用户名: 密码: 验证码:
重庆主城两江水体与沉积物中邻苯二甲酸酯和多环芳烃污染水平及特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有机污染物(Persistent Organic Pollutants,简称POPs)对人体健康和环境的影响已经引起全球的广泛关注。城市作为人群聚居地区,水体和沉积物中POPs水平的高低直接影响着城市居民的健康,因而深入研究水体和沉积物中POPs污染物的环境行为对城市生态环境有非常重要意义。邻苯二甲酸酯(PAEs)和多环芳烃(PAHs)是两类典型的POPs污染物,部分PAEs和PAHs化合物被美国环保署(USEPA)列为优先控制污染物。论文选择重庆主城长江、嘉陵江为研究区域,以PAEs和PAHs为研究对象,在建立两类POPs污染物分析方法的基础上,探讨了它们在城市水体和沉积物中的残留水平、污染特征及生态风险。
     论文的主要研究结论如下:
     ①通过单因素试验、Box-Behnken设计并结合响应曲面分析,建立了水样中5种PAEs和16种PAHs同时富集的最佳固相萃取条件:不调节pH值的1L水样加入10mL甲醇改性剂,用Supelco-C_(18)固相萃取小柱进行萃取,上样流速为5.7mL/min,3.4mL二氯甲烷/丙酮/正己烷(体积比1:1:1)混合洗脱剂洗脱,洗脱速率1.1mL/min。GC/MS法测定两类目标物的回收率范围为60.9%~94.6%,方法检出限为0.01~0.4μg/L。分析结果表明,本方法可以取代液液萃取法,并且节省了溶剂,简化了实验步骤。采用超声波提取、层析柱净化对沉积物样品进行预处理,正交实验优化了超声条件。在相同电功率输入情况下(250W),沉积物中PAEs的预处理选择单频超声(45kHz)12min,氧化铝柱净化的方式;对于PAHs选用双频组合超声(28kHz/45kHz)60min,硅胶柱净化。GC/MS法测得沉积物中PAEs、PAHs的加标回收率分别为70.6%~95.6%、75.8%~98.7%,方法检出限为0.54~1.35ng/g、0.36~1.53ng/g,与索氏萃取法相当,优于机械振荡提取法。
     ②重庆主城两江水相、间隙水和沉积物中5种PAEs浓度分别为53.2~10061.3ng/L、916.8~15807.9ng/L和1438.9~5045.9ng/g,邻苯二甲酸二正丁酯(DnBP)和邻苯二甲酸二(2-乙基己基)酯(DEHP)是水体和沉积物中主要污染物;黏土是影响沉积相中PAEs分布的重要因素(R~2=-0.860,p<0.05),有机质含量对其影响较小;沉积物-间隙水间的lgK_(oc)值与lg_(Ko)w不相关,DnBP在沉积物和间隙水间的分配接近平衡,邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)有由沉积相向间隙水相迁移的趋势,DEHP则由间隙水相向沉积相迁移;与国内外其他地区相比,研究区水体和沉积物中PAEs含量处于中等偏下水平。
     ③重庆主城两江16种PAHs在水相中浓度为139.4~1538.6ng/L,间隙水中为563.5~3831.4ng/L,沉积物中642.8~4630.3ng/g;沉积物中的粉砂与PAHs总量显著正相关(R~2=0.625~0.667,p<0.05),粉砂是影响PAHs分布的重要因素;与其他地区相比,研究区PAHs含量处于中等水平;主成分分析主要反映了PAHs在多介质环境中不完全燃烧来源的相对贡献。其中煤炭、油类燃烧排放对水体中PAHs贡献率为67.8%,天然气燃烧及汽油不完全燃烧的贡献率为9.4%,石油挥发和焦炭来源的贡献率为7.0%;沉积物中,煤炭燃烧、油类燃烧及天然气燃烧排放的贡献率为72.4%,石油挥发及焦炭来源的贡献率为16.8%。
     ④对沉积物进行粒度分级(>150μm、150~96μm、96~63μm、63~47μm、47~25μm和<25μm),PAEs在<96μm的四个粒度组均有明显富集(富集系数为1.35~1.73),而PAHs在>150μm、47~25μm和150~96μm三个粒径组中存在富集;不同粒度组分中PAEs含量与TOC含量显著负相关(R~2=-0.784,p<0.05),PAHs含量与之正相关(R~2=0.424),黑碳(BC)对两类污染物的影响都较小。
     ⑤采用安全阈值法和概率曲线分布法分析了水体中4种PAEs的相对生态风险。结果表明水体中DMP、DEP、DnBP、DEHP的安全阈值分别为15413.16、53302.42、22.84、33.82,对水生生物无风险。以5%水生生物物种受影响作为可接受的效应水平终点(HC_5),采用概率曲线分布进行分析,DnBP、DEHP的浓度超过毒性值的风险概率分别为6.010~(-3)、1.110~(-3),4种PAEs的风险大小依次为:DnBP>DEHP>DMP>DEP,与安全阈值法结果一致。此外,DEHP和DnBP在沉积相中的含量超过了风险评价低值,可能存在着对生物的潜在危害。
     ⑥对水体中5种PAHs进行概率风险分析,除萘(Nap)外的其他4种PAHs的安全阈值均小于1,说明菲(Phe)、荧蒽(Flu)、芘(Pyr)和苯并[a]芘(Bap)对水生生物存在潜在风险。以HC_5作为水生生物可接受的效应水平终点,概率曲线分析结果表明Phe、Flu、Pyr、Bap超过毒性值的风险概率分别为0.367、0.394、0.958、0.908,危害化合物的影响大小顺序为Pyr>Bap>Flu>Phe>Nap。此外,两江沉积物单一PAHs含量和PAHs总量均未超过ERM值,严重的PAHs生态风险在沉积物中不存在,负面生物毒性效应会偶尔发生,风险主要来源于3环PAHs,以苊(Ace)、芴(Fle)和菲(Phe)为主。
Persistent organic pollutants (POPs) have become widespread pollutants in theenvironment and now represent a global contamination problem. Hazards associatedwith these pollutants are their persistence in the environment, their bioaccumulationpotential in the tissues of animals and humans through the food chain. Phthalate esters(PAEs) and Polycyclic aromatic hydrocarbons (PAHs) are typical POPs substances inthe environment, some of them listed as priority pollutants. Urban are densely populatedareas, residues level of PAEs and PAHs in water body directly affect the health of urbanresidents. So it is great significant to study PAEs and PAHs on urban water body forurban ecological environment. Taking the Yangtze River and Jialing River aroundChongqing’s Urban Areas as a research object, determination of PAEs and PAHs inwater and sediment, multi-media distribution, sources identification and ecological riskassessment have been discussed in this work. The main findings are as following:
     ①Solid phase extraction method (SPE) for the simultaneously enrichment of5PAEsand16PAHs in water samples was optimized by the combination of single parameterdesign, Box-Behnken design and response surface analysis. Supelco-C_(18)solid phaseextraction column was used for experiment.10mL methanol was added to1Lunbuffered water samples. The column was rinsed with3.4mL eluting solvent (mixeddichloromethane, acetone and n-hexane with a volume ratio of1:1:1) with a upflowmode at5.7mL/min. The eluting rate was1.1mL/min. In addition, the sediment sampleswere firstly extracted by organic solution, and then PAEs and PAHs sediments sampleswere purified by aluminum oxide chromatography and silica gel chromatographycolumns, respectively. Both PAEs and PAHs were detected by gas chromatography-Mass Spectrometry (GC/MS). Ultrasonic extraction conditions were optimized using anorthogonal array design. The results indicated that under the same ultrasonic power of250W, the best extraction conditions for PAEs was ultrasonicated with a frequency of45kHz for12min and for PAHs was dual-frequency (28kHz/45kHz) for60min. Goodrecoveries rates and limits of quantification of target organic matter in water andsediment were obtained.
