用户名: 密码: 验证码:
多铁性氧化物RFe_2O_4的磁电效应及相关物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁电多铁性材料同时具有铁电性和铁磁性,这使得在单相材料中获得巨大的磁电耦合效应成为可能,因而在传感器、记录存储和自旋电子学器件等方向有着广泛的应用前景。近年来,磁诱导铁电性的研究取得了重要的进展,特别是复杂的磁有序结构(如螺旋磁有序等)导致的铁电现象和关联电子效应,使得电极化状态对外加磁场非常敏感。然而,这些材料中磁电的直接耦合往往很弱,或者它的工作温度远低于室温,或者需要几个特斯拉的强磁场来驱动,从而严重制约了器件的实际应用。
     在这篇论文中,作者在生长出高质量单晶样品的基础上,致力于发掘多铁性材料RFe_2O_4中磁电耦合的直接实验证据。研究结果揭示了磁冻结态的电子起源,并讨论了冻结温度前后奇异的交换偏置现象和电子关联效应等。基于材料中同时存在的类极化玻璃和类自旋玻璃行为,作者提出了一个多重玻璃的唯象模型来解释低温的磁电冻结态,而该体系在冻结温度以上仍然存在具有短程关联的自旋和极化团簇。此外,论文也记录了作者为改善多铁性陶瓷材料的介电性能所做出的一些努力和探索。
     全文共分为七章。
     第1章是多铁性材料与磁电效应的概述,包括磁电多铁材料的概念、历史发展和当前的研究热点。
     第2章介绍研究过程中使用的实验方法。
     第3章介绍了RFe_2O_4系列氧化物中的铁电起源和多铁性研究工作的进展,其中作者的工作包括通过光学浮区熔融技术生长出高质量的YbFe_2O_4单晶,以及在结构、磁和电性质研究中的表现出来的各向异性行为。
     第4章研究了多铁性YbFe_2O_4单晶在c方向上磁化的集体冻结和多重玻璃特性。磁的冻结行为和急剧增加的矫顽场密切相关,并且低温磁冻结态的热释电和介电弛豫测量结果确凿的显示了磁化和电极化之间的内禀联系,揭示出磁冻结态的电子起源。这也是多铁性材料YbFe_2O_4中磁电效应的重要证据。
     第5章研究YbFe_2O_4中的交换偏置效应。其独特的电荷有序双层结构以及与其他双层结构之间失措的短程关联,决定了该体系的玻璃特征,也形成了假想中的铁磁/反铁磁界面。交换偏置的研究,不仅涉及到铁磁/反铁磁界面处的交换耦合,还应该重点去考虑磁的集体冻结效应。在磁冻结态下磁滞回线的测量过程中,外加电场表现出对磁弛豫或磁矩翻转的促进作用。
     第6章研究LuFe_2O_4陶瓷材料中的掺杂和复合效应,介绍了作者的工作对于改善陶瓷介电性能的重要意义。
     第7章是本论文的总结,同时也对未来多铁性材料和磁电效应的研究工作做出了展望。
Magnetoelectric multiferroics with coexisting magnetic and ferroelectric orders enable strong magnetoelectric coupling in a single-phase material for many potential applications like sensors, memory, and spintronics. In recent years magnetically induced ferroelectrics have renewed interest in research on magnetoelectric correlations where ferroelectricity is induced by complex magnetic orders like spiral spin orders, and exhibit remarkable changes in electric polarization in response to external magnetic fields. However, direct coupling in these materials just shows a weak magnetoelectric effect, or operates far below room temperature, hindering their practical device applications.
     In this thesis, the author devoted his effort to reveal experimental evidence for magnetoelectric coupling in multiferroic RFe_2O_4 based on well-grown single crystals. The results revealed an electronic origin of the magnetic frozen state and a novel exchange bias effect around the freezing temperature. Upon magnetoelectric coupling, the author’s work also presented multi-glass feature on the simultaneous occurrence of a polar glass and a spin glass state, which may open up new approaches towards applications using magnetoelectric effects. Moreover, other efforts were made to improve dielectric performance of ceramic multiferroic materials via doping and composite effects.
