用户名: 密码: 验证码:
二阶系统的同谱解耦研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二阶系统解耦不仅在线性振动系统方面,而且在量子力学、数量经济学和计算科学等多个领域中起着重要的作用。通过解耦,一个多自由二阶系统被看成多个无关的单自由度子系统。二阶系统解耦不仅为系统响应的计算提供有效方法,而且为系统的定量分析带来极大的便利,因此,研究二阶系统解耦意义重大。
     本文旨在提出一种二阶系统的同谱解耦方法,无论系统是否亏损,或首系数矩阵是否奇异,该方法始终有效。本文主要从二阶系统解耦的三个方面来寻求发展与突破:首先,实现亏损二阶阻尼系统的同谱解耦和解耦变换的获取;其次,求解可解耦二阶系统的实值保结构变换;最后,解决奇异二阶系统的解耦问题。本文的主要工作可概括如下:
     提出了可解耦二阶系统的一种Jordan标准形构造方法。在质量矩阵非奇异的情况下,对可解耦的二阶系统的Jordan标准形进行研究,根据解耦条件和解耦前后系统同谱的性质,首先将二阶系统的特征值分成三类,然后分别求解每一类特征值所对应的Jordan子块,最后利用直和得到了二阶系统的Jordan标准形。这种构造方法为本文后面的工作提供了基础。
     提出了基于相位同步原理的一种亏损二阶系统同谱解耦方法。针对可解耦的亏损二阶系统,首先利用相位同步原理使每一个阻尼模态的相位角同步,从而使得非经典阻尼系统被转换为经典阻尼系统。其次,通过经典模态分析将经典阻尼系统转换成解耦系统。再次,基于相位同步原理得到解耦变换,并且证明该解耦变换是原始系统与解耦系统友矩阵的一个相似变换。最后,提出解耦变换的一种构造方法。该方法具有广泛的适用性,它不仅对所有可解耦亏损二阶系统有效,而且同样适用于非亏损二阶系统。数值试验证明了该方法的有效性。
     在质量矩阵非奇异的情况,提出可解耦二阶系统的一种实值保结构变换求解方法。对于二阶系统的解耦问题,如何求解保结构变换一直是个难点。目前,虽然从理论上证明对所有的非亏损二阶系统在Lancaster结构下都存在保结构变换,但是很难实现实值保结构变换求解。针对可解耦的二阶系统,首先,利用Jordan三元组理论和标准三元组理论证明了保结构变换满足的一种形式。其次,根据可解耦二阶系统的Jordan标准形给出其中心化子。最后,利用置换矩阵和一系列构造得到了保结构变换,并且该变换是实值的。这种实值保结构变换求解方法适用于所有的可解耦二阶系统,无论是否亏损。数值试验证明了该方法的有效性。
     针对可解耦的奇异二阶系统,提出其一种同谱实对角系统的构造方法和一种基于谱变换的同谱解耦方法。一方面,为了构造同谱的解耦系统,提出了利用原始系统的有限特征值和无限特征值来构造解耦系统的三个参数矩阵的方法;另一方面,针对奇异二阶系统的同谱解耦问题,提出了利用谱变换将原始奇异二阶系统转换为非奇异二阶系统的方法,然后可以利用已有方法来解耦,最后将该系统还原,从而实现奇异二阶系统解耦。数值试验证明了该方法的有效性。
     本文的研究不仅是非奇异二阶系统解耦理论的一个发展与完善,也是奇异二阶系统解耦理论的一个突破。
Quadratic system decoupling plays a fundamental role not only in linear vibrations butalso in diverse areas such as quantum mechanics, mathematical economics, andcomputational science. Upon decoupling, a quadratic system can be regarded as a series ofindependent single-degree-of-freedom quadratic subsystems. This not only provides anefficient means of evaluating the system response but also greatly facilitates qualitativeanalysis, so it is necessary to research quadratic system decoupling.