     ②5PAEs were discussed in water phase, pore water and sediment from theYangtze River and Jialing River around Chongqing’s Urban Areas. The total PAEsconcentration ranged from53.2to10061.3ng/L in water phase, from916.8to 15807.9ng/L in pore water and from1438.9to5045.9ng/g in sediment. PAEsconcentration in pore water was much higher than that in the water phase. In fiveanalyzed PAEs compounds, DnBP and DEHP were the main pollutants in water andsediment. Clay content in sediment was the primary factor affecting PAEs distributionwhile organic matter content had less effect in this study. Results of PAEs partitionbetween sediment solid phase and pore water phase showed that there was nocorrelation between lgK_(oc)and lg_(Ko)wof PAEs. When the partitioning of DnBPconcentration between measured sediment and the surrounding pore water tended to beclose to equilibrium, DMP and DEP both had strong trends from sediment to pore waterphase and the opposite tendency was significant for DEHP. As compared to the resultsfor other studies, the PAEs concentration of the study region was in a lower-middlelevel.
     ③16polycyclic aromatic hydrocarbons (PAHs) were determined in water phase,sediment and pore water in the study areas. Total PAHs concentration ranged from139.4to1538.6ng/L in water phase,563.5to3831.4ng/L in pore water, and642.8to4630.3ng/g in sediment. PAHs concentration had significantly positive correlation withsilt proportion of the sediment (R~2=0.625-0.667,p<0.05), which indicated that siltfraction was a main factor affecting PAHs distribution. Contamination by PAHs inwater and sediment was moderate in comparison with other areas. Sourcesapportionment by principal component analysis reflected PAHs derived fromincompleted combustion. As for dissolved PAHs, coal, oil combustion accounted for67.8%, natural gas and gasoline combustion accounted for9.4%, petroleumvolatilization and coke source accounted for7.0%. As for PAHs in surface sediments,coal, oil and natural gas combustion accounted for72.4%, petroleum volatilization andcoke source accounted for16.8%.
     ④Sieving was performed to separate the sediments into five sizefractions(>150μm,150-96μm,96-63μm,63-47μm、47-25μm and <25μm). Significantenrichment of PAEs was found in the four franctions of <96μm (enrichment factorswere between1.35and1.73). PAHs were mainly enriched in the fractions of>150μm,47~25μm and150~96μm. PAEs and TOC content showed a linear negative correlation(R~2=-0.784, p<0.05) while PAHs had positive correlation with TOC(R~2=0.424). Blackcarbon (BC) had negeligible influence on the content of PAEs and PAHs.
     ⑤Based on the observed PAEs concentration in water samplings from the YangtzeRiver and Jialing River around Chongqing’s Urban Areas and NOEC values of aquatic organisms, two probabilistic risk approaches were applied to evaluate ecological risks of4PAEs. It was found that10%of the safety margin value was15413.16,53302.42,22.84and33.82for DMP, DEP, DnBP and DEHP respectively, which indicatednone-potential ecological risk for aquatic organism. In addition, application ofprobability distribution curves in the basic safety margin value and using HC_5(hazardous concentration for5%of species) as the endpoint of effect levels, theprobability of exceeding an exposure concentration for DnBP and DEHP were6.010~(-3)and1.110~(-3)separately. Moreover, associated with this specific probability of effects for4individual PAEs followed the order of DnBP>DEHP>DEP>DMP, which was inaccordance with the method of margin of safety. Surface sediment’s ecological risk instudy area was assessed with the methods of sediment quality guidelines (SQGs).Results showed DEHP and DnBP compound was present in excess of the lower ERLand may exist biological effects.
     ⑥Probability methodology were adopted to characterize ecological risk of5PAHs in water samples. Safety margin value indicated that Phenanthrene (Phe),Fluoranthene (Flu), Pyrene (Pyr) and Benz[a]pyrene (Bap) had potential ecological riskfor aquatic organism except for Naphthalene (Nap). The harm probabilities of5%of thespecies affected was0.367,0.394,0.958and0.908for Phe, Flu, Pyr and Bap separately,and the risk was in sequence of Pyr>Bap>Flu>Phe>Nap. The result of ecological riskassessment indicated the concentration levels of PAHs in sediment of the study area hadnot caused the marked negative influence on organism. However, Acenaphthene(Ace),Fluorene(Fle) and Phenanthrene compounds were present in excess of the lower ERL,and biological effects might exist. The adverse biological toxicity effect mightoccasionally happen in study areas.
引文
[1] Stales C.A., Peterson D.R., Parkerton T.F., et al. The environmental fate of phthalate esters: aliterature review[J]. Chemosphere.1997,35(4):667-749.
    [2] Peijnenburg W.J.G.M., Struijs J. Occurrence of phthalate esters in the environment of theNetherlands[J]. Ecotoxicology and Environmental Safety.2006,63(2):204-215.
    [3] Salim C.J., Liu H., Kennedy J.F. Comparative study of the adsorption on chitosan beads ofphthalate esters and their degradation products[J]. Carbohydrate Polymers.2010,81(3):640-644.
    [4] Luz L.P.d., Filho P.J.S., Sousa E.E.H.d., et al. Evaluation of surface sediment contamination bypolycyclic aromatic hydrocarbons in colony Z3—(Patos Lagoon, Brazil)[J]. MicrochemicalJournal.2010,96(1):161-166.
