用户名: 密码: 验证码:
豫西中元古界云梦山组微生物成因沉积构造研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
豫西地区中元古界云梦山组隶属于汝阳群,在构造古地理上属于华北地台南缘,主要为一套陆源碎屑岩沉积。微生物成因沉积构造(MISS)主要产于本组中段和上段的紫红色或黄白色砂岩层面,多发育在与泥岩的接触面上,常与波痕伴生,类型多样。云梦山组的微生物成因沉积构造可分为微生物席生长相关构造、微生物席代谢相关构造、微生物席破坏相关构造和微生物席腐烂相关构造四大类,其中捆绑波痕、强烈皱饰和不规则网状凹坑为云梦山组发现的新类型。
     微生物成因沉积构造发育在无障壁海岸环境的上临滨、前滨以及潮坪环境的潮下带到潮上带的广大地区,在豫西云梦山组具有较显著的分布和演化特征:(1)类型分布的差异。无障壁海岸环境发育的微生物成因沉积构造以大型多边形网状脱水裂痕为主,含少量的微生物席砂片,类型单调;而碎屑岩潮坪环境发育的微生物成因沉积构造类型更加多样化,包含从生长构造到腐烂构造四大类型,以微生物席破坏相关构造最为常见。微生物成因沉积构造多样化的特点可作为潮坪环境的指示标志。(2)相比较而言,云二段潮坪环境中发育的微生物成因沉积构造比云四段密集,可能是云一段的火山活动给海水带来了丰富的矿物成分,有利于微生物的生长。(3)云梦山组微生物成因沉积构造的发育与海进、海退的旋回有密切联系,微生物成因沉积构造往往发育在海泛面上。(4)用微生物席干裂多边形的大小对微生物席厚度进行估测,无障壁海岸环境比潮坪发育了更厚的微生物席,这说明当时的微生物席能繁盛在水动力较强的区域。从云梦山组底部到顶部,古代微生物席的厚度总体上在减薄。云梦山组微生物成因沉积构造的时空分布和演化特征对古环境具有重要的指示作用。
     微生物成因沉积构造样品的纵切观察可见典型的微生物席纹层,代表着微生物席在沉积表面的多次生长和埋藏。深色层包含有泥质物和细砂-粉砂颗粒,被认为是先前微生物席的残留区;浅色层则是较纯净的石英颗粒,由物理沉积作用形成。显微观察发现五种明显的微生物成因沉积构造的微结构类型,分别是:波曲层、网状结构、定向颗粒层、细小颗粒层和重矿物层,可作为当时微生物席存在的证据。云梦山组微生物成因沉积构造的大量发育表明了当时微生物席的繁盛,代表了远古微生物席在沉积物表面殖居、生长、代谢以及与沉积物相互作用的一些特征,同时也指示了当时的水动力状况和古环境特征。
     对微生物成因沉积构造中微生物化石的探索性研究发现在薄层粉砂质泥岩层存在一些丝状菌化石、球状菌化石、硅化的EPS和未知的生物化石。化石的生物类型以蓝细菌为主,并可见分层分布。这些发现为认识古代微生物席群落的结构和功能提供了依据。通过现代微生物席与古代微生物席的比较研究,对云梦山组微生物席发育的环境特征、微生物群落的结构以及微生物成因沉积构造的成因进行了讨论,对气隆构造、不规则网状凹坑和网状生长脊的成因有了直观认识。
TheYunmengshan Formation, belonging to Mesoproterozoic Ruyang Group, lies in the south margin of the North China platform and consists mainly of siliciclastic sedimentary successions. Microbially Induced Sedimentary Structures(MISS) occur in purple or yellow sandstone interbedded with mudstone or siltstone, especially in junction surface between sandstone and mud lamination. They displayed a plenty of morphologies and preserved in acompanying with ripple markers as usual. The well-preserved structures include mat growth features, mat metabolism features, mat destruction features and mat decay features with three new types founded in this paper: binding ripples, intense ornamentations and reticulate irregular pits.
