用户名: 密码: 验证码:
热冲击条件下含表面裂纹的UHTC破坏行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高温陶瓷材料(UHTC)具有高熔点、高热导率、高强度和化学稳定性,使其成为高温环境下和反应气氛环境中的导弹和高超声速飞行器最具前景的候选材料之一,具有在如超声速飞行,重返大气层及火箭推进等极端环境下服役的潜力,能够应用于包括飞行器鼻锥、机翼前缘、发动机热端等各种关键部位和部件。然而,在制备、加工、装配过程中会在材料表面和内部形成缺陷,主要以表面裂纹的形式出现,将直接影响材料的应用范围和可靠性,研究表面裂纹对材料性能的影响,尤其是对材料抗热冲击性能,热冲击损伤行为的影响具有重要的意义。基于此,本文围绕含有表面裂纹的ZrB2+20%SiC+10%AlN(ZS10A),研究其热冲击损伤行为的影响因素及损伤机制,主要从以下几个方面进行:
     搭建UHTC局部快速升温试验平台,实现简单易行的材料局部快速热冲击方法。利用该设备对含表面裂纹缺陷的ZrB2+20%SiC+10%AlN超高温陶瓷材料进行局部热冲击试验。结果表明:在快速热冲击条件下,热冲击失效行为与升温速率有关,通过改变输入电流以获得不同的升温速率200℃/s ,500℃/s,800℃/s,得到临界破坏点温度与升温速率之间的线性关系;通过Abaqus有限元软件模拟分析,得到热冲击过程中试样的温度场及应力场分布,进一步分析试样失效机制,为在实际应用中材料性能的评估提供了依据。
     UHTC的热冲击损伤行为主要通过表面裂纹扩展程度和热冲击后剩余强度两个方面衡量。因此选用Vickers硬度仪预制表面裂纹表征材料表面缺陷,采用淬火法模拟瞬态热冲击过程,通过比较热冲击前后表面裂纹长度变化趋势、淬火-弯曲试验后材料剩余强度两方面表征热冲击损伤行为,主要从UHTC材料尺寸效应和热冲击环境参数两个方面研究影响UHTC热冲击损伤和抗热冲击性能的因素及规律。试验结果表明,裂纹扩展趋势随着试样厚度,初始裂纹长度的增加而增加,淬火温差,不同温度下重复淬火及同一温度循环淬火都将影响裂纹扩展趋势。材料临界淬火温差、剩余强度随着试样厚度,初始裂纹长度的增加而减小,揭示了材料热冲击损伤行为的影响因素。
     根据经典热传导方程,建立淬火过程准静态热应力模型,同时考虑应变速率对热冲击过程中热应力的影响,建立淬火动态热应力模型。针对表面裂纹特性,引入表面半椭圆形裂纹模型,结合动态热应力模型,得到动态热应力裂纹强度因子计算公式。针对ZrB2+20%SiC+10%AlN材料,进行淬火动态热应力、动态热应力强度因子以及应用包络线法计算裂纹扩展阻力。根据计算结果,淬火过程中的动态热应力远大于准静态热应力,因此淬火过程中需要考虑动态热应力的影响;应力强度因子为裂纹扩展提供趋动力,判断其与裂纹扩展阻力的关系是预测裂纹是否扩展的关键,计算结果与试验结果基本吻合,同时考虑材料的尺寸效应,通过计算得出试样厚度与裂纹扩展的关系,用于预测材料热冲击损伤行为。
As ultra high temperature ceramic (UHTC) with high temperature resistance, thermal conductivity, strength and chemically stable at high temperature, it becomes one of the most prospective materials for application in ultra high temperature and reactive atmosphere, spaceflight, which has the potential to be used in extreme environments including those associated with hypersonic flight, atmospheric re-entry, rocket propulsion, key parts including the nose cones, shape leading edges and warm end of the engine. However, the preparation, processing and assembly will result in a lot of material internal or surface defects, mainly in the form of surface crack defects, will directly influence the reliability and the application of such materials. It is necessary to research on the material surface crack defects, especially for the thermal shock performance of material. Under this background, this work is focus on the influencing factors of material thermal shock damage behavior and damage mechanism with ZrB2+20%SiC+10%AlN (ZS10A)with Vickers indention, several aspects of problem for thermal shock are investigated as following:
     Equipment by fast local heating of UHTC was established, and it provides a simple and easy method for characterizing heating-up thermal shock property of UHTC. ZrB2+20%SiC+10%AlN were characterized by the new equipment. Results show that in the rapid thermal shock conditions, thermal shock failure behavior is related to the heating rate. We change the input current for different heating rate, 200℃/s ,500℃/s,800℃/s,and find there is a linear relationship between the heating rate and the temperature of critical damage. In addition, the thermal shock temperature and stress distribution of specimens during the process is obtained by Abaqus, in order to further characterization of sample failure mechanisms, and provide reliable data for performance assessment in practical application.