    [5] Serpe F.P., Esposito M., Gallo P., et al. Optimisation and validation of an HPLC method fordetermination of polycyclic aromatic hydrocarbons (PAHs) in mussels[J]. Food Chemistry.2010,122(3):920-925.
    [6]李海涛,黄岁樑.水环境中邻苯二甲酸酯的迁移转化研究[J].环境污染与防治.2006,28(11):853-858.
    [7] Prokupkova G., Holadova K., Poustka J., et al. Development of a solid-phase microextractionmethod for the determination of phthalic acid esters in water[J]. Analytica Chimica Acta.2002,457(2):211-223.
    [8] Luks-Betlej K., Popp P., Janoszka B., et al. Solid-phase microextraction of phthalates fromwater[J]. Journal of Chromatography A.2001,938(1):93-101.
    [9]胡雄星,韩中豪,刘必寅,等.邻苯二甲酸酯的毒性及其在环境中的分布[J].环境科学与管理.2007,32(1):37-40.
    [10] Chen C.Y. Biosynthesis of di-(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DBP)from red alga--Bangia atropurpurea[J]. Water research.2004,38(4):1014-1018.
    [11] Aignasse M., Prognon P., Stachowicz M., et al. A new simple and rapid HPLC method fordetermination of DEHP in PVC packaging and releasing studies[J]. International journal ofpharmaceutics.1995,113(2):241-246.
    [12] Amir S., Hafidi M., Merlina G., et al. Fate of phthalic acid esters during composting of bothlagooning and activated sludges[J]. Process Biochemistry.2005,40(6):2183-2190.
    [13] Zhou J., Cai Z.H., Xing K.Z. Potential mechanisms of phthalate ester embryotoxicity in theabalone Haliotis diversicolor supertexta[J]. Environmental Pollution.2011,159(5):1114-1122.
    [14] Darbre P.D., Harvey P.W. Paraben esters: review of recent studies of endocrine toxicity,absorption, esterase and human exposure, and discussion of potential human health risks[J].Journal of applied toxicology.2008,28(5):561-578.
    [15] Liao C.S., Chen L.C., Chen B.S., et al. Bioremediation of endocrine disruptor di-n-butylphthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri[J]. Chemosphere.2010,78(3):342-346.
    [16] Chen C.W., Chen C.F. Distribution, origin, and potential toxicological significance ofpolycyclic aromatic hydrocarbons (PAHs) in sediments of Kaohsiung Harbor, Taiwan[J].Marine Pollution Bulletin.2011,63:417-423.
    [17] Seth R., Mackay D., Muncke J. Estimating the organic carbon partition coefficient and itsvariability for hydrophobic chemicals[J]. Environmental science&technology.1999,33(14):2390-2394.
    [18] Reza J., Trejo A. Temperature dependence of the infinite dilution activity coefficient andHenry's law constant of polycyclic aromatic hydrocarbons in water[J]. Chemosphere.2004,56(6):537-547.
    [19] Smith D., Edelhauser E., Harrison R.M. Polynuclear aromatic hydrocarbon concentrations inroad dust and soil samples collected in the United Kingdom and Pakistan[J]. EnvironmentalTechnology.1995,16(1):45-53.
    [20] Valero-Navarro A., Fernández-Sánchez J., Medina-Castillo A., et al. A rapid, sensitive screeningtest for polycyclic aromatic hydrocarbons applied to Antarctic water[J]. Chemosphere.2007,67(5):903-910.
    [21]刘书臻.环渤海西部地区大气中的PAHs污染[D].北京大学.2008.
    [22] Yuan H., Tao S., Li B., et al. Emission and outflow of polycyclic aromatic hydrocarbons fromwildfires in China[J]. Atmospheric Environment.2008,42(28):6828-6835.
    [23]董继元.兰州地区多环芳烃环境归趋模拟和风险评价[D].兰州大学.2010.
    [24] Wilcke W., Amelung W., Martius C., et al. Biological sources of polycyclic aromatichydrocarbons (PAHs) in the Amazonian rain forest[J]. Journal of Plant Nutrition and SoilScience.2000,163(1):27-30.
    [25]赵文昌,程金平,谢海贇,等.环境中多环芳烃(PAHs)的来源与监测分析方法[J].环境科学与技术.2006,29(3):105-107.
    [26] Khalili N.R., Scheff P.A., Holsen T.M. PAH source fingerprints for coke ovens, diesel and,gasoline engines, highway tunnels, and wood combustion emissions[J]. AtmosphericEnvironment.1995,29(4):533-542.
    [27] Vi as L., Angeles Franco M., Antonio Soriano J., et al. Sources and distribution of polycyclicaromatic hydrocarbons in sediments from the Spanish northern continental shelf. Assessmentof spatial and temporal trends[J]. Environmental Pollution.2010,158(5):1551-1560.
    [28] Xu S., Liu W., Tao S. Emission of polycyclic aromatic hydrocarbons in China[J].Environmental science&technology.2006,40(3):702-708.
    [29] Lim L.H., Harrison R.M., Harrad S. The contribution of traffic to atmospheric concentrations ofpolycyclic aromatic hydrocarbons[J]. Environmental science&technology.1999,33(20):3538-3542.
    [30] Nielsen T., J rgensen H.E., Larsen J.C., et al. City air pollution of polycyclic aromatichydrocarbons and other mutagens: occurrence, sources and health effects[J]. Science of theTotal Environment.1996,189:41-49.
    [31] Papageorgoulou A., Manoli E., Touloumi E., et al. Polycyclic aromatic hydrocarbons in theambient air of Greek towns in relation to other atmospheric pollutants[J]. Chemosphere.1999,39(13):2183-2199.
    [32] Bruce E.D., Abusalih A.A., McDonald T.J., et al. Comparing deterministic and probabilistic riskassessments for sites contaminated by polycyclic aromatic hydrocarbons (PAHs)[J]. Journal ofEnvironmental Science and Health Part A.2007,42(6):697-706.
    [33] Boffetta P., Jourenkova N., Gustavsson P. Cancer risk from occupational and environmentalexposure to polycyclic aromatic hydrocarbons[J]. Cancer Causes and Control.1997,8(3):444-472.
    [34] Okona-Mensah K., Battershill J., Boobis A., et al. An approach to investigating the importanceof high potency polycyclic aromatic hydrocarbons (PAHs) in the induction of lung cancer byair pollution[J]. Food and Chemical Toxicology.2005,43(7):1103-1116.