     The whole thesis consists of seven chapters.
     1. Brief overview of multiferroics and magnetoelectric effects.
     This chapter aimed at a brief overview of history, progress, and current status of multiferroics and magnetoelectric effects. By these illustrations, the author’s work was urgent and highlighted for further investigations into magnetoelectric coupling.
     2. Experimental methods.
     This chapter listed the experimental methods applied in the author’s studies.
     3. Introduction to recent studies in multiferroic RFe_2O_4 oxides.
     This chapter summarized basal concepts and recent advances in studies of the multiferroic RFe_2O_4 family oxides. In the author’s work, high-quality YbFe_2O_4 single crystals were prepared by an optical floating zone technique, and were well characterized in the structure, magnetic, and electric properties, which confirmed the existence of an intrinsic anisotropy of the system.
     4. Magnetic freezing and multi-glass state in multiferroic YbFe_2O_4 crystals.
     In this chapter, collective freezing in the c-axis magnetization of multiferroic YbFe_2O_4 single crystals had been observed. The freezing behavior coincided well with the remarkable enhancement of coercivity. Pyroelectric current measurements and dielectric response clearly evidenced magnetoelectric coupling effects associated with the magnetic freezing behavior, revealing an electronic origin of the magnetic frozen state. Thus, a plausible multi-glass model had been proposed.
     5. Exchange bias effects in YbFe_2O_4 crystals.
     In this chapter, exotic exchange bias effects in YbFe_2O_4 had been studied. In consideration of the charge-ordered double layer structure, glass-like scenario was well established on the short-range and frustrated interbilayer interactions responsible for the hypothetical FM/AFM interfaces. The exchange bias was discussed in terms of the collective freezing of magnetization other than the exchange coupling between FM/AFM interfaces.
     6. Doping and composite effects in LuFe_2O_4 ceramic materials.
     This chapter referred to the effort to improve dielectric performance of LuFe_2O_4 ceramic materials via doping and composite effects.
     7. Conclusion.
     This chapter made a brief conclusion and an outlook for future multiferroics and magnetoelectric effects.
引文
[1] Tokura Y. Multiferroics as quantum electromagnetic. Science 2006, 312: 1481-1482.
    [2] Tokura Y. Multiferroics - toward strong coupling between magnetization and polarization in a solid. J. Magn. Magn. Mater. 2007, 310: 1145-1150.
    [3] Eerenstein W, Mathur N D, Scott J F. Multiferroic and magnetoelectric materials. Nature 2006, 442: 759-765.
    [4] Khomskii D I. Multiferroics: Different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 2006, 306: 1-8.
    [5] Cheong S W, Mostovoy M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 2007, 6: 13-20.
    [6] Ramesh R, Spaldin A N. Multiferroics: Progress and prospects in thin films. Nature Mater. 2007, 6: 21-29.
    [7] Schmid H. Magnetic ferroelectric materials. Bull. Mater. Sci. 2007, 17: 1411-1414.
    [8] Spaldin N A, Fiebig M. The renaissance of magnetoelectric multiferroics. Science 2005, 309: 391-392.
    [9] Rado G T, Folen V. Observation of the magnetically induced magnetoelectric effect and evidence for antiferromagnetic domains. Phys. Rev. Lett. 1961, 7: 310-311.
    [10] Fiebig M. Revival of the magnetoelectric effect. J. Phys. D: Appl. Phys. 2005, 38: R123-R152.
    [11] Zeng M, Wan J G, Wang Y, et al. Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J. Appl. Phys. 2004, 95: 8069-8073.
    [12] Dong S X, Li J F, Viehland D. Vortex magnetic field sensor based on ring-type magnetoelectric laminate. Appl. Phys. Lett. 2004, 85: 2307-2309.
    [13] Cai N, Nan C W, Zhai J Y, et al. Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 2004, 84: 3516-3518.