     MISS were well preserved in beach environment from the shoreface to the foreshore and especially in peritidal siliciclastic environments from the subtidal to the supratidal zones. They display some features in Yunmengshan Formation as follows: (1) Some big polygonal desiccation cracks with microbial sand chips are common in beach environments, and middle-small polygonal desiccation cracks with kinds of other MISS mainly occur in tidal flat environments displaying the MISS diversity; (2) The ancient microbial mat became thinner from the bottom to the top of Yunmengshan Formation and the thicker ancient mat colonized in beach facies to fit for higher hydrodynamic condition; (3) MISS are much more abundant in the Second Member of Yunmengshan Formation than that of other Members; and (4) MISS from Yunmengshan Formation correlate with turning points of regression and transgression and especially well developed and preserved in deposits that mark marine flooding surfaces.
     In vertical section, the typical stacked mm-level siliciclastic biolaminites consisting of alternations of dark silty mudstones and light quartz sandstone represent repeated growth and burial of mats during repeated depositional events. The dark layers are considered to represent the remains of microbial mats, whereas the light layers consist of physical process induced quartz grains. In the further investigation of thin-sections, five types of microstructures have been found: wavy crinkled laminae, network fabrics, mat layer bound small grains, mat layer bound heavy minerals and oriented grains. These structures can reflect the unique characters of mat growth, mat metabolism, interactions with sediments and can be used to trace the thriving microbial mat colonized in this area and reveal the sedimentary dynamics and paleoenvironmental features in this area.
     Filament fossils, coccoid fossils, silicified EPS and unknown fossils have been found in dark silty mudstones of MISS. Most of the microbial taxa were cyanobacteria which mainly display the horizontal distribution. These Proterozoic microfossils are valuable for the research of microbial communities and their functions. Comparison the ancient mat with modern microbial mat can help us to well understand the colonized palaeoenvironments, microbial community structures and origins of MISS. From this study, we have built the origin model of gas domes, reticulate irregular pits , reticulate growth ridge etc.
引文
[1] Allwood A. C., Walter M. R., Burch I. W., et al., 3.43 billion year old stromatolite reef from the Pilbara Craton of Western Australia: ecosystem scale insights to early life on Earth[J]. Precambrian Research, 2007, 158: 198~227.
    [2] Altermann W., The oldest fossils of Africa: A brief reappraisal of reports from the Archean[J]. J. Afr. Earth Sci., 2001, 33 : 427~436.
    [3] Altermann W., Kazmierczak J., Archean microfossils: a reappraisal of early life on Earth[J]. Research in Microbiology, 2003, 154: 611~617.
    [4] Anbar A. D., Knoll A. H., Proterozoic ocean chemistry and evolution:A bioinorganic bridge[J]. Science, 2002, 297(5584): 1137~1142.
    [5] Banerjee S., Jeevankumar S., Microbially originatedwrinkle structures on sandstones and their stratigraphic context: Paleoproterozoic Koldaha Shale, central India[J]. Sedim. Geol., 2005, 176: 211~224.
    [6] Bathurst R. G. C., Subtital gelatious mat, sand stabilize and food Great Bahama Bank[J]. Journal of Geology, 1967, 75: 736~738.
    [7] Bose S., Chafetz H.S., Topographic control on distribution of modern microbially induced sedimentary structures (MISS): A case study from Texas coast[J]. Sedimentary Geology,2009, 213: 136~149.
    [8] Bottjer D. J., Hagadorn J. W., Dornbos S. Q., The Cambrian substrate revolution[J]. GSA Today, 2000, 10(9): 1~7.
    [9] Bouougria E., Porada H., Mat-related sedimentary structures in Neoproterozoic peritidal passive margin deposits of the West African Craton(Anti-Atlas, Morocco)[J]. Sedimentary Geology, 2002, 153: 85~106.
    [10] Bouougri E., Porada H., Siliciclastic biolaminites indicative of widespread microbial mats in the Neoproterozoic Nama Group of Namibia[J]. Journal of African Earth Sciences, 2007, 48 : 38~48
    [11] Brasier M. D. , Green O. R. , Jephcoat A. P. , et al., Questioning the evidence for Earth’s oldest fossils[J]. Nature , 2002, 416: 76~81.
    [12] Brasier M. D., Green O. R., Lindsay J. F., et al., Critical testing of Earth's oldest putative fossil assemblage from the ~3.5 Ga Apex chert, Chinaman Creek, Western Australia[J]. Precambrian Research, 2005, 140: 55~102.
