用户名: 密码: 验证码:
表面等离子体混合波导及超透镜仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面等离子体谐振是电磁波在介质和金属表面相互作用的结果,并且可以形成一种金属表面波,称为surface plasmon polaritons(SPPs),在横向上可以传播几微米,在纵向上呈指数衰减。SPPs的特性使得近年来人们对纳米激光器、纳光子电路、超透镜的研究兴趣逐渐增加,并有许多相关的研究成果发表。
     本文工作是利用SPPs的特性,将其应用在纳米激光器和超透镜等方向中,并对其进行仿真研究。对等离子体混合波导结构和等离子体透镜结构进行建模仿真,并对结果进行了分析和讨论。
     本文首先对表面等离子体的产生及超透镜的原理做了简要的介绍。简要介绍了FDTD算法和仿真软件。
     等离子体混合波导结构特性仿真及探讨。仿真了光束在纳金属介质混合波导结构中的传输特性。分别研究了波长范围从450nm到800nm的光束在CdS-MgF2-Si、CdS-MgF2-Au、CdS-Si及CdS-Au等不同材料构成的纳米波导结构中传输特性。对仿真结果进行了分析比较,可以看出在这种波导结构中表面等离子体对于波长为650nm的光在传输过程中有明显的限制(confinement)效应,它的作用类似于Fabry-Perot谐振腔,可用于实现超密度的纳米尺度的激光器。
     最后我们分析基于椭圆孔结构的等离子体透镜模型。研究了不同极化状态的光源对该透镜聚焦效果的调制作用。该透镜是由纳米尺度的椭圆孔以可变的周期分布在透镜的径向上。我们用时域有限差分法分别计算和分析了极化状态为线性极化、椭圆极化、径向极化及圆柱矢量光束时的透镜模型及其聚焦特性。结果显示,不同极化状态的光源会产生不同的聚焦现象,而且该透镜可以增强透射并产生很强的聚焦效果。在不同极化状态下,聚焦光束的区域位置和强度分布都会有很大的不同。改变椭圆孔的参数δ=a /b(a,b分别为椭圆孔的短长轴)同样会影响该透镜的聚焦效果,并简要分析了极化状态为线性极化时的情况。
Plasmonic wave is a kind of wave that propagation along the metal surface. And it is due to the interaction of the electromagnetic with electronic resonance at the interface of metal and dielectric. It can propagate severalμm in lateral direction and decay exponentially in longitudinal direction. Its special characteristics attract much attention to the plasmonic lasers, nanophotonic circuit, and superlens. And many papers about this were published.
     We do many simulation works on plasmonic laser and superlens by using the characteristics of surface plasmon polaritons. And also we constructed the model of a hybrid plasma waveguide model, and plasmonic lens model. Then we showed the result of the simulation and given the detailed discussion and analysis of the result.
     At first this thesis analyzes the principle of surface Plasmon and superlens, and gives a brief introduction of the finite-difference time-domain (FDTD) method and the simulation software.
     Then we explored the characteristics of surface Plasmon and its advance application. We simulated several hybrid nanometer scale waveguide models which were constructed by CdS-MgF2-Si,CdS-MgF2-Au,CdS-Si and CdS-Au multilayer structure. We analyzed the working wavelength of this type of waveguide by using beam whose wavelength from 450nm to 800nm as the source of the model. And we find that the CdS-MgF2-Au multilayer structure has a strong overall confinement effect in the gap region between the CdS wire and metal surface when the wavelength was about 650 nm. And it could be used in plasmonic laser devices.
     At last we present the elliptical pinholes-based plasmonic lens. Tuning effect of different polarization states was presented. It can be realized by a plasmonic lens constructed with elliptical pinholes ranging from submicron to nanoscales distributed in variant period along radial direction. Propagation properties of the lens illuminated under four different polarization states: linear, elliptical, radial, and cylindrical vector bean, were calculated and analyzed combining with finite-difference time-domain algorithm. Different focusing performances of the lens were illustrated while the polarized light passes through the pinholes. Our calculation results demonstrate that polarization effect of the plasmonic lens can generate high transmission intensity and sharp focusing for our proposed specific structure. Beam focal region, position, and transmission intensity distribution can be tailored by the four polarization states. The tuning effect of different parameterδwas also presented when the source is linear polarization. And hereδis defined asδ=a /b, where b is the length of long axis of the elliptical pinholes, and a is the short axis.