    [14] Nan C W, Li M, Huang J H. Calculations of giant magnetoelectric effects in ferroic composites of rare-earth-iron alloys and ferroelectric polymers. Phys. Rev. B 2001, 63: 144415-144423.
    [15] Dong S X, Cheng J R, Li J F, et al. Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr,Ti)O3 under resonant drive. Appl. Phys. Lett. 2003, 83: 4812-4814.
    [16] Zhang H, Wang J, Lofland S E, et al. Multiferroic BaTiO_3-CoFe_2O_4 nanostructure. Science2003, 83: 4812-4814.
    [17] Schmid H. Multi-ferroic magnetoelectrics. Ferroelectrics 1994, 162: 317-338.
    [18] Levitin R Z. The magnetoelectric properties of GdFe_3(BO_3)_4. JETP Lett. 2004, 79: 531.
    [19] Ascher E, Rieder H, Schmid H, et al. Some properties of ferromagnetoelectric Nickel-Iodine Boracite, Ni_3B_7O_(13)I. Appl. Phys. Lett. 1966, 37: 1404-1405.
    [20] Smolenskii G A, Chupis I E. Ferroelectromagnetis. Usp Fiz Nauk 1982, 137: 415-448.
    [21] Ivanov S A, Rundlof H. Investigation of the structure of the relaxor ferroelectric Pb(Fe_(1/2)Nb_(1/2))O_3 by neutron powder diffraction. J. Phys.: Cond. Matt. 2000, 12: 2393-2400.
    [22] Brunskill I H, Depmeier W. High temperature solution growth of Pb(Fe_(1/2)Nb_(1/2))O_3 and Pb(Mn_(1/2)Nb_(1/2))O_3. J. Cryst. Growth 1981, 56: 541—546.
    [23] Yan L, Li J F, Viehland D. Deposition conditions and electrical properties of relaxor ferroelectric Pb(Fe_(1/2)Nb_(1/2))O_3 thin films prepared by pulsed laser deposition. J. Appl. Phys. 2007, 101: 104107.
    [24] Wongmaneerung R, Tan X, McCallum R W, et al. Synthesis and multiferroic properties of Bi_(0.8)A_(0.2)FeO_3 (A=Ca,Sr,Pb) ceramics. Appl. Phys. Lett. 2007, 90: 242901.
    [25] Trinquier G, Hoffman J R. Lead monoxide. Electronic structure and bonding. J. Phys. Chem. 1984, 88: 6696-6711.
    [26] Waston G W, Parker S C. Ab initio calculation of the origin of the distortion ofα-PbO. Phys. Rev. B 1999, 59: 8481-8486.
    [27] Seshadri R, Hill N A. Visualizing the role of Bi 6s―Lone Pairs‖in the off-center distortion in ferromagnetic BiMnO_3. Chem. Mater. 2001, 13: 2892-2899.
    [28] Aton T, Chiba H, Ohoyama K. Structure determination of ferromagnetic perovskite BiMnO_3. J. Solid State Chem. 1999, 145: 639-642.
    [29] Kimura T, Kawamoto S, Yamada I, et al. Magnetocapacitance effect in multiferroic BiMnO_3. Phys. Rev. B 2003, 67: 180401.
    [30] Lebeugle D, Colson D, Forget A, et al. Very large spontaneous electric polarization in BiFeO_3 single crystals at room temperature and its evolution under cycling fields. Appl. Phys. Lett. 2007, 91: 022907.
    [31] Wang J, Neaton J B, Zheng H, et al. Epitaxial BiFeO_3 multiferroic thin film heterostructures. Science 2003, 299: 1719-1722.
    [32] Zhao T, Scholl A, Zavaliche F, et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO_3 films at room temperature. Nature Mater. 2006, 5: 823-829.
    [33] Baettig P, Ederer C, Spaldin N A. First principles study of the multiferroics BiFeO_3, Bi_2FeCrO_6, and BiCrO_3: Structure, polarization, and magnetic ordering temperature. Phys. Rev.B 2005, 72: 214105.