     The purpose of this dissertation is to propose a new isospectral decoupling method ofquadratic system, no matter defective or not and singular leading coefficient or not, thismethod is still effective. This paper will mainly seek development and breakthrough ofquadratic system decoupling from three aspects. Firstly, realizing the isospectral decouplingof defective quadratic system and decoupling transformations are obtained; Secondly,solving real-valued structure preserving transformation of diagonalizable quadratic system;Thirdly, resolving the decoupling problem of quadratic system with singular leadingcoefficient. Major results presented in this dissertation are summarized in the followingstatements:
     A construction method of Jordan canonical form is proposed for diagonalizablequadratic system. With mass matrix nonsingular, the Jordan canonical form ofdiagonalizable quadratic system are researched, according to the characteristics ofdecoupling conditions and the decoupled system is isospectral as original system, theeigenvalues are classified into three categories, then solve the corresponding Jordansub-matrices of each kind of eigenvalues, respectively. Finally, the Jordan canonical form ofquadratic system is obtained by using direct sum. The construction method providefoundation for further work.
     An isospectral decoupling method of defective quadratic system based on phasesynchronization is proposed. For diagonalizable defective quadratic system, Firstly, bysynchronizing the phase angles in each damped mode, a non-classically damped system canbe transformed into one with classical damping. Secondly, the classically damped system isconverted into the decoupled system by classical modal analysis. Thirdly, the decoupling transformations are obtained based on based on phase synchronization of decoupling, and itis proved to be a similar transformation of the companion between decoupled system andoriginal system. Finally, a construction method of decoupling transformation is given. Thismethod has the extensive applicability, and it is not only effective to all defective quadraticsystem, but also validity to non-defective quadratic system. numerical experiment ispresented to prove the availability of the method.
     With mass matrix nonsingular, a solution method of real-valued structure preservingtransformation is given for diagonalizable quadratic system. The solution of structurepreserving transformation is always a nodus for quadratic system decoupling, At present,although it has been proved in theory that the structure preserving transformation esist forall the non-defective quadratic system based on Lancaster structure,it is difficult to obtainreal-valued structure preserving transformation. For diagonalizable quadratic system, firstof all, by using theory of Jordan triple and standard triple, a of structure preservingtransformation is proved. Then, the centralizer for the Jordan canonical form is given.Finally, the structure preserving transformation are obtained by using permutation matrixand a series of contruction, in addition, it is real-valued. This method apply to alldiagonalizable quadratic system, no matter defective or not. numerical experiment ispresented to prove the availability of the method.
     A construction method of isospectral real diagonal system and an isospectraldecoupling method based on spectral transformation are proposed for diagonalizablequadratic system with singular leading coefficient. For one thing, to construct isospectraldecoupled system, a method which construct three parameters of the decoupled system byusing finite eigenvalues and infinite eigenvalues of original system is given. For anotherthing, spectral transformation is introduced to transform singular system into nonsingularsystem, so it can use nonsingular quadratic system decoupling to construct and restoredecoupled system, thus realize the decoupling of singular quadratic system. Finallynumerical experiment is presented to prove the availability of the method.
     The study in this paper is not only a development and improvement for the quadratic system decoupling with nonsingular leading coefficient, but also a breakthrough forsingular quadratic system decoupling.
引文
[1] F. Tisseur, K. Meerbergen. The quadratic eigenvalues problems. SIAM Review.2011,43(2):235-286
    [2] M. Gurgoze. Proportionally damped systems subjected to damping modifications byseveral viscous dampers. Journal of Sound and Vibration,2002,255(2):407-412
