用户名: 密码: 验证码:
松嫩草地退化指示植物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在筛选出植被和土壤方面的敏感指标后,对松嫩平原不同退化程度的草地进行评价,确定与退化程度呈正相关的指示植物,研究该指示植物对盐碱环境的响应。运用室内控制和野外试验相结合的方法,调查和测定在不同土壤盐碱条件、不同季节里,主要元素Na~+、K~+、Ca~(2+)、Mg~(2+)在植物体内吸收、运输和分布的变化状况;研究不同土壤离子浓度下,指示植物体内渗透调节物质——脯氨酸和糖类、超氧化物歧化酶(SOD)、过氧化物酶(POD)和过氧化氢酶(CAT)活性等指标的变化响应情况;研究不同盐碱梯度下,植物个体、种群、群落的特征;系统的从生理生态角度探讨指示植物对盐碱环境的响应:
     (1)植被特征指标:裸地指数(BPIc)、生物量、多年生植物覆盖率;羊草生长状况指标:土壤有机质含量、pH可作为松嫩平原退化评价的指标。应用上述指标,采用聚类分析方法,将研究样地分为4类:健康草地生态系统、轻度退化草地生态系统、中度退化草地生态系统和严重退化草地生态系统。马蔺的出现指示着草场出现了中度退化,而当其成为优势种时,指示着草场已严重退化,马蔺是一种中度、严重退化的指示物种。
     (2)马蔺经中性盐NaCl、碱性盐Na2CO3及二者混合液(Mix)三种处理,均可导致植物体内Na~+、脯氨酸含量增加,酶活性提高,K~+和根中的Mg~(2+)含量下降。在生长基质中高浓度Na~+下,Ca~(2+)下降,膜透性加大,最终导致马蔺的生物量降低。在相同Na~+浓度的生长基质中,NaCl处理组的马蔺最大Na~+累积显著低于Na2CO3处理组,对细胞膜的损伤程度及对生物量的影响也低于Na2CO3处理组,脯氨酸、K~+、Mg~(2+)、Ca~(2+)累积和SOD酶活性高于Na2CO3处理组,而混合胁迫处理组的各项指标处于NaCl处理组和Na2CO3处理组之间。碱性盐对植物的损伤大于中性盐对植物的损伤,碱性盐处理下的马蔺体内Ca~(2+)含量较低是其毒性大于中性盐的原因之一。
     (3)马蔺体内阳离子含量在不同月份变动很大。在6月前,随着马蔺的生长, Na~+、K~+、Ca~(2+)、Mg~(2+)四种离子在植物体内累积量逐渐增加。根中Ca~(2+)、Na~+含量的峰值出现在7月,分别为2.30%和0.51%;K~+、Mg~(2+)含量的峰值分别出现在9、10月,为0.27%和0.28%。叶片中Na~+含量在7月达到最大值0.57%;K~+、Ca~(2+)、Mg~(2+)在8月分别达到最大值1.30%、2.69%和0.47%。7、8月时,与Na~+相比,马蔺对K~+的选择吸收能力较低,但转运能力较强。马蔺不同部位对离子的利用和累积能力不同,马蔺对各阳离子的累积主要集中在地上30 cm到地下40 cm区间范围内。马蔺地上部分平均单株K~+、Na~+、Ca~(2+)和Mg~(2+)质量分别是地下部分的9.11、4.07、0.98、2.27倍。
     (4)pH和电导率与马蔺叶片K~+含量呈显著的负相关;与马蔺叶片Na~+含量呈显著的正相关;与马蔺叶片Ca~(2+)、Mg~(2+)含量、Ca~(2+)/Na~+比率相关关系不显著。随着pH和电导率的增高,马蔺叶片K~+/Na~+比率有下降的趋势,pH和电导率与马蔺叶片K~+/Na~+比率呈指数关系。高盐伴随着高碱环境更有利于Na~+对+K的竞争,高pH加剧了Na~+盐对植j物的毒性。叶片中K~+含量、K~+/Na~+比率与土壤中Na~+、CO32-、HCO3-、Cl-、含水量显著负相关,而土壤中Mg~(2+)、Ca~(2+)/Na~+、K~+/Na~+比率呈显著正相关;叶片中Na~+含量与土壤中Na~+、CO32-、HCO3-、Cl-、含水量呈显著正相关,与土壤中K~+/Na~+比率呈显著负相关;叶片中Ca~(2+)含量与土壤各指标均没有显著的相关关系;Mg~(2+)含量除与K~+/Na~+有显著正相关外,与其他土壤指标均没有显著的相关关系;提高土壤中K~+/Na~+、Ca~(2+)/Na~+比率比单纯提高土壤中Ca~(2+)含量更有利于提高植物的耐盐碱性。