    [34] Kim D H, Lee H N, Biegalski M D, et al. Large ferroelectric polarization in antiferromagnetic BiFe_(0.5)Cr_(0.5)O_3 epitaxial films. Appl. Phys. Lett. 2007, 91: 042906.
    [35] Van Aken B, Palstra T T M, Filipetti A, et al. The origin of ferroelectricity in magnetoelectric YMnO_3. Nature Mater. 2004, 3: 164-170.
    [36] Cho D Y, Kim J Y, Park B G, et al. Ferroelectricity driven by Y d0-ness with rehybridization in YMnO_3. Phys. Rev. Lett. 2007, 98: 217601.
    [37] Tokura Y, Seki S. Multiferroics with spiral spin orders. Adv. Mater. 2010, 22: 1554-1565.
    [38] Katasura H, Nagaosa N, Balatsky A. Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 2005, 95: 057205.
    [39] Sergienko J A, Dagotto E. Role of the Dzyaloshinskii-Moriya interaction in multiferroic perovskites. Phys. Rev. B 2006, 73: 094434.
    [40] Kimura T, Goto T, Shintani H, et al. Magnetic control of ferroelectric polarization. Nature 2003, 426: 55-58.
    [41] Goto T, Lawes G, Ramirez A P, et al. Electricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 2004, 92: 257201.
    [42] Arima T, Goto T, Yamasaki Y, et al. Magnetic-field-induced transition in the lattice modulation of colossal magnetoelectric GdMnO_3 and TbMnO_3 compounds. Phys. Rev. B 2005, 72: 100102(R).
    [43] Yamosoki Y, Sagayama H, Goto T, et al. Electric control of spin helicity in a magnetic ferroelectric. Phys. Rev. Lett. 2007, 98: 147204.
    [44] Yamsaki Y, Miyasaka S, Kaneko Y, et al. Magnetic reversal of the ferroelectric polarization in a multiferroic spinel oxide. Phys. Rev. Lett. 2006, 96: 207204.
    [45] Lawes G, Melot B, Page K, et al. Dielectric anomalies and spiral magnetic order in CoCr_2O_4. Phys. Rev. B 2006, 74: 024413.
    [46] Portengen T, Ostreich O, Sham L J. Theory of electronic ferroelectricity. Phys. Rev. B 1996, 54: 017452.
    [47] Verwey E J, Haayman P W. Electronic conductivity and transition point of magnetite. Physica 1941, 8: 979-982.
    [48] Tokura Y, Nagaosa N. Orbital physics in transition-metal oxides. Science 2000, 288: 462-468.
    [49] Ikeda N, Ohsumii H, Ohweda K, et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe_2O_4. Nature 2005, 436: 1136-1138.
    [50] Tokunaga Y, Lottenmoser T, Lee Y, et al. Rotation of orbital stripes and the consequentcharge-polarized state in bilayer manganites. Nature Mater. 2006, 5: 937-941.
    [51] Efremov D V, den Brirk J V, Khomoskii D I. Bond-versus site-centred ordering and possible ferroelectricity in manganites. Nature Mater. 2004, 3: 853-856.
    [52] Ederer C, Spaldin N A. Magnetoelectrics: A new route to magnetic ferroelectrics. Nature Mater. 2004, 3: 849-851.
    [53] Hur W, Park S, Sharma P A, et al. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 2004, 429: 392-395.
    [54] Lankhim V, Skuimryer V, Matri X, et al. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 2006, 97: 227201.
    [55] Wu S M, Cybart S A, Yu P, et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 2010, 9: 756-761.
    [56] Gajek M, Bibes M, Fusil S, et al. Tunnel junctions with multiferroic barriers. Nature Mater. 2007, 6: 296-302.
    [57] Garcia V, Bibes M, Bocher L, et al. Ferroelectric control of spin polarization. Science 2010, 327: 1106-1110.
    [58] Kittel C. Introduction to Solid State Physics (Wiley, New York, 1995).