    [35] Lan Q., Mumford J.L., Shen M., et al. Oxidative damage-related genes AKR1C3and OGG1modulate risks for lung cancer due to exposure to PAH-rich coal combustion emissions[J].Carcinogenesis.2004,25(11):2177-2181.
    [36]岳敏,谷学新,邹洪,等.多环芳烃的危害与防治[J].首都师范大学学报:自然科学版.2003,24(3):40-44.
    [37] Hafner W.D., Carlson D.L., Hites R.A. Influence of local human population on atmosphericpolycyclic aromatic hydrocarbon concentrations[J]. Environmental science&technology.2005,39(19):7374-7379.
    [38] Teil M.J., Blanchard M., Chevreuil M. Atmospheric fate of phthalate esters in an urban area(Paris-France)[J]. Science of the Total Environment.2006,354(2–3):212-223.
    [39] Cautreels W., Van Cauwenberghe K., Guzman L. Comparison between the organic fraction ofsuspended matter at a background and an urban station[J]. The Science of the TotalEnvironment.1977,8(1):79-88.
    [40] Otake T., Yoshinaga J., Yanagisawa Y. Exposure to phthalate esters from indoor environment[J].Journal of Exposure Science and Environmental Epidemiology.2004,14(7):524-528.
    [41]朱媛媛,田靖,时庭锐,等.天津市空气颗粒物中酞酸酯的分布特征[J].中国环境监测.2010,26(3):7-10.
    [42]朱媛媛,田靖,吴国平,等.鞍山市空气颗粒物中酞酸酯的季节变化与功能区差异[J].中国环境监测.2010,26(4):9-12.
    [43]赵振华.酞酸酯对人与环境潜在危害的研究概况[J].环境化学.1991,10(3):64-68.
    [44]国伟林,王西奎.城区大气和塑料大棚空气中酞酸酯的分析[J].环境化学.1997,16(4):382-386.
    [45] Fromme H., Küchler T., Otto T., et al. Occurrence of phthalates and bisphenol A and F in theenvironment[J]. Water research.2002,36(6):1429-1438.
    [46] Dargnat C., Blanchard M., Chevreuil M., et al. Occurrence of phthalate esters in the Seine Riverestuary (France)[J]. Hydrological Processes.2009,23(8):1192-1201.
    [47]沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征[J].中国环境科学.2006,26(1):120-124.
    [48] Wang F., Xia X., Sha Y. Distribution of phthalic acid esters in Wuhan section of the YangtzeRiver, China[J]. Journal of hazardous materials.2008,154(1-3):317-324.
    [49] Chi J. Phthalate acid esters in Potamogeton crispus L. from Haihe River, China[J].Chemosphere.2009,77(1):48-52.
    [50]陆洋,袁东星,邓永智.九龙江水源水及其出厂水邻苯二甲酸酯污染调查[J].环境与健康杂志.2007,24(9):703-705.
    [51]田怀军,舒为群,张学奎,等.长江、嘉陵江(重庆段)源水有机污染物的研究[J].长江流域资源与环境.2003,12(2):118-123.
    [52]杨梅,扈志勇,蒲俊兵,等.重庆典型岩溶区地下河水体PAEs分布特征研究[J].中国环境监测.2009,25(6):62-66.
    [53]郭志顺,罗财红,张卫东,等.三峡库区重庆段江水中持久性有机污染物污染状况分析[J].中国环境监测.2006,22(4):45-48.
    [54]姚文松,庄婉娥,林芳,等.河口及近岸沉积物中15种邻苯二甲酸酯的气相色谱-质谱测定方法[J].厦门大学学报:自然科学版.2011,50(4):783-788.
    [55]张银华,陈旭东.湖泊沉积物中邻苯二甲酸酯类的GC/MS分析[J].分析测试学报.1995,14(5):17-21.
    [56] Mackintosh C.E., Maldonado J.A., Ikonomou M.G., et al. Sorption of phthalate esters and PCBsin a marine ecosystem[J]. Environmental science&technology.2006,40(11):3481-3488.
    [57] Bartolomé L., Cortazar E., Raposo J., et al. Simultaneous microwave-assisted extraction ofpolycyclic aromatic hydrocarbons, polychlorinated biphenyls, phthalate esters andnonylphenols in sediments[J]. Journal of Chromatography A.2005,1068(2):229-236.
    [58]莫测辉,蔡全英.我国城市污泥中邻苯二甲酸酯的研究[J].中国环境科学.2001,21(4):362-366.
    [59] Zeng F., Cui K., Xie Z., et al. Occurrence of phthalate esters in water and sediment of urbanlakes in a subtropical city, Guangzhou, South China[J]. Environment international.2008,34(3):372-380.
    [60] Liu H., Liang H., Liang Y., et al. Distribution of phthalate esters in alluvial sediment: A casestudy at JiangHan Plain, Central China[J]. Chemosphere.2010,78(4):382-388.
    [61]裴赛峰,张昀,袁东,等.邻苯二甲酸酯类化合物的环境污染及人体暴露水平[J].环境与职业医学.2008,25(3):306-309.
    [62] GIAM C.S., Chan H., Neff G., et al. Phthalate ester plasticizers: a new class of marinepollutant[J]. Science.1978,199(4327):419.
    [63] Chee K., Wong M., Lee H. Microwave extraction of phthalate esters from marine sediment andsoil[J]. Chromatographia.1996,42(7):378-384.
    [64]杨国义,张天彬,高淑涛,等.广东省典型区域农业土壤中邻苯二甲酸酯含量的分布特征[J].应用生态学报.2007,18(10):2308-2312.
    [65]关卉,王金生,万洪富,等.雷州半岛典型区域土壤邻苯二甲酸酯(PAEs)污染研究[J].农业环境科学学报.2007,26(2):622-628.
    [66]赵胜利,杨国义,张天彬,等.珠三角城市群典型城市土壤邻苯二甲酸酯污染特征[J].生态环境学报.2009,18(1):128-133.
    [67] Park S.S., Kim Y.J., Kang C.H. Atmospheric polycyclic aromatic hydrocarbons in Seoul,Korea[J]. Atmospheric Environment.2002,36(17):2917-2924.
    [68] Ding X., Wang X.M., Xie Z.Q., et al. Atmospheric polycyclic aromatic hydrocarbons observedover the North Pacific Ocean and the Arctic area: Spatial distribution and sourceidentification[J]. Atmospheric Environment.2007,41(10):2061-2072.
    [69]杨丹,兰善红,马邕文,等.东莞市夏季大气颗粒物中的多环芳烃及硝基多环芳烃[J].环境化学.2012,31(6):791-795.