    [3] R. B. Leipnik. Reduction of second order linear dynamical systems with large dissipationby state variable transformations. J. Austral. Math. Soc. Ser. B,1990,32:207-222
    [4] M. Gurgoze. Viscously damped linear systems subjected to damping modifications.Journal of Sound and Vibration,2001,245(2):353-362
    [5] M. T. Chu, N. Del Buono. Total decoupling of a general quadratic pencil, Part I: theory.Journal of Sound and Vibration.2008,309:96-111
    [6] M.T. Chu, N.Del Buon. Total decoupling of a general quadratic pencil, Part II: structurepreserving isospectral flows. Journal of Sound and Vibration.2008,309:112-128
    [7] M. T. Chu, Shufang Xu. Spectral decomposition of self-adjoint quadratic pencils and itsapplications. Mathematics of Computation.2007,78:293-313
    [8]胡寿松.自动控制原理.国防工业出版社,1984:82-106
    [9]舒志兵,李明,李俊,赵英凯.闭环伺服系统的稳态性能分析.南京工业大学学报.2002,24(4):83-86
    [10]唐荣锡.柔性制造系统.北京航空航天大学出版社, l994:15-21
    [11]章卫国,薛璞.自动化与仪器仪表.二阶系统变阻尼技术研究.1997,4:9-11
    [12]王淑娟,沈继红.二阶系统数值解耦方法的研究.中国科学院研究生院学报.2009,26(4):438-442
    [13]王淑娟.基于Lancaster结构的二阶系统解耦算法研究及其应用.哈尔滨工程大学博士学位论文.2009:1-64
    [14]王淑娟,沈继红,李积德等.舰船纵向运动系统的数值解耦.大连海事大学学报.2010,36(1):14-18
    [15]邢丽.二阶系统解耦条件的研究.哈尔滨工程大学硕士学位论文.2009:1-44
    [16]吕鹏举.基于相似变换的多自由度系统解耦研究.哈尔滨工程大学硕士学位论文.2009:1-52
    [17]王帅.基于优化算法的船舶纵向运动系统解耦研究.哈尔滨工程大学硕士学位论文.2009:1-51
    [18]沈继红,匡林林,王淑娟.基于谱信息的二阶系统解耦.哈尔滨商业大学报(自然科学版).2011,27(4):588-587
    [19]匡林林,王淑娟,沈继红.基于约当三元组二阶同谱对角化系统构造研究.黑龙江大学自然科学学报.2011,28(2):167-171
    [20]匡林林.二阶系统解耦的数值算法研究.哈尔滨工程大学硕士学位论文.2011:1-44
    [21]王淑娟,沈继红,李炎.基于粒子群优化算法的二阶系统解耦.武汉理工大学学报.2010,34(2):276-279
    [22] S. Jihong, W. Shujuan. The researches of quadratic system decoupling by optimizationmethod. IEEE ICICTA.2008:1267-1271
    [23]王淑娟,张善美,沈继红. Sylvester方程非奇异解的构造.哈尔滨商业大学报(自然科学版).2011,27(2):196-202
    [24]张善美.二阶系统解耦问题中的齐次Sylvester方程非奇异解求解研究.哈尔滨工程大学硕士学位论文.2011:1-57
    [25] M. Morzfeld, N. Ajavakom, F. Ma, Diagonal dominance of damping and the decouplingapproximation in linear vibratory systems. Journal of Sound and Vibration.2009,320:406-420.
    [26]姚熊亮.船体振动.哈尔滨工程大学出版社,2004:44-69
    [27]陈现平,王文省.两个矩阵同时对角化的条件.枣庄学院学报.2005,22(2):11-13
    [28] R. W. Clough, S. Mojtahedi. Earthquake response analysis considering non-proportionaldamping. Earthquake Engineeringand Structural Dynamics.1976,4:489-496
    [29] H. C. Tsai, J. M. Kelly. Non-classical damping in dynamic analysis of base-isolatedstructures with internal equipment, Earthquake Engineering and Structural Dynamics.1988,16:29-43
    [30] H. C. Tsai, J. M. Kelly. Seismic response of the super structure and attached equipmentin a base-isolated building. Earthquake Engineering and Structural Dynamics.1989,18:551-564
    [31] A. Sestieri, S. R. Ibrahim. Analysis of errors and approximations in the use of modalco-ordinates. Journal of Sound and Vibration.1994,177(2):145-157
    [32] S. Adhikari. Damping modeling using generalized proportional damping. Journal ofSound and Vibration.2006,293:156-170
    [33] M. E. J. O’Kelly. Normal modes in damped systems. California Institute of TechnologyThesis of degree of Mechanical Engineer.1961
    [34] S. M. Shahruz and A. K. Palcard. Approximate decoupling of weakly damped linearsecond-order systems Under Harmonic Excitations. Proceedings of the31st conferenceon decision and control, Tucson, Arizona,1992:854-855
    [35] M.E.J. O’ Kelly. Vibration of viscously damped linear dynamic systems. CaliforniaInstitute of Technology Thesis of Degree of Doctor of Philosophy.1964
    [36] T.K. Gaughey, M.E.J. O’Kelly. Classical normal modes in damped linear dynamicsystems. Journal of Applied Mechanics,1965,32:583-588
    [37] T.K. Caughey. Equivalent linearization techniques. The Journal of The AcousticalSociety of America,1963,35(11):1706-1711
    [38] T.K. Caughey, J.K. Dienes. Analysis of a nonlinear frist-order system with a white noiseinput. Journal of Applied Physics,1961,32(11):2476-2479
    [39] T. K. Caughey, F. Ma. The steady-state response of a class of dynamical systems tostochastic excitation. Journal of Applied Mechanics,1982,49:629-632
    [40] T. K. Caughey. Large amplitude whirling of an elastic string nonlinear eigenvalueproblem. SIAM J. Appl. Math.,1970,18:210-237
    [41] T.K. Caughey. Effect of vibration on the accuracy of a vertical reference pendulum.SIAM J. APPL. MATH.,1967,15,(5):1199-1208
    [42] T. K. Caughey, M.E. J.O'Kelly. Effect of damping on the natural frequencies of lineardynamic systems. The Journal of the Acoustical Society of America,1961,33(11):1458-1461
    [43] J. W. Strutt Lord Rayleigh. The Theory of Sound, Vol. I, Dover, New York,1945(Reprintof the1894edition).