    [59] Cohen R E. Origin of ferroelectricity in perovskite oxides. Nature 1992, 358: 136-138.
    [60] Saghi-Szabo G., Cohen R E, Krakauer H. First-principles study of piezoelectricity in PbTiO_3. Phys. Rev. Lett. 1998, 80: 4321-4324.
    [61] Kuroiwa Y, et al. Evidence for Pb-O covalency in tetragonal PbTiO_3. Phys. Rev. Lett. 2001, 87: 217601.
    [62] Kimizuka N, Muromachi E, Siratori K. in Handbook on the Physics and Chemistry of Rare Earths Vol. 13 (eds Gschneidner, K. A. Jr & Eyring, L.) 283-384 (Elsevier Science, Amsterdam, 1990).
    [63] Yamada Y, Nohdo S, Ikeda N. Incommensurate charge ordering in chargefrustrated LuFe_2O_4 system. J. Phys. Soc. Jpn. 1997, 66: 3733-3736.
    [64] Mekata M, Adachi K. Magnetic structure of CsCoCl3. J. Phys. Soc. Jpn. 1978, 44: 806-812.
    [65] Funahashi S, et al. Two-dimensional spin correlation in YFe_2O_4. J. Phys. Soc. Jpn. 1984, 53: 2688-2696.
    [66] Materlik G., Sparks C J, Fischer K. Resonant Anomalous X-Ray Scattering (North-Holland, Amsterdam, 1994).
    [67] Sasaki S. Fe2+ and Fe_3+ ions distinguishable by X-ray anomalous scattering: method and its application to magnetite. Rev. Sci. Instrum. 1995, 66: 1573-1576.
    [68] Ikeda N, et al. Charge frustration and dielectric dispersion in LuFe_2O_4. J. Phys. Soc. Jpn.2000, 69: 1526-1532.
    [69] Ikeda N, Kohn K, Kito H, Akimitsu J, Siratori K. Dielectric relaxation and hopping of electrons in ErFe_2O_4. J. Phys. Soc. Jpn. 1994, 63: 4556-4564.
    [70] Tanaka M, Siratori K, Kimizuka N. Mossbauer study in RFe_2O_4. J. Phys. Soc. Jpn. 1984, 53: 760-772.
    [71] Sugihara T, Siratori K, Shindo I, Katsura T. Parasitic ferrimagnetism of YFe_2O_4. J. Phys. Soc. Jpn. 1978, 45: 1191-1198.
    [72] Sakai Y, Kaneda K, Tsuda N, Tanaka M. Electrical-resistivity of YFe_2O_4. J. Phys. Soc. Jpn. 1986, 55: 3181-3187.
    [73] Subramanian M A, He T, Chen J Z, et al. Giant room–temperature magnetodielectric response in the electronic ferroelectric LuFe_2O_4. Adv. Mater. 2006, 18: 1737-1739.
    [74] Xiang H J, Whangbo M H. Charge order and the origin of giant magnetocapacitance in LuFe_2O_4. Phys. Rev. Lett. 2007, 98: 246403.
    [75] Nagano A, Naka M, Nasu J, Ishihara S. Electric polarization, magnetoelectric effect, and orbital state of a layered ironoxide with frustrated geometry. Phys. Rev. Lett. 2007, 99: 217202.
    [76] Zhang Y, Yang H X, Ma C, et al. Charge-stripe order in the electronic ferroelectric LuFe_2O_4. Phys. Rev. Lett. 2007, 98: 247602.
    [77] Park J Y, Park J H, Jeong Y K, Jang H M. Dynamic magnetoelectric coupling in electronic ferroelectric LuFe_2O_4. Appl. Phys. Lett. 2007, 91:152903.
    [78] Serrao C R, Sahu J R, Ramesha K, Rao C N R. Magnetoelectric effect in rare earth ferrites, LnFe_2O_4. J. Appl. Phys. 2008, 104: 016102.
    [79] Christianson A D, Lumsden M D, Angst M, Yamani Z, et al. Three-dimensional magnetic correlations in multiferroic LuFe_2O_4. Phys. Rev. Lett. 2008, 100: 107601.