     Thermal shock damage behavior is mainly investigated by studying the surface crack extension and residual strength of the material under thermal shock. The surface crack is characterized by Vickers indention, and the transient thermal shock process is simulated with the quenching method. Thermal shock property of UHTC was investigated by comparison of surface crack length changes before and after thermal shock and residual strength of the material after quenching-bending test. Result shows that the crack growth increases with sample thickness and initial crack length, and the trend of crack growth will be influenced by quenching temperature difference, re-heating in different temperature and the same temperature. The critical temperature and residual strength of the material are decreased with the increase of sample thickness and initial crack length. The study reveals those factors influencing the thermal shock behavior of the material.
     According to the classical heat conduction equations, establish quasi-static stress model of quenching process. Then thermal shock model considering dynamical behavior and crack propagation model were established. According to the features of surface defects, introduce oval surface crack model and dynamical thermal stress model, calculation formula of dynamic thermal stress intensity factor of crack is obtained. Crack resistance of UHTC can be calculated by dynamical thermal stress, the dynamic thermal stress intensity factor and equation of ZrB2+20%SiC+10%AlN. Results show that dynamical thermal stress is much higher than quasi-static one, so effect of dynamical thermal stress should be considered during quenching test. The stress intensity factor provides driving force for crack propagation, the relationship between it and crack resistance is the key to predict whether crack extension, the calculation results and experimental results are basically identical, considering the effects of the size of material, the relationship between the specimen thickness and thermal shock damage is calculated to predict crack propagation.
引文
1 W. G. Fahrenholtz, G. E. Hilmas. NSF-AFOSR Joint Workshop on Future Ultra-High Temperature Materials. UHTM Workshop Draft Report. 2004
    2杜善义.近空间飞行器及其关键材料.兵器知识. 2009, (4):30~31
    3张勇,何新波,曲选辉,段柏华.超高温材料的研究进展及应用.材料学报. 2007, 21(12):60~64
    4 R. Savino, M. D. Stefano Fumo, D. Paterna. Arc-Jet Testing of Ultra-high-temperature-ceramics. Aerospace Science and Technology. 2010, (14):178–187
    5 T. H. Squire, J. Marschall. Material Property Requirements for Analysis and Design of UHTC Components in Hypersonic Applications. Journal of the European Ceramic Society. 2010, 30:2239-2251
    6 D. Alfano, L. Scatteia, F. Monteverde. Microstructural Characterization of ZrB2–SiC Based UHTC Tested in the Mesox Plasma Facility. Journal of the European Ceramic Society. 2010, 30:2345-2355