    [70]李志刚,周志华,李少艾,等.深圳市大气中多环芳烃的污染特征与来源识别[J].中国环境科学.2011,31(9):1409-1415.
    [71]牛红云,王荟,王格慧,等.南京大气气溶胶中多环芳烃源识别及污染评价[J].中国环境科学.2006,25(5):544-548.
    [72] Witt G. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea[J]. MarinePollution Bulletin.1995,31(4-12):237-248.
    [73] Mitra S., Bianchi T. A preliminary assessment of polycyclic aromatic hydrocarbon distributionsin the lower Mississippi River and Gulf of Mexico[J]. Marine Chemistry.2003,82(3-4):273-288.
    [74] Wang J.Z., Nie Y.F., Luo X.L., et al. Occurrence and phase distribution of polycyclic aromatichydrocarbons in riverine runoff of the Pearl River Delta, China[J]. Marine Pollution Bulletin.2008,57(6):767-774.
    [75]杨清书,欧素英,谢萍,等.珠江虎门潮汐水道水体中多环芳烃的分布及季节变化[J].海洋学报(中文版).2004,26(6):37-48.
    [76]王平,徐建,郭炜锋,等.黄河兰州段水环境中多环芳烃污染初步研究[J].中国环境监测.2007,23(3):48-51.
    [77]高旭,王侠,熊毅,等.三峡库区城市给水厂多环芳烃分布变化评价[J].安全与环境学报.2007,7(4):77-80.
    [78] Headley J.V., Akre C., Conly F.M., et al. Preliminary characterization and source assessment ofPAHs in tributary sediments of the Athabasca River, Canada[J]. Environmental Forensics.2001,2(4):335-345.
    [79]许静,任明忠,杜国勇,等.北江表层沉积物中多环芳烃的分布与风险评价[J].环境科学.2009,30(11):3269-3274.
    [80]郭伟,何孟常,杨志峰,等.大辽河水系表层沉积物中石油烃和多环芳烃的分布及来源[J].环境科学学报.2007,27(5):824-830.
    [81]欧冬妮,刘敏,许世远,等.长江口滨岸水和沉积物中多环芳烃分布特征与生态风险评价[J].环境科学.2009,30(10):3043-3049.
    [82] Chrysikou L., Gemenetzis P., Kouras A., et al. Distribution of persistent organic pollutants,polycyclic aromatic hydrocarbons and trace elements in soil and vegetation following a largescale landfill fire in northern Greece[J]. Environment international.2008,34(2):210-225.
    [83]薛建涛,张金祥,黄咸雨.武汉城区土壤剖面多环芳烃的分布特征及来源分析[J].环境科学与技术.2011,34(2):1-5.
    [84]陈静,王学军,陶澍,等.天津污灌区耕作土壤中多环芳烃的纵向分布[J].城市环境与城市生态.2004,16(6):272-274.
    [85]邹爱红,张良璞,程燕,等.南淝河沉积物中半挥发性有机污染物分析[J].生物学杂志.2010,27(6):69-71.
    [86]杨振宁.长江和嘉陵江(重庆主城区)水域中总汞的光谱定量分析研究[D].重庆大学.2007.
    [87]林峥,麦碧娴.沉积物中多环芳烃和有机氯农药定量分析的质量保证和质量控制[J].环境化学.1999,18(2):115-121.
    [88]李利荣,吴宇峰,杨家凤,等.土壤中64种痕量半挥发性有机污染物的分析方法研究[J].分析试验室.2007,26(1):79-84.
    [89]林兴桃,王小逸,陈明,等.固相萃取高效液相色谱法测定水中邻苯二甲酸酯类环境激素[J].环境科学研究.2004,17(5):71-74.
    [90]贾瑞宝.水中痕量多环芳烃(PAHs)类环境污染物检测方法的研究[J].中国环境监测.1999,15(1):40-42.
    [91]陈慧,黄要红,蔡铁云.固相萃取-气相色谱/质谱法测定水中多环芳烃[J].环境污染与防治.2004,26(1):72-74.
    [92]宋慧婷,贺锋,成水平,等.武汉月湖水体和表层沉积物中25种半挥发性有机污染物分布特性[J].湖泊科学.2010,22(4):521-526.
    [93]童宝锋.北京玉渊潭典型有毒有机物研究[D].华中农业大学.2007.
    [94]杜兵,张彭义,张祖麟,等.北京市某典型污水处理厂中内分泌干扰物的初步调查[J].环境科学.2004,25(1):114-116.
    [95]王英.固相萃取-Gc/Ms法测定水中半挥发性有机污染物的研究[D].苏州科技大学硕士论文学位论文.2009.
    [96] Huang P.C., Tien C.J., Sun Y.M., et al. Occurrence of phthalates in sediment and biota:Relationship to aquatic factors and the biota-sediment accumulation factor[J]. Chemosphere.2008,73(4):539-544.
    [97]张会琴.混凝—高级氧化耦合处理印染废水和微污染原水的效果及机理研究[D].重庆大学.2010.
    [98] Mayerhoff Z.D.V.L., Roberto I.C., Franco T.T. Purification of xylose reductase from Candidamogii in aqueous two-phase systems[J]. Biochemical engineering journal.2004,18(3):217-223.
    [99] Wen Z., Liao W., Chen S. Production of cellulase by Trichoderma reesei from dairy manure[J].Bioresource Technology.2005,96(4):491-499.
    [100]张军.典型红树林湿地中多环芳烃的含量、来源和迁移研究[D].厦门大学.2006.
    [101]徐维海.典型抗生素类药物在珠江三角洲水环境中的分布、行为与归宿[D].中国科学院研究生院(广州地球化学研究所).2007.
    [102]贲永光,丘泰球,李康,等.单频超声和双频复合超声的空化效应实验研究[J].声学技术.2009,28(3):257-260.
    [103]杨云,张卓旻,李攻科.微波辅助萃取/气相色谱-质谱联用分析蔬菜中的有机磷农药[J].色谱.2002,20(5):390-393.
    [104] Isono Y., Kumagai T., Watanabe T. Ultrasonic degradation of waxy rice starch[J]. Bioscience,biotechnology, and biochemistry.1994,58(10):1799-1802.
    [105]潘峰,王艺霏,郑松涛.超声-索氏提取法提取焦化厂土壤中多环芳烃[J].河南师范大学学报(自然科学版).2010,38(5):122-124.
    [106] Kemble N.E., Brumbaugh W.G., Brunson E.L., et al. Toxicity of metal‐contaminatedsediments from the upper clark fork river, montana, to aquatic invertebrates and fish inlaboratory exposures[J]. Environmental Toxicology and Chemistry.1994,13(12):1985-1997.