    [13] Brasier M., McLoughlin N., Green O., et al., A fresh look at the fossil evidence for earlyArchaean cellular life[J]. Phil. Trans. R. Soc. B., 2006, 361: 887~902.
    [14] Buick R., Dunlop J. S., Groves D. J., Stromatolite recognition in ancient rocks: an appraisal of irregularly laminated structures in early Archean chert–barite unit from North Pole, Western Australia[J]. Alcheringa, 1981, 5: 161~181.
    [15] Buick R., Microfossil recognition in Archean rocks: An appraisal of spheroids and filaments from a 3500 My old chert-barite unit at North Pole, Western Australia[J]. Palaios, 1991, 5: 441~459.
    [16] Buick R., Microfossil recognition in Archean rocks: an appraisal of spheroids and filaments from 3500Ma old chert–barite at North Pole, Western Australia[J]. Palaios, 1990, 5: 441~459.
    [17] Burne R. V., Moore I. S., Microbialiters: organosedimentary deposits of benthic microbial communities[J]. Palaios, 1987, 2(3): 241~254.
    [18].Canfield D. E., The early history of atmospheric oxygen: Homage to Robert A. Garrels[J]. Annu. Rev. Earth Pl. Sc., 2005, 33: 1~36.
    [19] Chafetz H.S., Buczynski C., Bacterially induced lithification of microbial mats[J]. Palaios, 1992, 7: 277~293.
    [20] Draganits E., Noffke N., Siliciclastic stromatolites and other microbially induced sedimentary structures in an Early Devonian barrier-island environment (Muth Formation, NW Himalayas)[J]. Journal of Sedimentary Research, 2004, 74(2): 191~202.
    [21] Decho A. W., Microbial exopolymer secretions in ocean environments: their role(s) in food webs and marine processes[J]. Oceanographic and Marine Biology Annual Review, 1990, 28: 73~154.
    [22] Donaldson J. A., Eriksson P. G., Altermann, W., Actualistic versus non-actualistic conditions in the Precambrian: a reappraisal of an enduring discussion. In: Altermann W., Corcoran P. L. (eds.), Precambrian Sedimentary Environments: A modern approach to ancient depositional systems[M]. Oxford: Blackwell Science, 2002.
    [23] Eriksson P. G., Simpson E. L., Eriksson K. A., et al., Mat roll-up structures in siliciclastic interdune beds of the c. 1.8 Ga Waterberg Group, South Africa[J]. Palaios, 2000, 15(3):l77~183.
    [24] Freytet P., Verrecchia, E. P., Freshwater organisms that build stromatolites: a synopsis of biocrystallization by prokaryotic and eukaryotic algae[J]. Sedimentology, 1998, 45: 535~563.
    [25] Fortin T. D., Langley S., Formation and occurrence of biogenic iron-rich minerals[J]. Earth-Science Reviews , 2005, 72: 1~19.
    [26] Franks J., Stolz J.F., Flat laminated microbial mat communities[J]. Earth-Sci. Revs. , 2008, 1~
    [27] Furnes H., Banerjee N. R., Staudigel H., et al., Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas; tracing subsurface life in oceanic igneous rocks[J]. Precambrian Research, 2007, 158: 156~176.
    [28] Gehling J. G., Microbial mats in terminal Proterozoic siliciclastics;Ediacaran death masks[J]. Palaios, 1999, 14(1):40~57.
    [29] Gehling J. G., Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia[J]. Precambrian Res, 2000, 100: 65-95.
    [30] Gerdes G., Claes M., Dunajtschik-piewak K., et al., Contribution of microbial mats to sedimentary surface structures[J]. Facies, 1993, 29: 61~74.
    [31] Gerdes G., Krumbein W. E., Reineck H. E., Microbial mats as architects of sedimentary surface structures. In: Krumbein, W.E., Paterson, D.M., Stal, L.J. (eds.), Biostabilization of sediments[M]. Oldenburg: BIS, 1994.
    [32] Gerdes G., Klenke T., Noffke N., Microbial signatures in peritidal siliciclastic sediments: a catalogue[J]. Sedimentology, 2000, 47(2): 279~308.