    [44]徐仲,陆全.判定广义严格对角占优矩阵的一组充分条件.工程数学学报.2001,18(3):11-15
    [45] J. S. Wu, J. J. Sheu. An exact solution for a simplified model of the heave and pitchmotions of a ship hull due to a moving load and a comoarison with some experimentalresults. Journal of Sound and Vibration,1996,192(2):495-520
    [46] M. Aryanpour, M. Ghorashi. Comments on “an exact solution for a simplified model ofthe heave and pitch motions of a ship hull due to a moving load and a comparison withsome experimental results”. Journal of Sound and vibration,1999,227(5):1119-1121
    [47] K. A. Foss. Co-ordinates which uncouple the equations of motion of damped lineardynamic systems. ASME Journal of Applied Mechanics.1958,25:361-364.
    [48] A. S. Velestos, C. E. Ventura. Modal analysis of non-classically damped linear systems.Earthquake Engineering and Structural Dynamics.1986,14:217-243.
    [49] F. R. Vigneron. A natural mode model and modal identities for damped linear dynamicstructures. ASME Journal of Applied Mechanics.1986,53:33-38.
    [50] S.D. Garvey, M.I. Friswell, U. Prells. Co-ordinate transformations for second ordersystems, I: general transformations. Journal of Sound and Vibration,2002,258:885-909
    [51] S.D.Garvey, M.I. Friswell, U. Prells. Co-ordinate transformations for second ordersystems, II: elementary structure-preserving transformations. Journal of Sound andVibration,2002,258:911-930
    [52] P. Lancaster. Lambda-Matrices and Vibrating Systems. Pergamon Press, Oxford, UK,1966.
    [53] S.D.Garvey, U. Prells, M. Friswell et al. General isospectral flows for linear dynamicsystems. Linear Algebra and Its Applications,2004,385:335-368
    [54] P. Lancaster, I. Zaballa. Diagonalizable quadratic eigenvalues problems. MechanicalSystems and Signal Processing.2009,23:1134-1144
    [55] Juan Carlos, Zuniga Anaya. Diagonalization of quadratic matrix polynomials. Systemsand Control Letters.2010,59:105-113
    [56] F. Ma, A. Imam, M. Morzfeld. The decoupling of damped linear systems in oscillatoryfree vibration. Journal of Sound and Vibration.2009,324:408-428,
    [57] F. Ma, M. Morzfeld, A. Imam. The decoupling of damped linear systems in free orforced vibration. Journal of Sound and Vibration.2010,329:3182-3202,
    [58] M. Morzfeld, F. Ma. The decoupling of damped linear systems in configuration and statespaces. Journal of Sound and Vibration.2011,330:155-161,
    [59] D. T. Kawano, M. Morzfeld, F. Ma. The decoupling of defective linear dynamicalsystems in free motion. Journal of Sound and Vibration.2011,330:5165-5183
    [60] F. Ma, M. Morzfeld. A general methodology for decoupling damped linear systems.Procedia Engineering.2011,14:2498-2502
    [61] U. Prells, M. I. Friswell. A relationship between defective systems and unit-rankmodification of classical damping. ASME Journal of Vibration and Acoustics.2000,122(2):180-183
    [62] D. J. Inman. Vibration with Control. Wiley, Hoboken, NJ,2006
    [63] D. E. Newland. Mechanical Vibration Analysis and Computation. Longman, Essex, UK,1989
    [64] I. Gohberg, P. Lancaster, L. Rodman. Matrix Polynomials. Academic Press, New York,1982
    [65] P. Lancaster, M. Tismenetsky. The Theory of Matrices, seconded., Academic Press, NewYork,1985