     (5)马蔺叶片中可溶性糖、脯氨酸含量均随着土壤pH和EC的增加,有显著的正相关关系。可溶性糖、脯氨酸均是盐碱环境下,马蔺的渗透调节物质。土壤中Na~+、CO32-、HCO3-、Cl-和土壤含水量与脯氨酸和糖类累积呈显著正相关,是产生渗透胁迫的主要因素。Ca~(2+)、Ca~(2+)/Na~+、K~+/Na~+比率和有机质含量在一定程度上能消除上述离子带来的胁迫效应。
     (6)SOD、POD、CAT活性随着马蔺生长的进行,有下降的趋势。酶活性最大值出现在5月、6月、5月份,最小值分别出现在8月、9月、8月。随着pH和电导率的增加,SOD、POD、CAT活性有增加的趋势。pH与三种酶的关系呈直线型关系,而电导率与三种酶的关系呈对数型关系。SOD、POD、CAT活性均与土壤中Na~+、CO32-、HCO3-、Cl-、土壤含水量呈显著的正相关,SOD活性与土壤Ca~(2+)、有机质含量、K~+/Na~+比率呈显著的负相关;POD活性与土壤Ca~(2+)、土壤有机质含量、Ca~(2+)/Na~+、K~+/Na~+比率呈显著的负相关;CAT活性与土壤Ca~(2+)/Na~+、K~+/Na~+比率呈显著的负相关。
     (7)马蔺叶片、根的热值随着生长的进行逐渐增加,9月达到最大值,10月有所下降。马蔺的不同器官热值含量不同,热值含量顺序为种子>叶>根>花。马蔺热值含量的季节变动主要是由于气象因素。马蔺地上部能量现存量主要集中在0~40cm,占地上总量的91.6%。地下部能量现存量随深度的增加而减小,能量主要集中在0~80cm的深度,占地下总能量现存量的88.6%。马蔺叶片热值与土壤pH、EC呈显著的正相关。随着盐碱度的增加,马蔺体内脯氨酸和糖类等相容性溶质随之增高,是马蔺叶片热值含量增加的原因之一。马蔺叶片热值与土壤含水量、有机质含量没有显著的相关关系,与土壤中含氮量的关系可以用y = -64358x2 + 8975.6x + 3663.2表达。马蔺根热值含量与土壤pH、EC、含水量、含氮量和有机质含量均没有显著相关关系。
     (8)土壤pH与马蔺群落丰富度、多样性指数、平均株高、密度相关关系不显著,与马蔺单株生物量呈显著的负相关。马蔺最适宜生长的环境pH应在9.358到10.069范围内。土壤电导率、含氮量、有机质含量、含水量均与马蔺群落丰富度、多样性指数、平均株高、密度无显著相关关系。土壤电导率、含水量与马蔺单株生物量整体上呈显著的负相关。土壤有机质含量与马蔺单株生物量呈显著的正相关,而土壤含N量与单株生物量相关性不显著。土壤有机质丰富利于马蔺生长,含水量高不利于马蔺生长。
Vegetational and edaphic indicators were screened to assess different degree of degeneration of grassland in Songnen Plain. An indicator plant positive to degeneration was confirmed. In different degree of saline and alkali conditions controlled in lab or under field, contents as followed were determined: the absorption, transportation and distribution of major cations (Na~+, K~+, Ca~(2+)and Mg~(2+)) in indicator plant; organic solute (proline and soluble sugar), and antioxidase activities, including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD); characteristics of individual, population and community of the plant. Responses of the indicator plant to environment from physiological to community aspects were systemically discussed in this document.