引文
[1] D. Pines. Collective energy losses in solids. Rev. Mod. Phys., 1956, 28(1): 184-198
    [2] U. Fano. Atomic Theory of electromagnetic interactions in dense materials. Phys. Rev., 1956, 103(1): 1202-1203
    [3] R.H. Richie. Plasma losses by fast electrons in thin films. Phys. Rev., 1957, 106(1): 874-875
    [4] R.H. Richie, E.T. Arakawa, J.J. Cowan, R.N. Hamm. Surface-plasmon resonance effect in grateing diffraction. Phys. Rev. Lett., 1968, 21(1): 1530-1532
    [5] A.Otto. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys., 1968, 216(1): 398-399
    [6] U. Kreibig, P. Zacharias. Surface plasma resonances in small spherical silver and gold particles. Z. Physik, 1970, 231(1): 128-129
    [7] S.L. Cunningham, A.A Maradudin, R.F. Wallis. Effect of a charge layer on the surface-plasmon-polariton dispersion curve. Phys. Rev. B, 1974, 10(1): 3342-3343
    [8] Fleischmann, M., P.J. Hendra, A.J. McQuillan. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett., 1974, 26(1): 163-164
    [9] J. Takahara, S. Yamagishi, H. Taki, A. Marimoto, T. Kobayashi. Guiding of a one-dimensional optical beam with nanometer diameter. Opt. Lett., 1997, 22(1): 475-478
    [10] T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio and P. A Wolff. Extraordinary optical transmission through subwavelength hole array. Nature, 1998, 391(1): 667-669
    [11] J.B. Pendry. Negative refraction makes a perfect lens. Phys. Rev. Lett., 2000, 85(18): 3966–3969
    [12] Rupert F. Oulton, Volker J. Sorger, Thomas Zentgraf, Ren-Min Ma, Christopher Gladder, Lun Dai, Guy Bartal and Xiang Zhang. Plasmon lasers at deep subwavelength scale. Nature, 2009, 10(1): 8364-8365
    [13] D.R. Smith, J.B. Pendry, M.C.K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788-792
    [14] S. Anantha Ramakrishna. Physics of negative refractive index materials. Rep. Prog. Phys., 2005, 68 (2): 449-521
    [15] V.G. Veselago. Electrodynamics of substances with simultaneously negative values of sigma and mu. Soviet Phys. Uspekhi-USSR, 1968, 10(4): 509-510
    [16] J.B. Pendry, A.J. Holden, W.J. Stewart, I. Youngs. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett., 1996, 76(25): 4773–4776
    [17] J.B. Pendry, A.J. Holden, D.J. Robbins, W.J. Stewart. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech., 1999, 47(11): 2075–2084
    [18] D.R. Smith, J.B. Pendry, M.C.K. Wiltshire. Metamaterials and negative refractive index. Science, 2004, 305(5685): 788-792
    [19] S. Anantha Ramakrishna. Physics of negative refractive index materials. Rep. Prog. Phys., 2005, 68 (2): 449-521
    [20] Z. W. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang. Focusing surface plasmons with a plasmonic lens. Nano Lett., 2005, 5(1): 1726-1729
    [21] W. Srituravanich, L. Pan, Y. Wang, C. Sun, C. Bogy, and X. Zhang. Plasmonic lens in the near field for high-speed nano-lithography. Nature Nanotech., 2008, 3(1): 733-737
    [22] T.J. Yen, W.J. Padilla, N. Fang, D.C. Vier, D.R. Smith, J.B. Pendry, D.N. Basov, X. Zhang. Terahertz magnetic response from artificial materials. Science, 2004, 303(5663): 1494-1496
    [23] S. Linden, C. Enkrich, M. Wegener, J.F. Zhou, T. Koschny, C.M. Soukoulis. Magnetic response of metamaterials at 100 terahertz. Science, 2004, 306(5700), 1351-1353
    [24]丘国斌,蔡定平.金属表面电浆简介.物理双月刊. 2006,28(2):472-485
    [25] N. Fang, Z.W. Liu, T.J. Yen, X. Zhang. Regenerating evanescent waves from a silver superlens. Opt. Express, 2003, 11(7): 682–687
    [26]葛德彪,闫玉波.电磁波时域有限差分法.西安:西安电子科技大学出版社,2002
    [27] R.A. Shelby,D.R. Smith, S. Schultz. Experimental verification of a negative index of refraction. Science, 2001, 292(5514): 77–79
    [28] N. Fang, X. Zhang. Imaging properties of a metamaterial superlens. Appl. Phys. Lett., 2003, 82(2): 161–163
    [29] Z. Liu, N. Fang, T.J. Yen, X. Zhang. Rapid growth of evanescent wave by a silver superlens. Appl. Phys. Lett., 2003, 83(25): 5184–5186
    [30] U.C. Fischer, H.P. Zingsheim. Sub-microscopic pattern replication with visible-light. J. Vac. Sci. Technol., 1984, 19(4): 881–885
