用户名: 密码: 验证码:
铁电半导体BaTi_(1-x)Nb_xO_3阻变效应以及铁磁半导体FeSi_(1-x)Ge_x磁性和输运性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着当代信息技术和电子技术的飞速发展,对半导体的多功能化提出了更高的要求,于是开发一类多功能化的新型半导体,成为了当今科学的前沿问题。第一,如果能在半导体里实现一种全新的逻辑的读写或存储,再结合现有的半导体CMOS工艺,将会让逻辑和存储器件进一步小型化、存储高密度化、低成本化,而现有的逻辑器件以及存储器件在其发展过程中都面临了一些障碍,是无法同时满足上述三点要求的;第二,在半导体里除载流子外,引入其他可调控的自由度,也成为当今非常热门的领域,比如磁性半导体就是一种在半导体里引入自旋自由度并且自旋和载流子相互耦合的系统,在这种器件里将存在全新的导电机制和量子调控现象,让自旋场效应管(Spin Transistor)的实现提供了可能。本文从基础物理研究和应用相结合的角度,分别研究了铁电半导体Nb掺杂BaTiO3系统中的阻变效应以及室温铁磁半导体Ge掺杂FeSi合金中的磁性以及输运性质,并分别对其来源进行了解释,主要内容如下:
     1,BaTi0.998Nb0.002O3在外电场下阻变效应的研究
     在铁电半导体BaTi0.998Nb0.002O3(BTNO)中发现了一种全新机制的阻变效应。一系列的编程性能测试表明该系统具备优秀的非易失性、重复读写能力和响应速度。我们认为铁电极化状态对该系统的输运性质起了决定性的所用,由于界面极化电荷和自由电荷的共同影响,出于退极化状态和剩余极化状态样品的晶界出将会呈现不同的表面电荷密度分布,而BTNO的体输运性质是和其内部晶界处的电荷密度息息相关的。我们通过实验验证了这一模型,并且提出了铁电电阻随机存储器(FRRAM)的概念,他结合了传统电阻随机存储器(RRAM)和铁电随机存储器(FRAM)的优点,但是又从本质上解决了许多长期困扰它们的关键问题,比如FRAM中的破坏性读写、不与CMOS工艺兼容;RRAM中的“形成”过程以及交叉阵列中的误读现象。综上所述,铁电半导体BTNO基的FRRAM在未来存储器领域有着巨大的应用前景。
     2,室温铁磁半导体FeSi1-xGex合金的磁性以及输运性质研究
     研究了FeSi1-xGex合金的磁性和输运性质。发现样品在x=0.25附近,系统经历了弱磁半导体到铁磁半导体的转变,在x=0.4左右,系统又从铁磁半导体转变为铁磁金属,在整个掺杂区间系统的晶格结构始终保持不变。在Ge参杂区域x=0.26到x=0.4之间,系统表现出铁磁半导体行为,并且在室温以上依然保持明显的铁磁性,是一种新型的铁磁半导体,对他的磁性进行系统研究后我们发现,样品在金属-绝缘体转变温度T,之前,表现出明显的弱巡游电子铁磁性,这也验证了,在FeSi1-xGex系统中,在半导体区间,磁性来源于巡游电子交换作用,但是在Tt以上时,虽然样品依然表现出铁磁性,但弱巡游电子铁磁性被破坏,有实验报道本系统在金属绝缘体转变温度后,带隙会渐渐闭合,直到最后完全消失,所以我们认为这种破坏是由于系统带隙渐渐闭合,最终变为金属导致的,因为在Ge原子完全取代Si后,FeGe的铁磁性来源于DM相互作用,而这类相互作用是强巡游电子相互作用。综上所述,系统表现出本征的铁磁行为,而室温的铁磁半导体对自旋场效应管的最终应用具有指导性的意义,但是在FeSi1-xGex系统中,磁性和载流子的耦合机制还有待进一步研究探索。
Overwhelming advances in modern information technology and electronic industry brings new challenges to semiconductors. The multifunctionalization of semiconductors is the central task in scientific world today. As a result, some novel controllable degrees of freedom have been introduced. First of all, traditional logic and memory devices have touched their bottlenecks after their rapid development in the past few decades. Thus high density, scalable, low cost devices based on semiconductors but with a brand new mechanism are desired. Secondly, if we introduce spin into semiconductors, we get magnetic semiconductors. Carriers and spin can be controlled spontaneously in such systems, resulting in the great application value of spin field effect transistor (SFET) in future. In order to understand deeply about multifunctional semiconductors and move toward to practical applications, the ferroelectric induced resistive switching in BaTi0.998Nb0.002O3system and magnetism as well as transport property of Ge-doped FeSi ferromagnetic semiconductors are investigated in this dissertation. The main results are as follows:
     1, Ferroelectric induced resistive switching in BaTi0.998Nb0.00203system