    [107] Mitra S., Dickhut R.M. Three-phase modeling of polycyclic aromatic hydrocarbon associationwith pore-water-dissolved organic carbon[J]. Environmental Toxicology and Chemistry.1999,18(6):1144-1148.
    [108] Adams R.G., Lohmann R., Fernandez L.A., et al. Polyethylene devices: Passive samplers formeasuring dissolved hydrophobic organic compounds in aquatic environments[J].Environmental science&technology.2007,41(4):1317-1323.
    [109]占新华,周立祥,沈其荣,等.污泥堆肥过程中水溶性有机物光谱学变化特征[J].环境科学学报.2001,21(4):470-474.
    [110] Moore T., De Souza W., Koprivnjak J. Controls on the sorption of dissolved organic carbon bysoils[J]. Soil Science.1992,154(2):120-129.
    [111] Ko S.O., Schlautman M.A., Carraway E.R. Partitioning of hydrophobic organic compounds tosorbed surfactants.1. Experimental studies[J]. Environmental science&technology.1998,32(18):2769-2775.
    [112]翟梦晓.黄淮水系河南段表层沉积物中多环芳烃的赋存特征及来源解析[D].河南师范大学.2011.
    [113] Shepard F.P. Nomenclature based on sand-silt-clay ratios[J]. Journal of Sedimentary Research.1954,24(3).
    [114] Lim B., Cachier H. Determination of black carbon by chemical oxidation and thermaltreatment in recent marine and lake sediments and Cretaceous-Tertiary clays[J]. ChemicalGeology.1996,131(1):143-154.
    [115] Guo W., He M., Yang Z., et al. Distribution, partitioning and sources of polycyclic aromatichydrocarbons in Daliao River water system in dry season, China[J]. Journal of hazardousmaterials.2009,164(2-3):1379-1385.
    [116]刘旖旎,丁剑秋,高建国.贵阳地表水体中的tTOC、BOD、COD相关性分析研究[J].贵州化工.2009,(5):40-42.
    [117]袁懋,花修艺,张立辉,等.吉林省主要河流不同水期的高锰酸盐指数、化学需氧量和总有机碳的相关关系比较[J].吉林大学学报(理学版).2008,(2):371-375.
    [118]宋学宏,顾海东,邴旭文,等.阳澄湖水体PI、BOD5与TOC的相关性[J].环境科学与技术.2011,(1):109-113.
    [119]程兵岐,马梅,王子健,等.长江武汉段和黄河花园口段水体中重金属污染物的急性毒性效应[J].北京大学学报(自然科学版).2004,(6):950-956.
    [120] Peng X., Zhang G., Mai B., et al. Tracing anthropogenic contamination in the Pearl Riverestuarine and marine environment of South China Sea using sterols and other organicmolecular markers[J]. Marine Pollution Bulletin.2005,50(8):856-865.
    [121] Yang R., Jiang G., Zhou Q., et al. Occurrence and distribution of organochlorine pesticides(HCH and DDT) in sediments collected from East China Sea[J]. Environment international.2005,31(6):799.
    [122] Shi J., Liang L., Jiang G., et al. The speciation and bioavailability of mercury in sediments ofHaihe River, China[J]. Environment international.2005,31(3):357-365.
    [123] Wen G., Ma J., Liu Z.Q., et al. Ozonation kinetics for the degradation of phthalate esters inwater and the reduction of toxicity in the process of O3/H2O2[J]. Journal of hazardousmaterials.2011,195:371-377.
    [124] Maraqa M.A., Zhao X., Lee J., et al. Comparison of nonideal sorption formulations inmodeling the transport of phthalate esters through packed soil columns[J]. Journal ofcontaminant hydrology.2011,125(1):57-69.
    [125] Carmo A.M., Hundal L.S., Thompson M.L. Sorption of hydrophobic organic compounds bysoil materials: Application of unit equivalent Freundlich coefficients[J]. Environmentalscience&technology.2000,34(20):4363-4369.
    [126] Huang W., Weber Jr W.J. A distributed reactivity model for sorption by soils and sediments.10.Relationships between desorption, hysteresis, and the chemical characteristics of organicdomains[J]. Environmental science&technology.1997,31(9):2562-2569.
    [127] Banerjee P., Piwoni M.D., Ebeid K. Sorption of organic contaminants to a low carbonsubsurface core[J]. Chemosphere.1985,14(8):1057-1067.
    [128] Chen C.Y., Chen C.C., Chung Y.C. Removal of phthalate esters by α-cyclodextrin-linkedchitosan bead[J]. Bioresource Technology.2007,98(13):2578-2583.
    [129] Fatoki O., Noma A. Solid phase extraction method for selective determination of phthalateesters in the aquatic environment[J]. Water, Air,&Soil Pollution.2002,140(1):85-98.
    [130] Penalver A., Pocurull E., Borrull F., et al. Determination of phthalate esters in water samplesby solid-phase microextraction and gas chromatography with mass spectrometric detection[J].Journal of Chromatography A.2000,872(1):191-201.
    [131] Tan G. Residue levels of phthalate esters in water and sediment samples from the Klang Riverbasin[J]. Bulletin of environmental contamination and toxicology.1995,54(2):171-176.
    [132] Vitali M., Guidotti M., Macilenti G., et al. Phthalate esters in freshwaters as markers ofcontamination sources—a site study in Italy[J]. Environment international.1997,23(3):337-347.
    [133] Vethaak A.D., Lahr J., Schrap S.M., et al. An integrated assessment of estrogeniccontamination and biological effects in the aquatic environment of The Netherlands[J].Chemosphere.2005,59(4):511-524.
    [134]唐晓先,张付海.巢湖水中邻苯二甲酸酯安全性评价[J].中国环境管理干部学院学报.2009,19(1):91-94.
    [135]隋苗苗.邻苯二甲酸酯类物质在北运河及潮白河中污染水平的研究[D].大连理工大学.2008.
    [136] Sha Y., Xia X., Yang Z., et al. Distribution of PAEs in the middle and lower reaches of theYellow River, China[J]. Environmental monitoring and assessment.2007,124(1):277-287.
    [137] Yuan S., Liu C., Liao C., et al. Occurrence and microbial degradation of phthalate esters inTaiwan river sediments[J]. Chemosphere.2002,49(10):1295-1299.
    [138] Hoch M. Assessment of salinity variations in TBT adsorption onto kaolinite andmontmorillonite at different pH levels[J]. Water, Air,&Soil Pollution.2004,152(1):349-362.