    [33] Gingras M. K., Microbially induced sedimentary structures-a new category within the classfication of primary sedimentary structures-disscussion[J]. Journal of Sedimentary Research, 2002, 72: 587~588
    [34] Gillan D. C. , Ridder C. D., Accumulation of a ferric mineral in the biofilm of Montacuta ferruginosa (Mollusca, Bivalvia) . Biomineralization, bioaccumulation, and inference of paleoenvironments[J]. Chemical Geology, 2001, 177: 371~379.
    [35] Golubic S., Seong-Joo L., Early cyanobacterial fossil record: preservation, palaeoenvironments and identification[J]. European J. Phycol., 1999, 34: 339-348.
    [36] Grotzinger J. P. , Knoll A. H., Stromatolites in Precambrian carbonates: evolutionary milepost or environmental dipsticks[J]. Annual Review of Eart h and Planet Science, 1999, 27: 313~358.
    [37] Guidry S. A., Chafetz H. S., Anatomy of siliceous hot springs: examples from Yellowstone National Park, Wyoming,. USA [J]. Journal of Sedimentary Research, 2003, 73: 806~823.
    [38] Hagadorn J. W., Bottjer D. J., Wrinkle structures: Microbially mediated sedimentary structures in siliclastic settings at the Proterozoic Phanerozoic transition[J]. Geology,1997,25: 1047~1050.
    [40] Hagadorn J. W., Bottjer D.J., Unexplored microbial worlds [J]. Palaios, 1999, 14: 1~93.
    [41] Holland H. D., The oxygenation of the atmosphere and oceans[J]. Phil.Trans. Roy.Soc. London, 2006, 361(1470): 903~915.
    [42] Horodyski R. J., Impressions of algal mats from the Middle Proterozoic Belt Supergroup, northwestern Montana, U.S.A[J]. Sedimentology, 1982, 29: 285~289.
    [43] James R. E., Ferris F. G., Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring[J]. Chemical Geology, 2004, 212: 301~311.
    [44] Javaux E. J., Knoll A. H., Walter M. R., TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology, 2004, 2(3): 121~132.
    [45] Jones B., Konhauser K. O., Renaut R. W., et al., Microbial silicification in Iodine Pool , Waimangu geothermal area , North Island , New Zealand : implications for recognition and identification of ancient silicified microbes[J]. Journal of the Geological Society, London , 2004, 161: 983~993.
    [46] Joyea S. B., Mazzotta M. L., Hollibaugh J. T., Community metabolism in microbial mats: The occurrence of biologically-mediated iron and manganese[J]. Estuarine, Coastal and Shelf Science, 1996, 43: 747~766.
    [47] Kazmierczak J., Kremer B., Thermal alteration of the Earth’s oldest fossils[J]. Nature, 2002, 420: 477~478.
    [48] Kazmierczak J., Altermann W., Kremera B., et al., Mass occurrence of benthic coccoid cyanobacteria and their role in the production of Neoarchean carbonates of South Africa[J]. Precambrian Research, 2009, 173: 79~92.
    [49] Kempe A., Schopf J. W., Altermann W., et al., Atomic force microscopy of Precambrian microscopic fossils [J]. Proc. Natl. Acad. Sci. USA, 2002, 99: 9117~9120.
    [50] Kerr R. A., Minerals cooked up in the laboratory call ancient microfossils into question[J]. Science , 2003, 302~1134.
    [51] Kerr R. A., Low oxygen in old oceans[J]. Science, 2004, 304 (5667): l3~15.
    [52] Kah L. C., Riding R., Mesoproterozoic carbon dioxide levels inferred from calcified cyanobacteria[J]. Geology, 2007, 35(9): 799~802.
    [53] Knoll A. H., Sergeev V. N., Taphonomic and evolutionary changes across the Mesoproterozoic–Neoproterozoic transition[J]. N. Jb. Geol. Palaont. Abh., 1995, 195 (1–3): 289~302.
    [54] Knoll A. H., The geological consequences of evolution [J]. Geobiology, 2003, 1(1): 3~14.
    [55] Konhauser K. O., Urrutia M. M., Bacterial clay authigenesis: a common biogeochemical process[J]. Chemical Geology, 1999, 161: 399~413.
    [56] Krumbein W. E., Stromatolites-the challenge of a term in space and time[J]. Precambrian Res., 1983, 20: 493~531.
    [57] Krumbein, W. E., Paterson D. M., Zavarzin G. A. (eds), Fossil and recent biofilms[M],Dordrecht: Kluwer Academic Publishers, 2003.