     A novel ferroelectric manipulated resistive switching phenomenon was observed in semiconducting ferroeleetrics BaTi0.998Nb0.002O3(BTNO). A series of programming tests were carried out on BTNO and it shown lots of outstanding characters such as nonvolatility, high repeating programmable capacity and fast response speed. The space charge density at grain boundaries (GBs) inside BTNO plays a key role on the transport properties of the system. And the charge density can be modulated by the ferroelectric polarization state according to the model we present. This model was proved by our further investigation and a prototype of ferroelectric resistance random access memory (FRRAM) was put forward in our work. A FRRAM combines the advantages of both resistance random access memory (RRAM) and ferroelectric random access memory (FRAM). More importantly, it also solves some key issues which have disturbed them for a long time. As a result, we think FFRAM has great potential for application in next generation memories.
     2, Magnetic and transport properties of room temperature ferromagnetic semiconductor FeSi1-xGex
     The magnetic and transport properties of FeSi1-xGex alloys were investigated. A weak magnetic to ferromagnetic transition occurs at x=0.25, and then the system experiences a semiconductor to metal transition at x=0.4. Between x=0.25and x=0.4, the system always reveals a ferromagnetic semiconductor nature and the ferromagnetism keeps up to the room temperature. The magnetism before the semiconductor-metal transition temperature T, is induced by the weak itinerant exchange interaction according to Walfarth's model. However, when T exceeds T,, the energy gap begins to close and thus this interaction in semiconductiong region is destroyed. As the ferromagnetism in FeGe comes from the strong itinerant DM interaction, it's reasonable to conclude that the magnetism after Tt gradually is dominated by the DM interaction when the gap totally closed.
引文
[1]Muller, Richard S.; Theodore I. Kamins. Device Electronics for Integrated Circuits.2d. New York:Wiley.1986. ISBN 0-471-88758-7.
    [2]Sze, Simon M.. Physics of Semiconductor Devices(2nd ed.). John Wiley and Sons(WIE).1981. ISBN 0-471-05661-8.
    [3]Turley, Jim. The Essential Guide to Semiconductors. Prentice Hall PTR.2002. ISBN 0-13-046404-X.
    [4]Yu, Peter Y.; Cardona, Manuel. Fundamentals of Semiconductors:Physics and Materials Properties. Springer.2004. ISBN 3-540-41323-5.
    [5]1960-Metal Oxide Semiconductor (MOS) Transistor Demonstrated
    [6]Pavan P, Benz R, Olivo P. Flash memory cells overview J. Proceedings of the IEEE,85,1248(1997)
    [7]Akihito Sawa Materials Today 11,28(2008)
    [8]Hickmott T W. Low—frequency negative resistance in thin anodic oxide films Journal of Applied Physics,1962,33(9):2669-2682.
    [9]Simmons J G, Verderber R R.New conduction and reversible memory phenomena in thin insulating films. Proceedings of the Royal Society A,1967,301:77—102.