    [66] M. I. Friswell, U. Prells, S. D. Garvey. Low-rank damping modifications and defectivesystems. Journal of Sound and Vibration.2005,279:757-774
    [67] Thomson W. T., Calkins T., Caravani P.. A Numerical Study of Damping. EarthquakeEngineering and Structural Dynamics.1974,3(1):97-103
    [68]张国栋.非经典阻尼结构体系的动力分析方法.三峡大学学报.2004,26(2):144-146
    [69] M. Wax, J. Sheinvald. A least squares approach to joint diagonalization. IEEE SignalProcessing Letters,1997,4(2):205-222
    [70] J. F. Cardoso, A. Souloumiac. Blind beamforming for non-Gaussian signals.Pro. IEEE, F,1993,140(6):362-370
    [71] A. Belochrani, K. AbedMerain, J. F. Cardoso. A blind source separation technique usingsecond order statistics. IEEE Trans. Singal Processing,1997,45(2):434-444
    [72]张贤达.矩阵分析与应用.清华大学出版社,2004:9-10
    [73]桂国庆,何玉敖.非比例阻尼线性结构体系动力分析的拟力实模态叠加法.工程力学.1992,9(2):23-35
    [74]李忠献,何玉敖.非经典阻尼结构动力分析模态综合法综述.工程力学.1992,9(1):51-58
    [75]桂国庆,何玉敖.非比例阻尼结构体系近似解耦分析中的误差研究.工程力学.1994,11(4):40-45
    [76]俞瑞芳,周锡元.非比例阻尼弹性结构地震反应强迫解耦算法的理论背景和数值检验.工业建筑.2005,35(2):52-57页
    [77]俞瑞芳,周锡元.具有过阻尼特性的非比例阻尼线性系统的复振型分解法.建筑结构学报.2006,27(1):50-59
    [78]彭伟,李建中.非经典阻尼对减隔震连续梁桥地震响应的影响.中国公路学报.2009,21(5):63-69
    [79]彭伟,李建中.减隔震连续梁桥非经典阻尼问题和地震响应简化分析.振动与冲击.2009,28(1):146-151
    [80] S. T. Mau. A subspace modal superposition method for non-classically damped systems.Earthquake Engineering and Structural Dynamics.1988,16(6):931-942
    [81]陈相志,郭艳萍. Sylvester方程的一种简便解法.重庆工学院学报.2005,19(11):95-98
    [82]段广仁,胡文远.关于矩阵方程AX-XC=Y.控制与决策.1992,7(2):143-147
    [83]董云达,陈铁生.一类Sylvester矩阵方程的一个迭代算法.数学理论与应用.2007,27(3):11-12
    [84]高协平,徐建波. Sylvester矩阵方程的BP神经网络求解研究.湘潭矿业学院学报.1999,14(1):16-19
    [85]邓远北,胡锡炎.一类广义Sylvester方程的反对称最小二乘解及其最佳逼近.系统科学与数学.2004,24(3):382-388
    [86]段红梅,王国胜,段广仁.二阶Sylvester方程的解及其在特征结构配置中的应用.科学技术与工程.2007,20(7):5246-5250,5294
    [87]杨兴东,黄卫红. Sylvester与Lyapunov方程后向误差分析.系统科学与数学.2008,28(5):524-534
    [88] Brierley S D. Lee E B. Solution of the equation A(z)(Z)+(Z)B(z)=C(z) and ItsApplieation to the Stability of Generalized Linear System. Int J Control.1994,40(6):1065-1075
    [89]邱海明,付明义.关于方程AX+XB=C的解法.控制与决策.1989,4(2):769-776
    [90] M. A. Ammari, F. Tisseur. Hermitian matrix polynomials with real eigenvalues ofdefinite type. Part I: Classification. MIMS EPrint.2010
    [91] P. Lancaster, F. Tisseur. Hermitian quadratic matrix polynomials: solvents and inverseproblems. Linear Algebra and its Applications.2012,436(10):4017-4026
    [92] F. Tisseur. S. D. Garvey, C. Munro. Deflating quadratic matrix polynomials withstructure preserving transformations. Linear Algebra and its Applications.2011,435(3):464-479
    [93]李伟.关于Jordan链的一种新求法.渤海大学学报(自然科学版).2006,27(2):134-135
    [94] P. Lancaster. Isospectral vibrating systems, Part I: The spectral method. Linear Algebraand Applications.2005,409:51-69
    [95] U. Prells, P. Lancaster. Isospectral vibrating systems, Part2: Structure PreservingTransformations. Linear Algebra and Applications.2005,163:275-298
    [96] U. Prells, S. D. Garvey. On the class of strictly isospectral systems. Mechanical Systemsand Signal Processing.2009,23:2000-2007
    [97] P. Lancaster, U. Prells. Isospectral families of high-order systems. Z. Angew. Math.Mech.2007,87:219-234
    [98]蒋尔雄等.线性代数.人民教育出版社,1978:21-32
    [99] L. Meirovitch. Analytical Methods in Vibrations. Macmillan, NewYork,1967.