     (1) Vegetional characteristics and edaphic indicators including bare patch index, dry biomass, percent cover by perennial plants, growth indicators of Leymus chinensis, soil organic matter and pH were sensitive to saline-alkali grassland degeneration. We also used the indicators screened to classify the study sites by the cluster analysis method and got four groups: health, light degeneration, middle degeneration and severe degeneration grassland. Iris lactea Pall. var. chinensis Koidz was present in the grassland of middle degeneration. I. lactea was the dominant species in grassland of severe degeneration. I. lactea was the indicator plant of grassland of middle and severe degeneration.
     (2) Treatments of NaCl, Na2CO3 and the mixture of the two salts caused increases in Na~+ concentration, proline content and Electrolyte leakage rate (REL) and decreases in root Mg~(2+) and K~+ content. Increased Ca~(2+) and antioxidase activities were observed at lower external Na~+ concentrations. However, at higher external Na~+ levels, decreased Ca~(2+) and antioxidase activities were detected. Alkaline salt resulted in more damage to I. lactea than neutral salt, including lower SOD, POD and CAT activities and decreased proline content relative to neutral salt. High Na~+ and low K~+ in I. lactea intensified ion toxicity under alkaline condition. Alkaline salt caused greater harm to plants than neutral salt, the primary reason of which might be the lower Ca~(2+) content in the plant under alkaline salt stress.
     (3) The cation contents in I. lactea varied in different months. Contents of the four cations increased with growth of I. lactea before June. Ca~(2+) and Na~+ contents in roots were highest in July with the value of 2.30% and 0.51%, respectively. K~+ and Mg~(2+) in roots were highest in September (0.27%) and October (0.28%), respectively. The Leaf Na~+ content in July was highest with the value of 0.57%.The highest values of K~+, Ca~(2+) and Mg~(2+) in leaves were 1.30%, 2.69% and 0.47%, respectively, which all presented in August. In July and August, the selective absorption (SA) by I. lactea for K~+ over Na~+ was higher, while the selective transport (ST) was lower. The cation contents in I. lactea were significantly higher than those in soil, which indicated that I. lactea had high accumulation capacity of these cations. The accumulation of cations by I. lactea was mainly distributed from 40cm underground to 30cm aboveground. The distributions of Na~+, K~+, Ca~(2+)and Mg~(2+) in the individual of I. lactea aboveground were 9.11, 4.07, 0.98 and 2.27 times of those in the underground, respectively.
     (4) Electric conductivity (EC) and pH had negative relation with K~+ content, positive relation with Na~+ content, and no significant relation with Ca~(2+), Mg~(2+) and Ca~(2+)/Na~+ ratio in I. lactea. K~+/Na~+ in I. lactea decreased with increasing of EC and pH, which showed exponential relationship. Conditions with higher saline and alkali levels were favourable to competition of Na~+ for K~+. High pH enhanced poison of Na~+ for plants. K~+, K~+/Na~+ ratio in leaves were significantly negative to soil Na~+, CO32-, HCO3-, Cl- and moisture, and significantly positive to soil Mg~(2+),Ca~(2+)/Na~+ and K~+/Na~+ ratio. Na~+ contents in leaves were significantly negative to soil K~+/Na~+ ration, and significantly positive to soil Na~+, CO32-, HCO3-, Cl- and moisture. Ca~(2+) and Mg~(2+) content in leaves had no significant relationship with all the ions in soil, except that Mg~(2+) was significantly positive to soil K~+/Na~+. Enhancing K~+/Na~+、Ca~(2+)/Na~+ in soil was better for increasing tolerance to saline-alkali environment than only increasing Ca~(2+) content.
     (5) Soluble sugar (SS) and proline in leaves increased with pH and EC, they are both compatible solutes for I. lactea. Soil Na~+, CO32-, HCO3-, Cl- contents and moisture were significantly positive to the contents of SS and proline in leaves, and were main stress factors for plants. Ca~(2+), Ca~(2+)/Na~+, K~+/Na~+ ratio and organic matter could possibly eliminate stress effects by ions stated above.