    [139] Venkata Mohan S., Shailaja S., Rama Krishna M., et al. Adsorptive removal of phthalate ester(Di-ethyl phthalate) from aqueous phase by activated carbon: A kinetic study[J]. Journal ofhazardous materials.2007,146(1):278-282.
    [140]吴玲玲.长江口水体中典型有机污染物的分布及其对鱼类的毒性效应[D].同济大学.2007.
    [141]欧冬妮.长江口滨岸多环芳烃(PAHs)多相分布特征与源解析研究[D].华东师范大学.2007.
    [142] Onyango M.S., Kojima Y., Aoyi O., et al. Adsorption equilibrium modeling and solutionchemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeoliteF-9[J]. Journal of colloid and interface science.2004,279(2):341-350.
    [143] Persson N.J., Bucheli T.D., Gustafsson., et al. Testing common sediment–porewaterdistribution models for their ability to predict dissolved concentrations of POPs in TheGrenlandsfjords, Norway[J]. Chemosphere.2005,59(10):1475-1485.
    [144] Yu Y., Xu J., Wang P., et al. Sediment-porewater partition of polycyclic aromatic hydrocarbons(PAHs) from Lanzhou Reach of Yellow River, China[J]. Journal of hazardous materials.2009,165(1):494-500.
    [145] Wang H., Wang C., Wu W., et al. Persistent organic pollutants in water and surface sedimentsof Taihu Lake, China and risk assessment[J]. Chemosphere.2003,50(4):557-562.
    [146]焦立新,孟伟,郑丙辉,等.渤海湾潮滩不同粒径沉积物中多环芳烃的分布[J].中国环境科学.2010,(9):1241-1248.
    [147]王旭,于赤灵,彭平安,等.沉积物中黑碳的提取和测定方法:误差分析和回收率实验[J].地球化学.2001,30(5):439-444.
    [148] Wang X.C., Zhang Y.X., Chen R.F. Distribution and partitioning of polycyclic aromatichydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, UnitedStates[J]. Marine Pollution Bulletin.2001,42(11):1139-1149.
    [149] Mayer L. Extent of coverage of mineral surfaces by organic matter in marine sediments[J].Geochimica et Cosmochimica Acta.1999,63(2):207-215.
    [150] Mayer L.M. Relationships between mineral surfaces and organic carbon concentrations in soilsand sediments[J]. Chemical Geology.1994,114(3):347-363.
    [151] Khalil M.F., Ghosh U., Kreitinger J.P. Role of weathered coal tar pitch in the partitioning ofpolycyclic aromatic hydrocarbons in manufactured gas plant site sediments[J]. Environmentalscience&technology.2006,40(18):5681-5687.
    [152] Chiou C.T., Shoup T.D., Porter P.E. Mechanistic roles of soil humus and minerals in thesorption of nonionic organic compounds from aqueous and organic solutions[J]. OrganicGeochemistry.1985,8(1):9-14.
    [153] Zhu C., Wang Z.H., Xue B., et al. Characterizing the depositional settings for sedimentaryorganic matter distributions in the Lower Yangtze River-East China Sea Shelf System[J].Estuarine, Coastal and Shelf Science.2011,93(3):182-191.
    [154]罗雪梅,刘昌明,何孟常.土壤与沉积物对多环芳烃类有机物的吸附作用[J].生态环境.2004,13(3):394-398.
    [155]王震宇,于晓冬,许颖,等.土壤微孔对有机物吸附/解吸的影响及其表征[J].生态学报.2009,29(4):2087-2096.
    [156] Huang W., Peng P., Yu Z., et al. Effects of organic matter heterogeneity on sorption anddesorption of organic contaminants by soils and sediments[J]. Applied Geochemistry.2003,18(7):955-972.
    [157] Men B., He M., Li T., et al. Distributions of polycyclic aromatic hydrocarbons in the DaliaoRiver Estuary of Liaodong Bay, Bohai Sea (China)[J]. Marine Pollution Bulletin.2009,58(6):818-826.
    [158] Karickhoff S.W., Brown D.S., Scott T.A. Sorption of hydrophobic pollutants on naturalsediments[J]. Water research.1979,13(3):241-248.
    [159]宋雪英,李玉双,伦小文,等.太子河水体中多环芳烃分布与污染源解析[J].生态学杂志.2010,29(12):2486-2490.
    [160]郎印海,贾永刚,刘宗峰,等.黄河口水中多环芳烃(PAHs)的季节分布特征及来源分析[J].中国海洋大学学报:自然科学版.2008,38(4):640-646.
    [161] Maskaoui K., Zhou J., Hong H., et al. Contamination by polycyclic aromatic hydrocarbons inthe Jiulong river estuary and western Xiamen sea, China[J]. Environmental Pollution.2002,118(1):109-122.
    [162] McCready S., Slee D., Birch G., et al. The distribution of polycyclic aromatic hydrocarbons insurficial sediments of Sydney Harbour, Australia[J]. Marine Pollution Bulletin.2000,40(11):999-1006.
    [163] Doong R., Lin Y. Characterization and distribution of polycyclic aromatic hydrocarboncontaminations in surface sediment and water from Gao-ping River, Taiwan[J]. Water research.2004,38(7):1733-1744.
    [164] Guo W., He M., Yang Z., et al. Distribution of polycyclic aromatic hydrocarbons in water,suspended particulate matter and sediment from Daliao River watershed, China[J].Chemosphere.2007,68(1):93-104.
    [165]麦碧娴,林峥,张干,等.珠江三角洲河流和珠江口表层沉积物中有机污染物研究——多环芳烃和有机氯农药的分布及特征[J].环境科学学报.2000,(2):66-71.
    [166]许士奋,蒋新,王连生,等.长江和辽河沉积物中的多环芳烃类污染物[J].中国环境科学.2000,(2):128-131.
    [167]李恭臣,夏星辉,王然,等.黄河中下游水体中多环芳烃的分布及来源[J].环境科学.2006,27(9):1738-1743.
    [168]谢厚礼,刘宪英,冷艳锋,等.重庆地区地表水地源热泵的应用及建议[J].暖通空调.2011,41(6):58-61,105.
    [169] Shi Z., Tao S., Pan B., et al. Contamination of rivers in Tianjin, China by polycyclic aromatichydrocarbons[J]. Environmental Pollution.2005,134(1):97-111.
    [170] Joness K.C., Straford J.A., Waterhouse K.S., et al. Organic contaminants in Welsh soilPolycyclic aromatic hydrocarbons[J]. Environmental science&technology.1989,23:540-550.