    7 K. Y. Upadhya, W. P. Hoffmann. Materials for Ultrahigh Temperature Structural Applications. American Ceramic Society Bulletin. 1997, 76(12):51~56
    8 G. F. William, G. E. Hilimas, NSF-AFOSR Joint Workshop on Future Ultrahigh Temperature Materials, NSF Grant DMR~0403004. 2004
    9 A. Bronson, Y. T. Ma, R. Mutso. Compatibility of Refractory Metal Boride/Oxide Composites at Ultrahigh Temperatures. Journal Electrochemical Society. 1992, 139(11):3183~3196
    10王海龙,汪长安,张锐,黄勇,方岱宁.二硼化锆基超高温陶瓷的制备及性能.硅酸盐学报. 2007, 35 (12):1590~1594
    11 J. W. Zimmermann, G. E. Hilmas, W. G. Fahrenholtz. Thermal Shock Resistance of ZrB2 and ZrB2–30% SiC. Materials Chemistry and Physics. 2008, 112: 140~145
    12朱时珍,徐强,冯超. ZrB2-20%SiC超高温陶瓷抗热震性能研究.稀有金属材料与工程. 2007, 36 (2):167~170
    13 R. Loehman, E. Corral, H. P. Dumm, P. Kotula, R. Tandon, Ultra High Temperature Ceramics for Hypersonic Vehicle Applications. Sandia National Laboratories report. 2006: 2006~2925
    14 J. David, Thomas. Design and Analysis of UHTC Leading Edge Attachment. Ohio Aerospace Institute, Brook Park, Ohio. 2002: 1-65
    15 M. Gasch, D. Ellerby, E. Irby, S. Beckman, M. Gusman, S. Johnson. Processing Properties and Arc Jet Oxidation of Hafnium Diboride/silicon Carbide Ultra High Temperature Ceramics. Journal of Ournal of Materials Science. 2004, 39:5925~5937
    16 Ecole des Mines de Paris, Centre des Matériaux P.M. Fourt. Some Numerical Approaches of Creep, Thermal Shock, Damage and Delayed Failure of Ceramics and Refractories. Indian Academy of Sciences. 2001, 24(2):97~100
    17郭景坤.关于先进结构陶瓷的研究.无机材料学报. 1999, 14 (2):193~202
    18黄勇,汪长安.高性能多相复合材料陶瓷.清华大学出版社. 2008:94~96
    19 B. A. Boley, J. H. Weiner. Theory of thermal Stresses. John Wiley&Sons, Inc, New York. 1960.
    20 W. D. Kingery. Factors Affecting Thermal Shock Resistance of Ceramic Materials. J. Am.Ceram. Soc. 1955, 38(1):3~15
    21 D. P. H. Hasselman. Thermal Shock by Radiation Heating. Ibid. 1963:219~234
    22 D. P. H. Hasselman. Theory of Thermal Stress Resistance of Semitransparent Ceramics Under Radiation Heating. Ibid. 1966, 49(2):103~104
    23 D. P. H. Hasselman. Approximate Theory of Thermal Stress Resistance of Brittle Ceramics Involving Creep. Ibid. 1967, 50(9):454~457
    24 R. L. Coble, W. D. Kingery. Effect of Porosity on Thermal Stress Fracture. Ibid., 1955, 38 (1):33~37
    25 D. P. H. Hasselman and W. B. Crandall. Thermal Shock Analysis of Spherical Shapes: II. Ibid. 1963,46(9):434~437
    26 D. P. H. Hasselman. Elastic Energy at Fracture and Surface Energy as Design Criteria for Thermal Shock. Ibid. 1963,46(11):535~540
    27 Z. H. Zhou. A New Thermal Shock Resistance Model for Ceramics: Establishment and Validation. Materials Science and Engineering. 2005, 405:272~276
    28 C. Vinet, P. Priou. Micromechanical Damage Model Taking Loading-Induced Anisotropy into Account. Aerospace Science and Technology. 1997, 1:65~76
    29 Margolin. Elastic Moduli of a Cracked Body. Int. J. Fract. 1983, 22:65~79