     (6) SOD, POD and CAT activities had decreasing trend in the growing season. The highest activities of SOD, POD and CAT were present in May, June and May, respectively. The lowest value of SOD, POD and CAT was present in August, September and August, respectively. EC and pH had linear and exponent curve, respectively. SOD, POD and CAT activities were significantly positive to soil Na~+, CO32-, HCO3-, Cl- and moisture. SOD activities were significantly negative to soil Ca~(2+), organic matter and K~+/Na~+ ratio; POD activities were significantly negative to soil Ca~(2+), organic matter, Ca~(2+)/Na~+ and K~+/Na~+ ratio. CAT activities were significantly negative to soil Ca~(2+)/Na~+ and K~+/Na~+ ratio. (7) Caloric value of leaves and roots in I. lactea increased gradually with growth and reached the highest in September, then decreased. The caloric value of different organs was different. The order of caloric value of organs was seed >leaf >root >flower. Seasonal dynamics of caloric value was mainly because climatic factors. The energy stored by I. lactea aboveground was mainly distributed from 0 to 40cm underground, with occupied 91.6% of the total energy aboveground. The energy stored by I. lactea underground was mainly distributed from 0 to 80cm underground, with occupied 88.6% of the total energy underground. The caloric value of leaves was significant positively to soil pH and EC, which was perhaps due to the increase of soluble sugar and proline with soil pH and EC. The caloric value of leaves had no significant relationship with soil moisture and organic matter, however it showed quadraticy curve(y = -64358x2 + 8975.6x + 3663.2) with soil N content. The caloric value of roots had no significant relationship with soil moisture, pH, EC, N, and organic matter.
     (8) Soil pH had no significant relationship with abundance, biodiversity index, average height and density in I. lactea community, but had significantly negative to biomass per unit of I. lactea. Soil pH from 9.358 to 10.069 was most suitable for I. lactea growth. The relationships with soil EC, N content, organic matter and moisture and abundance, biodiversity index, average height and density in I. lactea community were not significant. Soil EC and moisture had negative effects on I. lactea growth. Soil N content had no significant effects on the biomass per unit of I. lactea.
引文
[1]Büssenschütt M, Pahl-Wostl C. A discrete, allometric approach to the modelling of ecosystem dynamics[J]. Ecological Modelling. 2000, 126: 33-48
    [2]Schulte R P O. Analysis of the production stability of mixed grasslands II: A mathematical framework for the quantification of production stability in grassland ecosystems[J]. Ecological Modelling. 2003, 159:71-99
    [3]DeKeyser E S, Kirby D R, Ell M J. An index of plant community integrity: development of the methodology for assessing prairie wetland plant communities[J]. Ecological Indicators. 2003, 3: 119-133
    [4]Ulanowicz R E, Abarca-Arenas L G. An informational synthesis of ecosystem structure and function[J]. Ecological Modelling. 1997, 95: 1-10
    [5]Lehman C L, Tilman D. Biodiversiy, stability and productivity in competitive communities[J]. The American Naturalist. 2003, 156(3): 535-552
    [6]陈佐忠,江风.草地退化的治理[J].中国减灾. 2003, 3: 45-46.
    [7]许志信,赵萌莉,韩国栋.内蒙古的生态环境退化及其防治对策[J].中国草地. 2000, 5: 59-63.
    [8]陈佐忠.中国典型草原生态系统[M].北京:科学出版社. 2000, 307-315.
    [9]李博.中国北方草地退化及其防治对策[M].中国农业科学. 1997,30 (6): 1-9
    [10]Platt R B. Conference summary[C]. Recovery and restoration of damaged ecosystems. In: Carins, Jr. J. Dickson K. L.& Herricks E. E. eds.. Charlottesville: University Press of Virginia, 1977, 526-531
    [11]李文龙,王刚,李自珍.人工固沙林生态系统健康的模糊综合评价及实例分析[J].西北植物学报. 2004, 24(3): 443-448.
    [12]Van Dam R A , Camilleri C, Finlayson C M. The potential of rapid assessment techniques as early warning indicators of wetland degradation: a review[J]. Environmental Toxicology and Water Quality. 1998, 13(4): 297-312.
    [13]de Soyza A G, van Zee J W, Walter G W, et al. Indicators of Great Basin rangeland health[J]. Jounrnal of Arid Environments. 2000, 45:289-304
    [14]Stasyuk N V, Dobrovol skii G V, Zalibekov Z G. Assessment of soil cover degradation and desertification in northern lowland Dagestan[J]. Russian Journal of Ecology. 2004, 35(3):144-149.