    [171]伍卡兰,曹启民,陈桂珠.汕头红树林湿地沉积物多环芳烃垂直分布特征[J].生态学杂志.2009,28(12):2553-2560.
    [172] Simpson C.D., Mosi A.A., Cullen W.R., et al. Composition and distribution of polycyclicaromatic hydrocarbon contamination in surficial marine sediments from Kitimat Harbor,Canada[J]. Science of the Total Environment.1996,181(3):265-278.
    [173] Zakaria M.P., Takada H., Tsutsumi S., et al. Distribution of polycyclic aromatic hydrocarbons(PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs[J].Environmental science&technology.2002,36(9):1907-1918.
    [174] Ghosh U., Gillette J.S., Luthy R.G., et al. Microscale location, characterization, andassociation of polycyclic aromatic hydrocarbons on harbor sediment particles[J].Environmental science&technology.2000,34(9):1729-1736.
    [175]丁爱芳,潘根兴,李恋卿.太湖地区几种水稻土团聚体颗粒组中PAHs的分布及其环境意义[J].环境科学学报.2006,(2):293-299.
    [176] Hu N., Shi X., Liu J., et al. Concentrations and possible sources of PAHs in sediments fromBohai Bay and adjacent shelf[J]. Environmental Earth Sciences.2010,60(8):1771-1782.
    [177] Weissenfels W.D., Klewer H.J., Langhoff J. Adsorption of polycyclic aromatic hydrocarbons(PAHs) by soil particles: influence on biodegradability and biotoxicity[J]. AppliedMicrobiology and Biotechnology.1992,36(5):689-696.
    [178] Yunker M.B., Macdonald R.W., Vingarzan R., et al. PAHs in the Fraser River basin: a criticalappraisal of PAH ratios as indicators of PAH source and composition[J]. OrganicGeochemistry.2002,33(4):489-515.
    [179] Oros D.R., Ross J.R.M., Spies R.B., et al. Polycyclic aromatic hydrocarbon (PAH)contamination in San Francisco Bay: A10-year retrospective of monitoring in an urbanizedestuary[J]. Environmental research.2007,105(1):101-118.
    [180] Simcik M.F., Eisenreich S.J., Lioy P.J. Source apportionment and source/sink relationships ofPAHs in the coastal atmosphere of Chicago and Lake Michigan[J]. Atmospheric Environment.1999,33(30):5071-5079.
    [181]刘颖.上海市土壤和水体沉积物中多环芳烃的测定方法,分布特征和源解析[D].上海:同济大学.2008.
    [182]重庆市统计局,国家统计局重庆调查总队.重庆统计年鉴[G].重庆:中国统计出版社.2010:115
    [183]许云竹,花修艺,董德明,等.地表水环境中PAHs源解析的方法比较及应用[J].吉林大学学报:理学版.2011,49(3):565-574.
    [184]段永红,陶澍,王学军,等.天津表层土壤中多环芳烃的主要来源[J].环境科学.2006,27(3):524-527.
    [185] Ma L.L., Chu S.G., Wang X.T., et al. Polycyclic aromatic hydrocarbons in the surface soilsfrom outskirts of Beijing, China[J]. Chemosphere.2005,58(10):1355-1363.
    [186] berg T., Bergb ck B. A Review of Probabilistic Risk Assessment of Contaminated Land (12pp)[J]. Journal of Soils and Sediments.2005,5(4):213-224.
    [187]王喜龙,沈伟然.天津污灌区苯并(a)芘,荧蒽和菲生态毒性的风险表征[J].城市环境与城市生态.2002,15(4):10-12.
    [188] Hanson M.L., Solomon K.R. New technique for estimating thresholds of toxicity in ecologicalrisk assessment[J]. Environmental science&technology.2002,36(15):3257-3264.
    [189]雷炳莉,黄圣彪,王子健.生态风险评价理论和方法[J].化学进展.2009,21(2):350-358.
    [190] Solomon K.R., Baker D.B., Richards R.P., et al. Ecological risk assessment of atrazine inNorth American surface waters[J]. Environmental Toxicology and Chemistry.1996,15(1):31-76.
    [191]石璇,杨宇,徐福留,等.天津地区地表水中多环芳烃的生态风险[J].环境科学学报.2004,24(4):619-624.
    [192] Solomon K., Giesy J., Jones P. Probabilistic risk assessment of agrochemicals in theenvironment[J]. Crop Protection.2000,19(8-10):649-655.
    [193] Long E.R., MacDonald D.D., Smith S.L., et al. Incidence of adverse biological effects withinranges of chemical concentrations in marine and estuarine sediments[J]. EnvironmentalManagement.1995,19(1):81-97.
    [194] US EPA. Risk Assessment Guidance for Superfund: Volume III-Part A, Process forConducting Probabilistic Risk Assessment (EPA/540/R-02/002)[S].2001
    [195]刘志全,李丽和,李秀金,等.石油化工污染土壤中萘的生态风险评价[J].中国环境科学.2007,26(6):746-750.
    [196] Wheeler J., Grist E., Leung K., et al. Species sensitivity distributions: data and modelchoice[J]. Marine Pollution Bulletin.2002,45(1):192-202.
    [197] Swartjes F.A. Risk-based assessment of soil and groundwater quality in the Netherlands:standards and remediation urgency[J]. Risk Analysis.1999,19(6):1235-1249.
    [198] Brain R.A., Sanderson H., Sibley P.K., et al. Probabilistic ecological hazard assessment:Evaluating pharmaceutical effects on aquatic higher plants as an example[J]. Ecotoxicologyand Environmental Safety.2006,64(2):128-135.
    [199] OECD. Guidance Document for Aquatic Effects Assessment. OECD EnvironmentMonographs (No.92)[S].1995
    [200] McCauley D.J., DeGraeve G., Linton T. Sediment quality guidelines and assessment: overviewand research needs[J]. Environmental Science&Policy.2000,3:133-144.
    [201] Van Wezel A., van Vlaardingen P., Posthumus R., et al. Environmental risk limits for twophthalates, with special emphasis on endocrine disruptive properties[J]. Ecotoxicology andEnvironmental Safety.2000,46(3):305-321.
    [202] Hutchinson T.H., Scholz N., Solb J. Analysis of the ecetoc aquatic toxicity (EAT) databaseII--Comparison of acute to chronic ratios for various aquatic organisms and chemicalsubstances[J]. Chemosphere.1998,36(1):115-127.
    [203]李志博,骆永明,宋静,等.土壤重金属污染的生态风险评估分析:个案研究[J].土壤.2006,38(5):565-570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700