    30 J. F. Maire. A New Formulation of Continuum Damage Mechanics (CDM) for Composite Materials. Aerospace Science and Technology. 1997, 4:247~257
    31 N. Schmitt. Micromechanics Applied to the Thermal Shock Behavior of Refractory Ceramics. Mechanics of Materials. 2002, 34:725~747
    32 J. Absi. Improved Method for Severe Thermal Shocks Testing of Ceramics by Water Quenching. Journal of the European Ceramic Society. 2004, 24:2835~2838
    33 P. K. Panda. Thermal Shock and Thermal Fatigue Study of Ceramic Materials on a Newly Developed Ascending Thermal Shock Test Equipment. Science and Technology of Advanced Materials. 2002, 3:327~334
    34 H. W. Chandler. A fracture Test for Brittle Materials. Journal of European Ceramic Society. 1997, 17:759~763
    35 Z. Wang, C. Q. Hong, X. H. Zhang, J. C. Han. Microstructure and Thermal ShockBehavior of ZrB2-SiC-Graphite Composite. Materials Chemistry and Physics. 2008, 113(1):338~341
    36 X. H. Zhang, L. Xu, S. Du, W. B. Han. Thermal Shock behavior of SiC-Whisker-Reinforced Diboride Ultrahigh-Temperature Ceramics. Scripta Materialia. 2008, 59:55~58
    37 S. H. Meng, G. Q. Liu. Mechanisms of Thermal Shock Failure for Ultra High Temperature Ceramic. Materials&Design. 2009, 30(6):2108~2112
    38 X. H. Zhang, R. B. Zhang. Microstructure, Mechanical Properties and Thermal Shock Resistance of Hot-Pressed ZrO2(3Y)-BN Composites. 2008, 497(1~2):195~199
    39 C. Aksel. Thermal Shock Parameters of Magnesia-Spinel Composites. Journal of the European Ceramic Society. 2003, 23:301~308
    40赵军.陶瓷构件形状对其抗热冲击性的影响.机械工程学报. 2004, 40(1):7~10
    41 T. J. Lu. The Thermal Shock Resistance of Solids. Acta Mater. 1998,46(13):4755~4768
    42 F. Monteverde. Stability of Ultra-High-Temperature ZrB2-SiC Ceramics Under Simulated Atmospheric Re-entry Conditions. Journal of the European Ceramic Society. 2007, 27:4797~4805
    43 K. Upadhya. Properties and Performance of Plasma-assisted Physically Vapor-Deposited TiC Coatings. Materials Science and Engineering. 1991,140:549-553
    44 F. Monteverde, A. Bellosi. Beneficial Effects of AlN as Sintering Aid on Microstructure and Mechanical Properties of Hot-pressed ZrB2. Advanced Engineering Materials. 2003, 5(7):508~512.
    45 K. T. Faber, A. G. Evens. Crack Deflection Prcesses-I. Theory, Acta Metallurgica, 1983, 31(4):565~576
    46林鹏,黄凯珠,王仁坤,周维垣.不同角度单裂纹缺陷试样的裂纹扩展与破坏行为.岩石力学与工程学报. 2005, 24(2):377~381
    47孙雅珍,刘杰民,余天庆,刘大任.脆性材料斜裂纹扩展的数值试验与破坏模式分析.沈阳建筑大学学报(自然科学版). 2007, 23(3):131~140
    48 W. F. Brace, E. G. Bombolakis. Note on Brittle Crack Growth in Compression. Journal of Geophysical Research. 1963, 68(6):3709~3717.
    49 F. A. Mcclintock, J. B. Walsh. Friction on Griffith Cracks in Rocks under Pressure. Proceedings of the Fourth U.S. National Congress on Applied Mechanics. 1962:1015~1021.
    50 T. N. Dey, C. Y. Wang. Some Mechanisms of Microcrack Growth and Iinteraction in Compressive Rock Failure. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1981, 18(3):199~209.