    [58] Kump L. R. The rise of atmospheric oxygen[J]. Nature, 2008, 451(7176): 277.
    [59] Leveille R. J., Fyfe W. S., Longstaffe F., Geomicrobiology of carbonate–silicate microbialites from Hawaiian basaltic sea caves[J]. Chemical Geology, 2000, 169: 339~355.
    [60] Meadow A., Meadow P. S., Wood P. M., et al., Microbiological effects on slope stability: an experimental analysis[J]. Sedimentology, 1994, 41: 423~435.
    [61] Malam I. O., Le B. Y., De′farge C., et al., Role of a cyanobacterial cover on structural stability of sandy soils in the Sahelian part of western Niger[J]. Geoderma, 2001, 101: 15~30
    [62] Neumann A. C., Gebelein C. D., Scoffin T. P., The composition, structure and erodability of subtidal mat, Abaco, Bahama[J]. Journal of the Sedimentary Petrology, 1970, 40: 274~297.
    [63] Noffke N., Gerdes G., Klenke T., et al., Biofilm impact on sedimentary structures in siliciclastic tidal flats[J]. Courier Forschungsinstitut Senckenberg, 1997a, 201: 297~305.
    [64] Noffke N., Gerdes G. , Klenke, T., et al., A microscopic sedimentary succession of graded sand and microbial mats in modem siliciclastic tidal flats[J]. Sedimentary Geology, 1997b, 110: 1~6.
    [65] Noffke N., Muhidirected ripple marks rising from biological and sedimentological processes in modern lower supratidal deposits (Mellum Island,southern North Sea)[J]. Geology,1998, 26: 879~882.
    [66] Noffke N., Erosional remnants and pockets evolving frombiotic–physical interactions in recent lower supratidal environment[J]. Sedimentary Geology, 1999, 123: 175~181.
    [67] Noffke N., Extensive microbial mats and their influences on the erosional and depositional dynamics of a siliciclastic cold water environment (Lower Arenigian, Montagne Noir, France) [J]. Sediment Geol., 2000, 136: 207~215.
    [68] Noffke N., Gerdes G., Klenke T., et al., Microbially Induced Sedimentary Structures: A New Category within the Classification of Primary Sedimentary Structures[J]. J. Sediment. Res., 2001a, 71(5): 649~656.
    [69] Noffke N., Gerdes G., Klenke Th., et al., Microbially induced sedimentary structures indicating climatological, hydrological and depositional conditions within Recent and Pleistocene coastal facies zones (southern Tunisia)[J]. Facies, 2001b, 44: 23~30.
    [70] Noffke N., Knoll A. H., Grotzinger J., Sedimentary controls on the formation and preservation of microbial mats in siliciclastic deposits: A case study from the upper Neoproterozoic Nama Group[J]. Namibia. Palaios, 2002, 17: 533~544.
    [71] Noffke N., Gerdes G.,Klenke T., Benthic eyanobacteria and their influence on the sedimentary dynamics of peritidal depositional systems (siliciclastic,evaporitic salty, and evaporiticcarbonatic)[J]. Earth-Science Reviews, 2003, 62: l63~176.
    [72] Noffke N., Geobiology- a holistic scientific discipline[J]. Palaeogeogra., Palaeoclimatol., Palaeoeco1., 2005, 219: 1~3.
    [73] Noffke N., Beukes N., Gutzmer J., Spatial and temporal distribution of microbially induced sedimentary structures: A case study from siliciclastic storm deposits of the 2.9 Ga Witwatersrand Supergroup, South Africa[J]. Precambrian Research, 2006a, 146 : 35~44.
    [74] Noffke N., Eriksson K. A., Hazen R. M., et al., A new window into Early Archean life: MicrobiaI mats in Earth's oldest siliciclastic tidal deposits (3.2 Ga Moodies Group, South Africa)[J]. Geology, 2006b, 34(4): 253~256.
    [75] Noffke N., Beukes N., Bower D., et al., An actualistic perspective into Archean worlds—(cyano-)bacterially induced sedimentary structures in the siliciclastic Nhlazatse Section, 2.9 Pongola Supergroup, South Africa[J]. Geobiology, 2008, 6: 5~20.