    [31] N. Fang, Z. Liu, T.J. Yen, X. Zhang. Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation. Appl. Phys. A, 2005, 80(1): 1315–1325
    [32] E. Kretschmann. Determination of surface-roughness of thin-films using measurement of angulardependence of scattered light from surface plasma-waves. Opt. Commun., 1974, 10(4): 353–356
    [33] H.J. Simon, J.K. Guha. Directional surface-plasmon scattering from silver films. Opt. Commun., 1976, 18(3): 391–394
    [34] R.W. Alexander, G.S. Kovener, R.J. Bell. Dispersion curves for surface electromagnetic-waves with damping. Phys. Rev. Lett., 1974, 32(4): 154–157
    [35] P.B. Johnson, R.W. Christy. Optical-constants of noble-metals. Phys. Rev. B, 1972, 6(12): 4370–4379
    [36] N. Fang, H. Lee, C. Sun, X. Zhang. Sub-diffraction-limited optical imaging with a silver superlens. Science, 2005, 308 (5721): 534–537
    [37] H. Lee, Y. Xiong, N. Fang, W. Srituravanich, M. Ambati, C. Sun, X. Zhang. Realization of optical superlens imaging below the diffraction limit. New J. Phys., 2005, 7(1): 1–16
    [38] Z. Liu, H. Lee, Y. Xiong, C. Sun and X. Zhang. Far-Field Optical Hyperlens Magnifying Sub-Diffraction-Limited Object. Science, 2007, 315(1): 1686-1687
    [39] D.O.S. Melville, R.J, Blaikie, C.R. Wolf. Submicron imaging with a planar silver lens. Appl. Phys. Lett., 2004, 84 (22): 4403–4405
    [40] Lieven Verslegers, Peter B. Catrysse, Zongfu Yu, Justin S. White, Edwars S. Barnard, Mark L. Brongersma, and Shanhui Fan. Planar Lenses Based on Nanoscale Slit Arrays in a Metallic Film, Nano Letters, 2009, 9(1): 235-238
    [41] Avner Yanai and Uriel Levy. The role of short and long range surface plasmons for plasmonic focusing applications. Optics Express, 2009, 17(16): 254-256
    [42] M. H. Wong, C. D. Sarris, and G. V. Eleftheriades. Metallic Transmission Screen For Sub-Wavelength Focusing. Electronics Letters, 2007, 43(1): 1402-1404
    [43] Zhaowei Liu, Jennifer M. Steele, Hyesog Lee, and Xiang Zhang. Tuning the focus of a plasmonic lens by the incident angle. Appl. Phy. Letters, 2006, 88(1): 171108
    [44] Kazuhiro Yamada, Wataru Watanabe, Yudong Li, and Kazuyoshi Itoh. Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses. Optics Letters, 2004, 29(16): 363-365
    [45] James A. Shackleford, Richard Grote, Marc Currie, Jonathan E. Spanier, and Bahram Nabet. Integrated plasmonic lens photodetector. Applied Physics Letters, 2009, 94(1): 083501
    [46] Yongqi Fu, W.Zhou, L.E.N.Lim, C.L.Du, X.G.Luo. Plasmonic microzone plate: Superfocusing at visible regime. Appl. Phys. Lett., 2007, 91(1): 061124
    [47] YongQi Fu, W. Zhou, L.E.N. Lim, C. Du, H. Shi, C.T Wang and X. Luo. Transmission and reflection navigated optical probe with depth-tuned serface corrugations. Appl. Phys. B, 2007, 86(1): 155-158
    [48] YongQi Fu, W. Zhou, L.E.N Lim, C. Du, H. Shi, C. Wang and X. Luo. Influence of V-shaped plasmonic nanostructures on beam propagation. Appl. Phys. B., 2007, 86(1): 461-466
    [49] Yongqi Fu, Wei Zhou, Lim Enk Ng Lennie. Propagation properties of a plasmonic micro-zone plate in near-field region. Journal of Optical Society of America A, 2008, 25(1): 238-249
    [50] Jun Wang, Wei Zhou and Anand K. Asundi. Effect of polarization on symmetry of focal spot of a plasmonic lens. Optics Express, 2009, 17(10): 785-788
    [51] Yongqi Fu, Wei Zhou, Lim Enk Ng Lennie. Nano-pinhole-based optical superlens. Research Letter in Physics, 2008, 2008(1): 148505
    [52] Fu Y, Zhou X, Liu Y. Ultra-enhanced lasing effect of plasmonic lens structured with elliptical nano-pinholes distributed in variant period. Plasmonics, DOI: 2008, 10, 1007/s11468-009-9123-1
    [53] Treacy MMJ. Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings. Phys. Rev. B, 2002, 66(1): 195105
    [54] F. Gori, G. Guattari, and C. Padovani. Bessel-Gauss beams. Opt. Commun., 1987, 64(1): 491-495
    [55] L. Novotny and B. Hecht. Principles of Nano-Optics. Cambridge U. Press, 2006
    [56] Fu Y, and Zhou W. Modulation of main lobe for superfocusing using subwavelength metallic heterostructures. Plasmonics, 2009, 4(2), 141-146

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700