    [10]Gibbons J F, Beadle W E. Switching properties of thin NiO films. Solid—State Electronics,1964,7:785-79
    [11]Asamitsu A, Tomioka Y, Kuwahara H, et al. Current switching of resistive states in magnetoresistive manganites Nature,1997,388:50-52.
    [12]Shibuya K, Dittmann R, Mi S, et al. Impact of defect distribution on resistive switching characteristics of Sr2TiO4 thin films. Advanced Materials,2009,21:1-4.
    [13]Park J W, Kim D Y, Lee J K. Reproducible resistive switching in nonstoichiometric nickel oxide films grown by rf reactive sputtering for resistive random access memory applications. The Journal of Vacuum Science and Technology A,2005,23(5):1309-1313.
    [14]Seo S, Lee M J, Seo D H, et al. Conductivity switching characteristics and reset currents in NiO. Applied Physics Letters,2005,86,093509.
    [15]Chen A, Haddad S, WuYC, Fang T N, et al. Nonvolatile resistive switching for advanced memory applications. IEEE Electron Devices Meeting, San Francisco, 2005-12, IEDM Technical Digest, San Francisco:2005,746749.
    [16]Lee M J, Park Y, Suh D S, et al. Two series oxide resistors applicable to high speed and high density nonvolatile memory. Advanced Materials,2007,19: 3919-3923.
    [17]Chen A, Haddad S, Wu Y C, et al. Switching characteristics of Cu2 0 metal—insulator—metal resistive memory. Applied Physics Letters,2007,91: 123517.
    [18]Kund M, Beitel G, Pinnow C U, et al. Conductive bridging RAM (CBRAM): an emerging non—volatile memory technology scalable to sub 20nm. IEEE Electron Devices Meeting, W ashington DC,2005-12, IEDM Technical Digest, Washington DC:2006,754-757.
    [19]Dietrich S, Angerbauer M, Ivanov M, et al. A nonvolatile 2m bit cbram memory core featuring advanced read and program control. Solid—State Circuits,2007, 42(4),839—845.
    [20]Back I G, Lee M S, Seo S, et al. Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEEE Electron Devices Meeting, San Francisco,2005-12, IEDM Technical Digest, San Francisco:2005,754-757.
    [21]Zhibo Yan, Yanyan Guo, Guoquan Zhang, and J.-M. Liu Advanced Materials 23,1351(2011)
    [22]A. Sawa, Mater. Today 11,28 (2008)
    [23]T. DietlandJ.SPatek, Phys.Rev.B28,1548(1983
    [24]H.Ohno, H.Munekata, T.Penney, S.vonMolnar, andL.L.Chang, Phys.Rev.Lett.68, 2664(1992).
    [25]H.Ohno, A.Shen, F.Matsukura, A.Oiwa, A.Endo, S.Katsumoto, and Y.lye, APPL.Phys.Lett.69,363(1996)
    [26]T.Jungwirth, K.Y.Wang, J.Ma 互 ek, K.W.Edmonds, JurgenK6nig, Jairosinova, M.Polini, N.A.Goneharuk, A.H.MacDonald, M.Sawieki, A.W.Rushforth, R.P.CamPion, L·X·Zhao, C·T·Foxon, andB.L.Gallagher, Phys.Rev.B72, 165204(2005).
    [27]T.Dietl, H.ohno, F.Matsukur 几 J.Cibert, andD.Ferrand, Scienee287,1019(2000
    [28]T.Zhao, S.R.Shinde, S.B.ogale, H.Zheng, T.Venkatesan, R.Ramesh, andS.Das sarma, phys.Rev.Lett.94,126601(2005)
    [29]K.Ueda, H.Tabata, andT.Kawai, APPI.Phys.Lett.79,988(2001).
    [30]J.W.Quilty, A.Shibata, J—Y.Son, K.Takubo, T.Mizokawa, H.Toyosaki, T.Fukumura and M.Kawasaki, Phys.Rev.Lett.96,027202(2006).