    [15]Erftemeijer P L A. A new technique for rapid assessment of mangrove degradation: a case study of shrimp farm encroachment in Thailand[J]. Trees. 2002, 16: 204-208
    [16]Badea O, Tanase M, Georgeta J. Forest health status in the Carpahian Mountains over the period 1997-2001[J]. Environmental Pollution. 2004, 130: 93-98
    [17]孙权,何振立,纪立东.侵蚀退化生态系统恢复的土壤质量指标[J].宁夏农学院学报. 2004, 25(2): 15-20.
    [18]闫玉春,唐海萍,张新时.草地退化程度诊断系列问题探讨及研究展望[J].中国草地学报. 2007,29(3): 90-97.
    [19]Bertiller M B, Ares J O, Bisigato A J. Multiscale indicators land degradation in Patagonian Monte, Argentina[J]. Environmental Management. 2002, 30 (5): 704-715.
    [20]Imeson A C, Prinsen H A M. Vegetation patterns as biological indicators for identifying runoff and sediment source and sink areas for semi-arid landscapes in Spain[J]. Agriculture, Ecosystems and Environment. 2004, 104: 333–342
    [21]Eve M D, Whitford W G, Havstad K M. Aplying satellite imagery to triage assessment of ecosystem health[J]. Environment Monitoring and Assessment. 1999, 54:205-227.
    [22]Pinto R, Patrício J, Baeta A, et al. Review and evaluation of estuarine biotic indices to assess benthiccondition[J]. Ecological Indicators. 2009, 9: 1-25
    [23]Halme P, Kotiaho J S, Ylisirni? A L, et al. Perennial polypores as indicators of annual and red-listed polypores[J]. Ecological Indicators. 2009,9: 256-266
    [24]Jennings S, Kaiser M J. The effects of fishing on marine ecosystems[J]. Advances in Marine Biology.1998, 34: 201–352.
    [25]Rice J. Environmental health indicators[J]. Ocean & Coastal Management. 2003, 46: 235–259
    [26]Blacker R W. Benthic animals as indicators of hydrographic conditions and climatic change in Svalbard waters[R]. Fishery Investigations (London) Ser. II, 1957, 20:1–49.
    [27]Beyene A, Addis T, Kifle D, et al. Comparative study of diatoms and macroinvertebrates as indicators of severe water pollution: Case study of the Kebena and Akaki rivers in Addis Ababa, Ethiopia[J]. Ecological Indicators. 2009, 9(2): 381-392
    [28]Asada T, Warner B G. Plants and testate amoebae as environmental indicators in cupriferous peatlands, New Brunswick, Canada[J]. Ecological Indicators. 2009, 9(1): 129-137
    [29]戴天有,朱晓华,王玮等.杨树叶作为空气有机氯农药生物指示物的可行性[J].科学通报. 2008, 53(17): 2021– 2027
    [30]Dung N T, Webb E L. Combining local ecological knowledge and quantitative forest surveys to select indicator species for forest condition monitoring in central Viet Nam[J]. Ecological Indicators. 2008, 8(5): 767-770
    [31]李静锐,张振明,罗凯.森林生态系统健康评价指标体系的建立[J].水土保持研究. 2007, 14 (3): 173-179
    [32]Zonneveld I S. Principles of bio-indication[J]. Environmental Monitoring and Assessment. 1983, 3: 207–217.
    [33]Landres P B. Ecological indicators: panacea or liability? [J]. Ecological Indicators. 1992, 1: 1295–1318.
    [34]Mouat D A, Fox C A, Rose M R. Ecological indicator strategy for monitoring arid ecosystems [J]. Ecological Indicators. 1992, 1, 717–737.
    [35]Van Bruggen A H C, Semenov A M. In search of biological indicators for soil health and disease suppression[J]. Applied Soil Ecology. 2000, 15: 13-24.
    [36]ICES. Report of the ICES advisory committee on the marine environment[R]. ICES Cooperative. Research Report No. 239, 1999. 277.
    [37]Tilman D, May R M, Lehman C L, et al. Habitat destruction and the extinction debt[J]. Nature. 1994, 371: 65–66.
    [38]Godefroid S, Koedam N. Using high resolution mapping of disturbance indicator species to assess the sustainability of silviculture activities[J]. Forest Ecology and Management. 2008, 255: 3416–3423
    [39]Jin H, Plaha P, Park J Y, et al. Comparative EST profiles of leaf and root of Leymus chinensis, axerophilous grass adapted to high pH sodic soil[J]. Plant Science. 2006, 170: 1081–1086.