    [76] Noffke N., The criteria for biogeneicity of microbially induced sedimentary structures (MISS) in Archean, sandy deposits[J]. Earth-Science Reviews, 2009, 96: 173~180.
    [77] Mata S. A., Bottjer D. J., Development of Lower Triassic Wrinkle Structures: Implications for the Search for Life on Other Planets[J]. Astrobiology, 2009, 9(9): 895~906.
    [78] Parizot M.,Eriksson P. G., Aifa T., et a1., Suspected microbial matrelated crack-like sedimentary structures in the Palaeoproterozoic Magaliesberg Formation sandstones, South Africa[J]. Precambrian Research, 2005, 138:274~296.
    [79] Pasteris J. D., Wopenka B., Laser Raman Spectroscopy: Images of the earth’s earliest fossils?[J]. Nature, 2002, 420: 476~477.
    [80] Pfluger F., Gresse P.G., Microbial sand chips - a non-actualistic sedimentary structure[J]. Sedimentary Geology, 1996, 102: 263~274.
    [81] Pfluger F., Matground structures and rediox facies[J]. Palaios, 1999, l4(1): 25~39.
    [82] Porada H., Hafid B. E., Wrinkle structures-A critical review[J]. Earth Science Reviews, 2007, 81(3~4): 199~215.
    [83] Pruss S., Fraiser M., Bottjer D. J. , Proliferation of Early Triassic wrinkle structures: Implications for environmenta1 stress following the end-Permian mass extinction[J]. Geology, 2004, 32(5): 461~464.
    [84] Reid R. P., Visscher P. T., Decho A. W., et a1., The role of microbes in accretion, lamination and early lithification of modern marine stromatolites[J].Nature, 2000, 406: 989~991.
    [85] Riding R., Stromatolite decline: a brief reassessment[J]. Biosedimentology of Microbial Build-ups, Facies, 1997, 36: 227~230.
    [86] Riding R., Ca1careous Algae Stromatolites[M]. Berlin: Springer-Verlag, 1991.
    [87] Riding R., Microbial carbonates: The geological record of calcified bacterial algal mats and biofilms[J]. Sedimentology, 2000, 47 (1): 179~214.
    [88] Riding R., Awramik S., Microbial Sediments [M]. Berlin: Springer-Verlag, 2000.
    [89] Riding R., Cyanobacterial calcification, carbon dioxide concentrating mechanisms,and Proterozoic-Cambrian changes in atmospheric composition [J]. Geobiology, 2006, 4(4): 299~316.
    [90] Sarkar S., Banerjee S, Eriksson PG,et al., Microbial mat control on siliciclastic Precambrian sequence stratigraphic architecture: Examples from India[J]. Sedimentary Geology, 2005, 176: 195~209.
    [91] Sarkar S., Banerjee S., Samanta P., et al., Microbia1 mat-induced sedimentary structures in siliciclastic sediments: Examples from the 1.6 Ga Chorhat Sandstone, Vindhyan Supergroup, MP,India[J]. Jour. Earth Syst. Sci. , 2006, 5(1):49~58.
    [92] Sarkar S., Bose P. K., Samanta P., et al., Microbial mat mediated structures in the Ediacaran Sonia Sandstone, Rajasthan, India, and their implications for Proterozoic sedimentation[J]. Precambrian Research, 2008, 162: 248~263.
    [93] Schieber J., The possible role of benthic microbial mats during the formation of carbonaceous shales in shallow mid-Proterozoic basins[J]. Sedimentology, 1986, 33: 521~536.
    [94] Schieber J., Possible indicators of microbial mat deposits in shales and sandstones: Examples from the Mid-Proterozoic Belt Supergroup, Montana, U.S.A.[J]. Sedimentary Geology, 1998, 120: 105~124.
    [95] Schieber J., Microbial mats in terrigenous clastics: the challenge of identification in the rock record[J]. Palaios, 1999, 14: 3~12.
    [96] Schieber J., Microbial mats in the siliciclastic rock record: a summary of the diagnostic features. In: Eriksson, P.G., Altermann, W., Nelson, D.R., et al. (eds.), The Precambrian Earth: Tempos and Events[M]. Amsterdam: Elsevier, 2004.