    [31]K.A.Griffin, A.B.Pakhomov, C.M.Wang,M.Heald, andKannanM.Krishnan, phys.Rev.Lett.94,157204(2005)
    [32]J.M.D.Coey, M.Venkatesan, andC.B.FitZgerald, Nat.Mater.4,173(2005)
    [33]J.M.D.Coey, A.P.Douvalis, C.B.FitZgerald, andM.Venkatesan APPL. Phys. Lett. 84,1332(2004).
    [34]H.5.Hsu, J.C.A.Huang, Y.H.Huang, Y.F.Liao, M.2.Lin, C.H.Lee, J.F.Lee, F.Chen, L·Y·Lai, and C.P.Liu, APPL. Phys. Lett.88,242507(2006)
    [35]P.Sati, C.DeParis, C.Mothain, S.Sch & fer, andA.StePanov, Phys.Rev.Lett.98, 137204(2007).
    [36]T.Chanier, M.Sargolzaei, l.OPahle, R.Hayn and K.KoePemik, Phys.Rev.B 74, 134418(2006).
    [37]K.R.KittilstVed, D.A.SehwariZ, A.C.Tuan,5.M.Heald,5.A.Chambers, and D.R. Gamelinl, Phys. Rev. Lett.97,037203(2006).
    [1]钟维烈铁电物理学,科学出版社
    [2]B.Jaffe, W.R.CookandH.Jaffe, Piezoelectric ceramics(Academic Press), London(1971)
    [3]周东祥,龚树萍,PTC材料及应用,华中理工大学出版社,1989
    [4]白春礼,扫描隧道显微技术及其应用,上海科学技术出版社,1992
    [5]T. Kolodiazhnyi, M. Tachibana, H. Kawaji, J. Hwang,E.Takayama Muromachi, Phys. Rev. Lett.2010,104,147602
    [6]N. A. Hill, J. Phys. Chem. B,2000,104,6694
    [7]Haider M. Al-Allak, J. Am. Ceram. Soc.,2011,94,2757
    [8]Y. Kanda, "Piezoresistance Effect of Silicon," Sens. Actuators, vol. A28, no.2, pp. 83-91,1991
    [9]W. HEYWANG, J. Amer. Ceram. Soc.47,484(1964)
    [10]W.Heywang, Z.Angew.Phys.16,1 (1963)
    [1]V.JACCARINO, Physical Review,160,476(1967)
    [2]Marcus Richardson, Acta Chemica Scandinavica,21,2305(1967)
    [3]H.Watanabe, Y. Yamamoto, and K. Ito, J. Phys. Soc. Jpn.18,995 (1963)
    [4]D. Mandrus et al., Phys. Rev. B 51,4763 (1995)
    [5]V. I. Anisimov et al., Phys. Rev. Lett.76,1735 (1996)
    [6]M. Klein et al, Phys. Rev. Lett.101,046406(2008)
    [7]B. Lebech, J. Bernhard, and T. Freltoft, J. Phys. Condens. Matter 1,6105(1989).
    [8]G P Felcher at al,J. Phys. C:Solid State Phys.166281(1983)
    [9]Per Ba K, J. Phys. C:Solid State Phys.13 L881(1980)
    [10]S. Yeo Physical Review Letters,91,046041(2003)
    [11]Awadhesh Mani et al, PHYSICAL REVIEW B,63,115103(2011)
    [12]V. I. Anisimov, Physical Review Letters 89,257203(2001)
    [13]E. Bauer et al, Journal o] Magnetism and Magnetic Materials,177,1401 (1998)
    [14]N. Manyala et al, NATURE,404,581(2000)
    [15]E.P. Wohlfarth, J. Appl. Phys.39,1061-1968(1968)
    [16]Z. Schlesinger, Physical Review Letters/71,1748(1993)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700