北京大学出版社,2006
    [90]Rupp B. Biomolecular crystallography. USA:Garland Science,2009
    [91]Drenth J. and J. Mesters. Principles of protein X-ray crystallography. USA:Springer,2007
    [92]梁栋材.X射线晶体学基础.北京:科学出版社,1991
    [93]Rossmann M.G The molecular replacement method. Acta Crystallogr A,1990,46 (Pt 2):73-82
    [94]Grosse-Kunstleve R.W. and P.D. Adams. Patterson correlation methods:a review of molecular replacement with CNS. Acta Crystallogr D Biol Crystallogr,2001,57(Pt 10): 1390-1396
    [95]Read R.J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallographica Section D:Biological Crystallography,2001,57(10):1373-1382
    [96]Watenpaugh K.D. Overview of phasing by isomorphous replacement. Methods Enzymol, 1985,115:3-15.
    [97]Rould M.A., J.J. Perona and T.A. Steitz. Improving multiple isomorphous replacement phasing by heavy-atom refinement using solvent-flattened phases. Acta Crystallogr A, 1992,48(Pt5):751-756
    [98]Terwilliger T.C. Multiwavelength anomalous diffraction phasing of macromolecular structures:analysis of MAD data as single isomorphous replacement with anomalous scattering data using the MADMRG Program. Methods Enzymol,1997,276:530-537
    [99]Hendrickson W.A. Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. Science,1991,254(5028):51-58
    [100]Hendrickson W.A., J.R. Horton and D.M. LeMaster. Selenomethionyl proteins produced for analysis by multiwavelength anomalous diffraction (MAD):a vehicle for direct determination of three-dimensional structure. EMBO J,1990,9(5):1665-1672
    [101]Taylor GL. Introduction to phasing. Acta Crystallogr D Biol Crystallogr,2010,66(Pt 4):325-338
    [102]Otwinowski Z. and W. Minor. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol,1997,276:307-326
    [103]Kantardjieff K.A. and B. Rupp. Matthews coefficient probabilities:Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci,2003,12(9):1865-1871
    [104]Pape T. and T.R. Schneider. HKL2MAP:a graphical user interface for macromolecular phasing with SHELX programs. J Appl Crystallogr,2004,37:843-844
    [105]Sheldrick GM.A short history of SHELX.Acta Crystallogr A,2008,64(Pt 1):112-22.
    [106]Sheldrick GM. Experimental phasing with SHELXC/D/E:combining chain tracing with density modification. Acta Crystallogr D Biol Crystallogr,2010,66(Pt 4):479-485
    [107]柯衡明,陈玉祥和蔡继文.生物大分子的X射线晶体学.北京:化学工业出版社,2009
    [108]Zwart P.H., P.V.Afonine, R.W. Grosse-Kunstleve, et al. Automated structure solution with the PHENIX suite. Methods Mol Biol,2008,426:419-435
    [109]Emsley P. and K. Cowtan. Coot:model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr,2004,60(Pt 12 Pt 1):2126-2132
    [110]Brunger A.T., P.D. Adams. GM. Clore, et al. Crystallography & NMR system:A new software suite for macromolecular structure determination. Acta Crystallogr D Biol Crystallogr,1998,54(Pt 5):905-921
    [111]Laskowski R.A., M.W. MacArthur, D.S.Moss, et al. PROCHECK:a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography,1993, 26(2):283-291
    [112]McCoy A.J. Solving structures of protein complexes by molecular replacement with Phaser. Acta Crystallographica Section D:Biological Crystallography,2006,63(1):32-41
    [113]Holm L. and P. Rosenstrom. Dali server:conservation mapping in 3D. Nucleic Acids Res, 2010,38(Web Server issue):W545-549
    [114]Krissinel E. and K. Henrick. Inference of macromolecular assemblies from crystalline state. J Mol Biol,2007,372(3):774-797
    [115]Kumpf O.,E.J. Giamarellos-Bourboulis,A. Koch, et al. Influence of genetic variations in TLR4 and TIRAP/Mal on the course of sepsis and pneumonia and cytokine release:an observational study in three cohorts. Crit Care,2010,14(3):R103
    [116]Song Z., C. Tong, Z. Sun, et al. Genetic variants in the TIRAP gene are associated with increased risk of sepsis-associated acute lung injury. BMC Med Genet,2010,11:168
    [117]Durrani O., K. Banahan, F.J. Sheedy,et al. TIRAP Ser180Leu polymorphism is associated with Behcet's disease. Rheumatology (Oxford),2011,50(10):1760-1765
    [118]Castiblanco J., D.C. Varela, N. Castano-Rodriguez, et al. TIRAP (MAL) S180L polymorphism is a common protective factor against developing tuberculosis and systemic lupus erythematosus. Infect Genet Evol,2008,8(5):541-544
    [119]Versees W., S. De Groeve and M. Van Lijsebettens. Elongator, a conserved multitasking complex? Mol Microbiol,2010,76(5):1065-1069
    [120]Creppe C. and M. Buschbeck. Elongator:an ancestral complex driving transcription and migration through protein acetylation. J Biomed Biotechnol,2011,2011:924898
    [121]Svejstrup J.Q. Elongator complex:how many roles does it play? Curr Opin Cell Biol, 2007,19(3):331-336
    [122]Cox GA., C.L. Mahaffey, A. Nystuen, et al. The mouse fidgetin gene defines a new role for AAA family proteins in mammalian development. Nat Genet,2000,26(2):198-202
    [123]White S.R. and B. Lauring. AAA+ATPases:achieving diversity of function with conserved machinery. Traffic,2007,8(12):1657-1667
    [124]Snider J.. G Thibault and W.A. Houry. The AAA+ superfamily of functionally diverse proteins. Genome Biol,2008,9(4):216
    [125]Roll-Mecak A. and F.J. McNally. Microtubule-severing enzymes. Curr Opin Cell Biol, 2010,22(1):96-103
    [126]Yang Y., C.L. Mahaffey, N. Berube, et al. Functional characterization of fidgetin, an AAA-family protein mutated in fidget mice. Exp Cell Res,2005,304(1):50-58
    [127]Luke-Glaser S., L. Pintard, M. Tyers, et al. The AAA-ATPase FIGL-1 controls mitotic progression, and its levels are regulated by the CUL-3MEL-26 E3 ligase in the C. elegans germ line. J Cell Sci,2007,120(Pt 18):3179-3187
    [128]Yakushiji Y,S. Nishikori, K. Yamanaka, et al. Mutational analysis of the functional motifs in the ATPase domain of Caenorhabditis elegans fidgetin homologue FIGL-1:firm evidence for an intersubunit catalysis mechanism of ATP hydrolysis by AAA ATPases. J Struct Biol,2006,156(1):93-100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700