    51 R. C. Nolen-Hoeksema, R. B. Gordon. Optical Detection of Crack Patterns in theOpening-mode Fracture of Marble. International Journal of Rock Mechanics and Mining Sciences. 1987, 24:135–144.
    52 O. Reyes, H. H. Einstein. Failure Mechanism of Fractured Rock. A Fracture Coalescence Model Proceedings of The 7th International Congress on Rock Mechanics. 1991, 1:333~340.
    53 B. Shen, O. Stephansson. Numerical Analysis of Mixed Model I and Model II Propagation of Fractures. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1993, 30(7):861~867.
    54 A. Bobet, H. H. Einstein. Fracture Coalescence in Rock-type Material under Uniaxial and Biaxial Compression. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1998, 35(7):836~888.
    55 R. H. C. Wong, K. T. Chau. The Coalescence of Frictional Cracks and the Shear Zone Formation in Brittle Solids under Compressive Stresses. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1997, 34:335~366.
    56朱维申,陈卫忠,申晋.雁形裂纹扩展的模型试验及断裂力学机制研究.固体力学学报. 1998, 19(4):355~360.
    57白世伟,任伟中,丰定祥等.共面闭合断续节理岩体强度特性直剪试验研究.岩土力学. 1999, 20(2):10~16.
    58林鹏,周雅能,李子昌,杨强,周维垣.含三维预置单裂纹缺陷岩石破坏试验研究.岩石力学与工程学报. 2008,27 (2):3882~3887
    59 H. Horri, S. Nemat-Nasser. Elastic Fields of Interacting Inhomogeneities, International Journal of Solids and Structures. 1985, 21:731~745.
    60 Y. Zhao, J. Huang, R. Wang. Real-time Observations of the Microfracturing Processing in Rock Mining During a Compressive Test. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts. 1993, 30(6): 643~652.
    61凌建明.节理岩体损伤力学及时效损伤特性的研究.上海同济大学博士学位论文. 1992:55~69.
    62杨更社,张长庆,岩体损伤及检测.西安:陕西科学技术出版社. 1998:58~114.
    63葛修润.岩石细观损伤扩展规律的CT实时试验.中国科学(E辑). 2000.
    64简浩,李术才,朱维申,齐良锋.含裂隙水脆性材料单轴压缩CT分析.岩土力学. 2002, 23(5):587~591
    65张亚军,梁健,张欣耀,查小琴.一种悬臂弯曲加载表面裂纹扩展试样及其应用.中国测试. 2009, 35(1):94~96
    66郑修麟.切口件的断裂力学.西北工业大学出版社, 2005:34~35
    67刘国仟. ZrB2–SiC基超高温陶瓷材料热冲击失效行为的研究.哈尔滨工业大学博士学位论文. 2009:71~78
    68姚旺,张宇民,韩杰才.碳化硅反射镜材料性能预测.宇航材料工艺. 2006, 3:41~46
    69王群,林志浪,周美玲,郑新和.原位合成AlN粉体. 2000年中国材料研计会论文集. 2000:832~837
    70王勖成.有限单元法.清华大学出版社. 2002:441~443
    71 H. S. Carslaw and J. C. Jaeger. Conduction of Heat in Solids. Oxford University Press, Oxford. 1959
    72陆明万,罗学富.弹性理论基础.清华大学出版社. 2001
    73程靳,赵树山.断裂力学.科学出版社. 2006
    74李永利,张久兴,乔冠军,金志浩. Al2O3/BN复相陶瓷的R曲线特性.硅酸盐学报. 2005, 33(6)
    75 T. Jiang, Z.H. Jin, J. F. Yang, G. J. Qiao. Mechanical property and R-curve behavior of the B4C/BN ceramics composites. Materials Science and Engineering A. 2008,
    494:203-216
    76 C. W. Li, D. J. Lee , S. C. Lui. R-curve hehavior and strength for insitu- reinforced silicon nitrides with different microstructures. Journal of the American Ceramic Society. 1992, 75 (7) :1777-1785

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700