    [80] Xu X S, Angst M, Brinzari T V, Hermann R P, et al. Charge order, dynamics, and magnetostructural transition in multiferroic LuFe_2O_4. Phys. Rev. Lett. 2008, 101: 227602.
    [81] Angst M, Hermann R P, Christianson A D, Lumsden M D, et al. Charge order in LuFe_2O_4: Antiferroelectric ground state and coupling to magnetism. Phys. Rev. Lett. 2008, 101: 227601.
    [82] Rouquette J, Haines J, Al-Zein A, Papet P, et al. Pressure-induced structural transition in LuFe_2O_4: Towards a new charge ordered state. Phys. Rev. Lett. 2010, 105: 237203.
    [83] Livingston J D. A review of coercivity mechanisms. J. Appl. Phys. 1981, 52: 2544-2548.
    [84] Darby N, Issac E. Magnetocrystalline anisotropy of ferromagnetics and ferrimagnetics. IEEE Trans. Magn. 1974, 10: 259-304.
    [85] Sun S H, Murray C B, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles andferromagnetic FePt nanocrystal superlattices. Science 2000, 287: 19889-1992.
    [86] De Campos M F, Landgraf F J G, Saito N H, Romero S A, et al. Chemical composition and coercivity of SmCo5 magnets. J. Appl. Phys. 1998, 84: 368-373.
    [87] Tiberto P, Baricco M, Olivetti E, Piccin R. Magnetic properties of bulk metallic glasses. Adv. Eng. Mater. 2007, 9: 468-474.
    [88] Zeng H, Li J, Liu J P, Wang Z L, Sun S H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature (London) 2002, 420: 395-398.
    [89] Iida J, Tanaka M, Nakagawa Y, Funahashi S, et al. Magnetization and spin correlation of 2-dimensional triangular antiferromagnet LuFe_2O_4. J. Phys. Soc. Jpn. 1993, 62: 1723-1735.
    [90] Wu W, Kiryukhin V, Noh H J, Ko K T, et al. Formation of pancakelike Ising domains and giant magnetic coercivity in ferrimagnetic LuFe_2O_4. Phys. Rev. Lett. 2008, 101: 137203.
    [91] Park S, Horibe Y, Choi Y J, Zhang C L. Pancakelike Ising domains and charge-ordered superlattice domains in LuFe_2O_4. Phys. Rev. B 2009, 79: 180401(R).
    [92] Mydosh J A, Spin Glasses (Taylor & Francis, London, 1993).
    [93] Zhang Y, Yang H X, Guo Y Q, Ma C, et al. Structure, charge ordering and physical properties of LuFe_2O_4. Phys. Rev. B 2007, 76: 184105.
    [94] Horibbe Y, Yoshii K, Ikeda N, Mori S. Oxygen-deficient effect on charge ordering in spin- and charge-frustrated ferrite YFe_2O_4? . Phys. Rev. B 2009, 80: 092104.
    [95] Wang F, Kim J, Kim Y J, Gu G D. Spin-glass behavior in LuFe_2O_4+ . Phys. Rev. B 2009, 80: 024419.
    [96] Ko K T, Noh H J, Kim J Y, Park B G, et al. Electronic origin of giant magnetic anisotropy in multiferroic LuFe_2O_4. Phys. Rev. Lett. 2009, 103: 207202.
    [97] Noh H J, Sung H J, Jeong J W, et al. Effect of structural distortion on ferrimagnetic order in Lu1?xLxFe_2O_4 (L=Y and Er; x=0.0, 0.1, and 0.5). Phys. Rev. B 2010, 82: 024423.
    [98] Mulders A M, Lawrence S M, Staub U, et al. Direct Observation of Charge Order and an Orbital Glass State in Multiferroic LuFe_2O_4. Phys. Rev. Lett. 2009, 103: 077602.
    [99] Hochli U T, Knorr K, Loidl A. Orientational glasses. Adv. Phys. 1990, 39: 405-615.