    [40]Parid A K, Das A B. Salt tolerance and salinity effects on plants: a review [J]. Ecotoxicology and Environmental Safety. 2005, 60:324-349
    [41]Zou B J, Mo R C. Distribution of soil zinc, iron, copper and manganese fractions and its relationship with plant availability[J]. Pedosphere. 1995, 5(1): 35-44
    [42]Ji B H, Zhu S Q, Jiao D M. Photo chemical efficiency of PS II and membrane lipid peroxidation in leaves of Indica and Japonica rice (Oryza sativa) under chilling temperature and strong light stress conditions[J]. Acta Botanica Sinica, 2002, 44 (2): 139-146
    [43]陈华新,李卫军,安沙舟等.钙对NaCl胁迫下杂交酸模幼苗叶片光抑制的减轻作用[J].植物生理与分子生物学学报, 2003, 29(5): 449-454
    [44]Sudhakar C, Lakshmi A, Giridara Kumar S. Changes in the antioxidant enzyme efficacy in two high yielding genotypes of mulberry (Morus alba L.) under NaCl salinity[J]. Plant Science. 2001, 161:613-619
    [45]Matysik J, Bhalu B A, Mohanty P. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants[J]. Current science. 2002, 82:525-532.
    [46]Petrusa L M, Winicov I. Proline status in salt tolerant and salt sensitive alfalfa cell lines and plants in response to NaCl[J]. Plant Physiology and Biochemistry. 1997, 35 : 303–310.
    [47]Fougere F, Le Rudulier D, Streeter J G. Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.) [J]. Plant Physiology. 1991, 96: 1228–1236.
    [48]Delauney A J, Verma D P S. Proline biosynthesis and osmotic stress[J]. Plant Journal. 1993, 4(2):215-223
    [49]许向明,叶和春,李国风.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报. 2000, 17(6):536-542
    [50]Cram W J. Negative feedback regulation of transport in cells[C]. The maintenance of turgor, volume and nutrient supply, in: U. Luttge. M. G. Pitman (Eds.), Encyclopaedia of Plant Physiology, New Series.vol.2, Springer-Verlag, Berlin. 1976, 284-316
    [51]Khan M N, Ungar N I A, Showaleter A M. Effects of salinity on growth, water relations and ion accumulation of the subtropical perennial halophyte, Atriples griffithii var. stocksii[J]. Annals of Botany. 2000, 85: 225-232
    [52]Bohnert H J, Nelson D E, Jensen R G. Adaptations to environmental stresses[J]. Plant Cell.1995, 7:1099-1111
    [53]Kaya C, Ak B E, Higgs D et al. Influence of foliar applied calcium nitrate on strawberry plants grown under salt stress conditions[J]. Australian Journal of Experimental Agriculture. 2002, 42, 631–636.
    [54]Maathuis F J M, Amtmann A. K+ nutrition and Na+ toxicity: the basis of cellular K+/Na+ ratios[J]. Annals of Botany. 1999, 84:123–133.
    [55]宰学明,吴国荣,陆长梅. Ca2+对花生幼苗耐热性和活性氧代谢的影响[J].中国油料作物学报,2001,23(1):46-50.
    [56]Knight H, Trewavas A J, Knight M R. Calcium signalling in Arabidopsis thaliana responding to drought and salinity[J]. Plant Journal. 1997, 12:1067–1078.
    [57]蔡妙珍,罗安程,林咸永. Ca2+对过量Fe2+胁迫下水稻保护酶活性及膜脂过氧化的影响[J].作物学报, 2003, 29(3):447-451.
    [58]Khan M A, Ungar I A, Showalter A M. Effects of salinity on growth, ion content, and osmotic relations in Halopyrum mocoronatum (L.) Stapf[J]. Journal of Plant Nutrition. 1999, 22:191-204.
    [59]Khan M A. Ungar I A. Showalter A M. Effects of sodium chloride treatments on growth and ion accumulation of the halophyte Haoloxylon recurvum[J]. Communications in Soil Science and Plant Analysis. 2000, 31:2763-2774.