    [97] Schieber J., Banerjee S., Bose P.K., et al., Atlas of Microbial Mat Features Preserved in the Siliciclastic Rock Record[M]. Amsterdam: Elsevier, 2007.
    [98] Schopf J. W., Microfossils of the Early Archean Apex Chert: New evidence of the antiquity of life[J]. Science, 1993, 260: 640~646.
    [99] Schopf J. W., Kudryavtsev A. B., Agresti D. G., et al., Laser-Raman imagery of Earths earliest fossils[J]. Nature, 2002, 416: 73~76.
    [100] Schopf J. W., Fossil evidence of Archaean life[J]. Phil. Trans. R. Soc. B., 2006, 361: 869~885.
    [101] Schopf J. W., Kudryavtsev A. B., Czaja A. D., et al., Evidence of Archean life: stromatolites and microfossils[J]. Precambrian Research, 2007, 158: 141~155.
    [102] Seilacher A., Biomat-related lifestyles in the Precambrian[J]. Palaios, 1999, 14(1): 86~93.
    [103] Seilacher A., Trace Fossil Analysis [M]. Berlin: Springer, 2007.
    [104] Simonson B. M., Carney K. E.,. Roll-up structures: evidence of in situ microbial mats in Late Archean deep shelf environments[J]. Palaios, 1999, 14: 13~24.
    [105] Stal L. J., Microphytobenthos, their extracellular polymeric sustances, and the morphogenesis of intertidal sediments[J]. 2003, 20: 463~478.
    [106] Tankere S. P. C., Bourne D. G., Muller F. L. L., et al., Microenvironments and microbial commuty structure in sediments[J]. Environmental Microbiology, 2002, 4: 97~105.
    [107] Tice, M. M., Lowe, D. R., Photosynthetic microbial mats in the 3,416-Myr-old ocean[J]. Nature , 2004, 431: 549~552.
    [108] Trouwborst R. E., Johnston A., Koch G. et al., Biogeochemistry of Fe(II) oxidation in a photosynthetic microbial mat: Implications for Precambrian Fe(II) oxidation[J]. Geochimica et Cosmochimica Acta, 2007, 71 : 4629~4643.
    [109] Walter M. R., Schopf J. W., Rujii C., Earliest evidence of life on Earth[J]. Precambrian Research, 2007, 158: 3~4.
    [110] Warren L. A., Kauffman M. E., Microbial geoengineers[J]. Sciences, 2003, 299: 1027~1029.
    [111] Westall F., Folk R. L., Exogenous carbonaceous microstructures in Early Archean cherts and BIFs from the Isua Greenstone Belt: Implications for the search for life in ancient rocks[J]. Precam. Res., 2003, 126: 313~330.
    [112] Wignall P. B., Twichett R. J., Unusual intraclastic limestone in lower Triassic carbonates and their bearing on the after math of the end Permian mass extinction[J]. Sedimentology, 1999, 46: 303~316.
    [113] Yin L. M., Yuan X. L., Meng F. W., et al., Protists of the Upper Mesoproterozoic Ruyang Group in Shanxi Province, China[J]. Precambrian Research , 2005, 141: 49~66.
    [114]曹瑞骥,袁训来.叠层石[M].合肥:中国科学技术大学出版社,2006.
    [115]陈孝政,王伟,刘欣春等.微生物硅化作用模拟实验[J].微体古生物学报,2007,24 (3):261~266.
    [116]戴永定,陈孟莪,王尧.微生物岩研究的发展与展望[J].地球科学进展,1996,11(2):209~215.
    [117]范嘉松,吴亚生.从塔北隆起奥陶纪钙藻化石探讨奥陶纪的古环境[J].微体古生物学报,2004,21(3):251~266.
    [118]高建华,蔡克勤.蓟县长城系中发现最古老的遗迹化石[J].科学通报,1993,38(20):1891~1895.
    [119]高林志,尹崇玉,王自强.华北地台南缘新元古代地层的新认识[J].地质通报,2002,21(3):130~135.
    [120]胡建民,孟庆任.豫西长城系遗迹化石及其意义[J].地质论评,1991,37(5):437~444.
    [121]胡杰.桂东北较深水相前寒武纪2寒武纪之交的硅质微生物岩[J].微体古生物学报, 2008, 25 (3) :291~305.