    [100] Binder K, Young A P. Spin-glasses - experimental facts, theoretical concepts, and open questions. Rev. Mod. Phys. 1986, 58: 801-976.
    [101] Shvartsman V V, Bedanta S, Borisov P, Kleemann W. (Sr,Mn)TiO_3: A magnetoelectric multiglass. Phys. Rev. Lett. 2008, 101: 165704.
    [102] Muller K A, Burkard H. SrTiO_3: Intrinsic quantum para-electric below 4 K. Phys. Rev. B 1979, 19: 3593-3602.
    [103] Bednorz J G, Muller K A. Sr_(1-x)Ca_xTiO_3: An xy quantum ferroelectric with transition torandomness. Phys. Rev. Lett. 1984, 52: 2289-2292.
    [104] Tkach A, Vilarinho P M, Kholkin A L. Polar behavior in Mn-doped SrTiO_3 ceramics. Appl. Phys. Lett. 2005, 86: 172902.
    [105] Tkach A, Vilarinho P M, Kholkin A L. Nonlinear dc electric-field dependence of the dielectric permittivity and cluster polarization of Sr1-xMnxTiO_3 ceramics. J. Appl. Phys. 2007, 101: 084110.
    [106] Wu F Y. The Potts-model. Rev. Mod. Phys. 1982, 54: 235-268.
    [107] Jonsson P E. Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv. Chem. Phys. 2004, 128: 191-248.
    [108] Borisov P, Hochstrat A, Shvartsman V V, Kleemann W. Superconducting quantum interference device setup for magnetoelectric measurements. Rev. Sci. Instrum. 2007, 78: 106105.
    [109] Hou S L, Bloembergen N. Paramagnetoelectric effects in NiSO4-6H2O. Phys. Rev. 1965, 138: A1218.
    [110] Wen J S, Xu G Y, Gu G, Shapiro S M. Magnetic-field control of charge structures in the magnetically disordered phase of multiferroic LuFe_2O_4. Phys. Rev. B 2009, 80: 020403(R).
    [111] Meiklejohn W H, Bean C P. New magnetic anisotropy. Phys. Rev. 1956, 102: 1413-1414.
    [112] Nogues J, Schuller I K. Exchange bias. J. Magn. Magn. Mater. 1999, 192: 203-232.
    [113] Chu Y H, Martin L W, Holcomb M B, Gajek M, et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 2008, 7: 478-482.
    [114] Haertling G H. Ferroelectric ceramics: History and technology. J. Am. Ceram. Soc. 1999, 82: 797.
    [115] Kim B G, Cho S M, Kim T Y, Jang H M. Giant dielectric permittivity observed in Pb-based perovskite ferroelectrics. Phys. Phys. Lett. 2001, 86: 3404.
    [116] Pecharroman C, EstebaIl-Betegon F, Bartolome J F, Lopes-Esteban S, Moya J S. New perolative BaTiO_3~-Ni composites with a high and frequency-independent dielectric constant (≈80000). Adv. Mater. 2001,13: 1541.
    [117] Wu J, Nan C W, Lin Y, Deng Y. Giant dielectric permittivity in Li and Ti doped NiO. Phys. Phys. Lett. 2002, 89: 217601.
    [118] Zhang R, Gao L, Wang H, Guo J. Dielectric properties and space charge behavior in SiC ceramic capacitor. Appl. Phys. Lett. 2004, 85: 2047.
    [119] Catalan G, O’Neill D, Bowman R M, Gregg J M. Relaxor features in ferroelectric supperlattice: A Maxwell-Wagner approach. Appl. Phys. Lett. 2000, 77: 3078.
    [120] Xu J, Wong C P. Low-loss percolative dielectric composite. Appl. Phys. Lett. 2005, 87: 082907.
    [121] Vyssotsky V A, Gordan S B, FrischH L, HaInmersley J M. Critical percolation probabilities(bond pmblem). Phys. Rev. 1961, 123: 1566.