    [60]Khan M A. Experimental assessment of salinity tolerance of Ceriops tagal seedlings and saplings from the Indus delta, Pakistan[J]. Aquatic Botany. 2001,70: 259-268
    [61]Ashraf M. Breeding for salinity tolerance in plants[J]. Critical Reviews in Plant Sciences. 1994, 13: 17–42
    [62]Munns R. Comparative physiology of salt and water stress[J]. Plant Cell and Environment. 2002, 25: 239–250
    [63]Mittler R. Oxidative stress, antioxidants and stress tolerance[J]. Trends in Plant Science. 2002, 7: 405–410.
    [64]Garratt L C, Janagoudar B S, Lowe K C, et al. Salinity tolerance and antioxidant status in cotton cultures[J]. Free Radical Biology and Medicine. 2002, 33: 502–511.
    [65]Dat J, Vandenabeele S, Vranova E, et al. Dual action of the active oxygen species during plant stress responses[J]. Cellular and Molecular Life Sciences. 2000, 57: 779–795
    [66]Gossett D R, Banks S W, Millhollon E P, et al., Antioxidant response to NaCl stress in a control and a NaCl-tolerant cotton cell line grown in the presence of paraquat, buthionine sulfoximine and exogenous glutathione[J]. Plant Physiology. 1996, 112: 803–809.
    [67]Gueta-Dahan Y, Yaniv Z, Zilinskas B A, et al. Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus[J]. Planta, 1997, 203: 460–469.
    [68]Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation[J]. New Phytologist. 1993, 125: 27–58.
    [69]Grieve C M, Francois L, Aaas E V. Salinity affects the timing of phasic development in spring wheat[J]. Crop Science.1994,34:1544-1549
    [70]Grieve C M, Lesch S M, Mass E V, et al. Leaf and spikelet primordial in initiation in salt-stressed wheat[J]. Crop Science. 1993, 33:1286-1292
    [71]Mass E V, Grieve C M. Spike and leaf development in salt-stressed wheat[J]. Crop Science. 1990, 30:1309-1313
    [72]林鹏,林光辉.几种红树植物的热值和灰分含量研究[J].植物生态学与地植物学学报. 1991,15(2):114-120.
    [73]Scott D F. Soil wettability in forested catchments in South Africa: as measured by different methods and as affected by vegetation cover and soil characteristics[J]. Journal of Hydrology. 2000, 29: 231-232
    [74]Keddy P A, Lee H T, Wisheu I C. Choosing indicators of ecosystem integrity:wetlands as a model system[C]. In Ecological Integrity and the Management of Ecosystems, eds S. Woodley, J. Kay &G. Francis. St Lucie Press, Delray Beach, 1993,61-79.
    [75]Whitford W G, de Soyza A G, Van Zee J W, et al. Vegetation, soil, and animal indicators of rangeland health[J]. Environmental Monitoring and Assessment. 1998, 51:179-200.
    [76]Xu W, Mage J A . A review of concepts and criteria for assessing agroecosystem health including a preliminary case study of southern Ontario[J]. Agriculture, Ecosystems and Environment. 2001, 83:215-233
    [77]Dalsgaard J P T. Applying systems ecology to the analysis of integrated agriculture-aquaculture farm[J]. NagA, the Iclarm Q. 1995. 18(2):15-19
    [78]刘钟龄.内蒙古草原退化与恢复演替机理的探讨[J].干旱区资源与环境, 2002, 16(1): 84-90
    [79]朱兴运,任继周,沈禹颖.河西走廊山地—绿洲—荒漠草地农业生态系统的运行机制与模式[J].草业科学,1995,(3):1-5.
    [80]曹勇宏,林长纯,王德利等.农田-草原景观界面中植被恢复的空间特征[J].东北师大学报自然科学版. 1996, 35 (2):74-78
    [81]De Soyza A G, Whitford W G, Herrick J E, et al. Early warning indicators of desertification: examples of tests in the Chihuahuan Desert[J]. Journal of Arid Environments. 1998, 39:101-112
    [82]Frogh S N, Zeisset M S, Jackson E, et al. Presence/absence of a keystone species as an indicator of rangeland health[J]. Journal of Arid Environments. 2002, 50:513-519
    [83]任海,彭少麟.恢复生态学导论[M].北京:科学出版社. 2001,30-31.
    [84]Hobbs R J, Norton D A. Towards a conceptual framework for restoration ecology[J]. Restoration Ecology. 1996, 4:93-110.