    [100]J.Woodhouse. Linear damping models for structural vibration. Journal of Sound andVibration.1998,215(3):547-569
    [101]章超.矩阵的中心化子.湖北大学学报(自然科学版).2009,31(4):325-329
    [102]郑兆昌,任革学.大型非经典阻尼系统的动态解耦算法.力学学报,1996,28(4):468-474
    [103]李凌云,毛军发.开放结构的特征值全波算法.微波学报,2003,19(4):30-33
    [104]陈桂芝,牛强.解大规模矩阵内部特征值问题的简单调和Arnoldi算法.厦门大学学报(自然科学版),2007,46(3):312-316
    [105]A. G. Kostyuchenko, A. A. Shkalikov. Self-adjoint quadratic operator pencils andelliptic problems. Mathematics and Statistics.1983,17(2):109-128
    [106]V. adamjam, V. pivovarchik, C. tretter. On a class of non-self-adjoint quadratic matrixoperator pencils arising in elasticity theory. J. Operator Theory.2002,47:325-341
    [107]P. Binding, D. Eschwé, H. Langer. Variational principles for real eigenvalues ofself-adjoint operator pencils. Mathematics and Statistics.2000,2:190-206
    [108]王顺绪,戴华.二次特征值问题的并行JacobiaDavidsonf方法及其应用数值计算与计算机应用.2008,29(4):12-19
    [109]唐敬婷.求解二次特征值问题的添加精化向量的直接法.福建工程学院学报.2009,7(3):461-475
    [110]高红伟,李幼铭,刘洪.图法及其在Toeplitz矩阵分解中的应用.地球物理学进展.2001,16(4):35-42
    [111]王元媛.求解Toeplitz矩阵束广义特征值问题的预处理方法.厦门大学博士学位论文.2008:6-10
    [112]单润红. Toeplitz系统的高效预处理技术和分布式并行算法研究.国防科学技术大学博士学位论文.2004
    [113]骆志刚,李晓梅.一类Toeplitz三对角方程组的一种分布式并行算法.计算机学报.2001,24(2):173-178
    [114]陈璐.实块Toeplitz矩阵的相关高性能算法研究.长沙理工大学硕士学位论文.2010
    [115]韩晓双.导管架海洋平台地震响应研究.大连理工大学博士学位论文.2008:1-150
    [116]林家浩.随机地震响应功率谱快速算法.地震工程与工程振动.1990,10(4):38-46
    [117]阎兴华,苏志宏,朱清峰.钢-混凝土混合结构弹塑性动力分析综述.北京建筑工程学院学报.2006,22(3):1-6
    [118]苏志宏.钢-混凝土混合结构抗震性能及设计方法研究.北京建筑工程学院学报.2006,22(3):1-6
    [119]谢卫,王国亮,李华.可分离变压器的等效磁网络模型及参数计算.哈尔滨工程大学学报.2009,30(7):747-750
    [120]吴学淑.平面不对称高层建筑结构利用速度型阻尼器减震控制的研究.同济大学博士学位论文.2008:1-92
    [121]俞瑞芳.非比例阻尼线性系统随机地震输入下的动力反应分析.北京工业大学博士学位论文.2006:1-96
    [122]陈丽.基于数值模拟软件的重力式挡墙抗震性能研究.西南交通大学硕士学位论文.2010:1-86
    [123]王惠颖.泳动微型机器人仿生游动机理的研究.大连理工大学硕士学位论文.2005:1-35
    [124]刘鹏.驾驶室结构动态特性及其声固耦合作用的研究.西北工业大学硕士学位论文.2005:1-28
    [125]张国栋.非经典阻尼结构系统的动力分析方法.水电科技进展.2003,2:11-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700