    [122]华洪,邱村玉,肖丽君.中元古代长城纪遗迹化石在宁夏贺兰山的发现[J].西北大学学报(自然科学版),1993,23(5):459~462.
    [123]雷振宇,周洪瑞,王自强.豫西中元古代汝阳群层序地层初步研究[J].地球科学, 1996,21(3): 272~276.
    [124]雷吉江,初凤友,李小虎等.西南印度洋中脊热液羽状流中微生物化石的发现及意义[J].微体古生物学报,2009,26 (1):39~47.
    [125]李承洲,高留比奇,张昀.华北高于庄组硅化微体化石组合的古环境[J].微体古生物学报,1999 ,16 (3):237~258.
    [126]李林,汤冬杰,付星梅等.前寒武纪细粒碎屑岩中纺锤状裂缝的成因分析:以燕山东部长城群为例[J].现代地质,2008,22(5):699~705.
    [127]刘洪福,刘池洋.蓟县中元古界长城群串岭沟组中发现最古老的后生动物遗迹化石[J].西北大学学报(自然科学版),1992,22(3):268~270.
    [128]梅冥相.天津蓟县剖面中元古界高于庄组臼齿状构造的层序地层位置及其成因的初步研究[J].古地理学报,2005,7(4):437~447.
    [129]梅冥相,高金汉,孟庆芬.从席底构造到第五类原生沉积构造:沉积学中具有重要意义的概念[J].现代地质,2006,20(3):413~422.
    [130]梅冥相,盂庆芬,高金汉.前寒武纪海侵砂岩中的微生物砂质碎片:以北京南口虎峪剖面大红峪组为例[J].地学前缘,2007a,4(2):197~204.
    [131]梅冥相,孟庆芬,刘智荣.微生物形成的原生沉积构造研究进展综述[J].古地理学报,2007b,9(4):353~367.
    [132]梅冥相,高金汉,孟庆芬等.前寒武纪与微生物席相关的粉砂岩岩墙-以天津蓟县古元古界串岭沟组为例[J].古地理学报,2009,11(1):37~50.
    [133]梅冥相,高金汉,孟庆芬.中元古界非叠层石灰岩中的MISS:以北京延庆千沟剖面高于庄组第三段为例[J].地学前缘,2009,16 (5):207~218.
    [134]齐永安.河南鲁山汝阳群云梦山组遗迹化石[J].河南理工大学学报(自然科学版),2005,24(1):33~37.
    [135]钱迈平,袁训来,阎永奎等.苏皖北部新元古代微生物化石[J].微体古生物学报,2002,19 (4):363~381.
    [136]史晓颖,王新强,蒋干清等.贺兰山地区中元古代微生物席成因构造——远古时期微生物群活动的沉积标识[J].地质论评,2008,54(4):575~586.
    [137]史晓颖,张传恒,蒋干清.华北地台中元古代碳酸盐岩中的微生物成因构造及其生烃潜力[J].现代地质,2008b,22(5):669~682.
    [138]史晓颖,蒋干清,张传恒等.华北地台中元古代串岭沟组页岩中的砂脉构造[J]. 2008c, 33(5):577~590.
    [139]王兴民,王佩钰,朱玉莲等.浅议云台山世界地质公园地质遗迹现状及保护对策[J].地质与资源,2007,16(2):150~154.
    [140]吴自军,贾楠,袁林喜等.浙江舟山海岸带古木埋藏区铁的微生物成矿作用[J].地球科学(中国地质大学学报),2008,33(4):465~473.
    [141]杨式溥,周洪瑞.豫西前寒武纪汝阳群遗迹化石[J].地质论评,1995,41(3):205~210.
    [142]张利伟,洪天求,贾志海.巢湖地区下三叠统和龙山组微生物岩及其意义[J/OL].中国科技论文在线,2010,01 . http://www.paper.edu.cn.
    [143]左景勋.豫西汝阳中上元古畀层序地层划分及其岩石地层格架[J].河南地质,1997,15(1):29~35.
    [144]郑伟,齐永安,刘顺喜等.河南云台山世界地质公园云梦山组波痕类型及其成因分析[J].河南理工大学学报(自然科学版),2008,27(4):399~403.
    [145]郑元,吕洪波,章雨旭等.山西黎城中元古代砂岩层面多种痕迹特征及成因初析[J].地质论评,2009,55(1):1~9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700