    [122] Frisch H L, Sonnenblick E, Vyssotsky V A, Hammersley J M. Critical percolation probabilities(site problem). Phys. Revt. 1961, 124: 1021.
    [123] Last B J, Thouless D J. Percolation Theory and Elecmcal Conductivity. Phys. Rev. Lett. 1971, 27: 1719.
    [124] Kirkpatrick S. Percolation and conduction. Rev. Mod. Phys. 1973, 45: 574.
    [125] GrannallD M, Garlalld J C, Tanner D B. Critical behavior of the dielectric constant of a random composite near the percolation threshold. Phys. Rev. Lett. 1981, 46: 375.
    [126] Daflg Z M, Nan C W, Xie D, et al. Dielectric behavior and dependence of percolation threshold on the conductivity of fillers in polymer-semiconductor composites. Appl. Phys. Lett. 2004, 85:97.
    [127] Moshnyaga V, Damaschke B, Shapoval O, et al. Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO_3)1-x: (MgO)x nanocomposite films. Nature Mater. 2003, 2: 247.
    [128] Uehara M, Mori S, Chen C H, Cheong S W. Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 1999, 399: 560.
    [129] Subramanian M A, Li D, Duan N, et al. High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid State Chem. 2000, 151: 323.
    [130] Homes C C, Vogt T, Shapiro S M, et al. Optical response of high-dielectric-constant perovskite-related oxide. Science 2001, 293: 673.
    [131] Lullkelllleimer L, Bobn V, Pronin A V, et al. Origin of apparent colossal dielectric constants. Phys. Rev. B 2002, 66: 052105.
    [132] Tagantsev A K, Sherman V O, Astafiev K F, Venkatesh J, Setter N. Ferroelectric materials for microwave tunable applications. J. Electroceram. 2003, 11: 5-66.
    [133] Vendik O G, Hollmann E K, Kozyrev A B, Prudan A M. Ferroelectric tuning of planar and bulk microwave devices. J. Supercond. 1999, 12: 325-338.
    [134] Johnson K M. Variation of dielectric constant with voltage in ferroelectrics and its application to parametric devices. J. Appl. Phys. 1962, 33: 2826.
    [135] Feteira A, Sinclair D C, Reaney I M, Somiya Y, Lanagan M T. BaTiO_3~-Based ceramics for tunable microwave applications. J. Am. Ceram. Soc. 2004, 87: 1082-1087.
    [136] Yu Z, Ang C, Guo R, Bhalla A S. Dielectric properties and high tunability of Ba(Ti0.7Zr0.3)O_3 ceramics under dc electric field. Appl. Phys. Lett. 2002, 81: 1285-1287.
    [137] Li C H, Zhang X Q, Cheng Z H, Sun Y. Room temperature giant dielectric tunability effectin bulk LuFe_2O_4. Appl. Phys. Lett. 2008, 92: 182903.
    [138] Biskup N, de Andres A, Martinez J L, Perca C. Origin of the colossal dielectric response of Pr0.6Ca0.4MnO_3. Phys. Rev. B 2005, 72: 024115.
    [139] Wen J S, Xu G Y, Gu G, Shapiro S M. Robust charge and magnetic orders under electric field and current in multiferroic LuFe_2O_4. Phys. Rev. B 2010, 82: 144121.
    [140] Yoshii K, Ikeda N, Matsuo Y, Horibe Y, Mori S. Magnetic and dielectric properties of RFe_2O_4, RFeMO4, and RGaCuO4 (R=Yb and Lu, M=Co and Cu). Phys. Rev. B 2007, 76: 024423.
    [141] Ikeda N, Kohn K, Himoto E, Tanaka M. Magnetic-relaxation in diluted triangular antiferromagnet LuFeMgO4. J. Phys. Soc. Jpn.1995, 64: 4371-4377.
    [142] Tanaka M, Himoto E, Todate Y. Mossbauer study on a diluted triangular antiferromagnet LuFeMgO4. J. Phys. Soc. Jpn. 1995, 64: 2621-2627.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700