    [85]Green D R. Rangeland restoration projects in western New South Wales[J]. Australian Rangeland Journal,. 1989,11(12):110-116.
    [86]中国科学院南京土壤研究所[M].土壤理化分析.上海:上海科学技术出版社. 1978,132-466
    [87]Doak D F. The statistical inevitability of stability-diversity relationship in community ecology[J]. The America Nature. 1998, 151:264-276
    [88]Frank D A. Stability increases with diversity in plant communities: empirical evidence form the 1988 Yellowstone drought [J]. Oikos, 1991, 62:360-362
    [89]Johnson E H. Biodiversity and the productivity and stability of ecosystems [J]. Trends EcologyEvolution. 1996,11: 372-377
    [90]McNaughton S J. Diversity and stability of ecological community, a comment on the role of empiricism in ecology[J]. The America Nature. 1997, 111:515-525.
    [91]May R M. Will a large complex system be stable [J]. Nature , 1972, 238: 413-414.
    [92]Wei xu, Julius A, Mage A. Review of concepts and criteria for assessing agroecosystem health including a preliminary case study of southern Ontario. Agriculture[J], Ecosystems and Environment. 2001, 83:215-233
    [93]Boster J. A comparison of the diversity of Jivaroan gardens with that of the tropical forest[J]. Human Ecology.1983, 11:47-68
    [94]Root M. Ecological monitors of population[J]. Bioscience. 1990, 40:83-86.
    [95]Park J, Cousin S H. Soil biological health and agro-ecological change[J]. Agriculture, Ecosystems and Environment. 1995, 56:137-148.
    [96]Johnson A E. Soil organic matter, its effects on soils and crops[J]. Soil Use Manage.1986, 2(3)97-105
    [97]Tisdall J M, Oades J M. Organic matter and water stable aggregates in soils[J]. Journal of Soil Science. 1982, 33:141-163.
    [98]唐雪萍,柴琦,梁天刚等.黄土高原沟壑区环境与牧草适宜性的调查分析[J].草业科学. 2005, 22(2):7-12
    [99]http://baike.baidu.com/view/153793.htm
    [100]宋俊峰.极谱催化波法测定马蔺子素[J].分析化学研究简报. 2002,30(8): 854-957
    [101]杨瑞林.射干和马蔺的花粉形态[J].广西植物. 2002, 22(23):237-238
    [102]刘德福,陈世璜.马蔺的繁殖特性及生态地理分布的研究[J].内蒙古农牧学院学报. 1998,19(1):1-6
    [103]王桂芹.不同生态环境马蔺植物体解剖结构比较[J].内蒙古民族大学学报. 2002,17(2):127-129
    [104]黄忠文,孙广玉,张庆红.盐碱土上马蔺的生长特点和渗透调节能力的研究[J].中国农学通报.2005, 21(12):199-201.
    [105]白文波,李品芳.盐胁迫对马蔺生长及K+、Na+吸收与运输的影响[J].土壤. 2005, 37(4):415-420.
    [106]Bates L S, Waldren R P, Teare I D. Rapid determination of free proline for water-stress studies[J]. Plant Soil. 1973, 39: 205–207.
    [107]Lutts S, Kiner J M, Bouharmont J. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance[J]. Annals of Botany, 1996, 78: 389–398.
    [108]Shi D C, Sheng Y M. Effect of various salt–alkaline mixed stress conditions on sunflower seedlings and analysis of their stress factors[J]. Journal of Experimental Botany. 2005, 54:8–21.
    [109]Raza Sayed H, Athar Habib R, Ashraf M,et al. Glycinebetaine - induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance[J]. Environmental and Experimental Botany, 2007, 60: 368–376.
    [110]Bradford M M. A rapid and sensitive method for the quantitation of omicrogram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical Biochemistry. 1976, 72: 248–254.
    [111]Giridara Kumar S, Madhusudhan K V, Sreenivasulu N, et al. Stress responses in two genotypes of mulberry (Morus alba L.) under NaCl salinity[J]. Indian Journal of Experimental Biology. 38: 192–195.
    [112]Nuttall G, Armstrong R D, Connor D J. Evaluating physicochemical constraints of calcarosols on wheat yield in the Victorian southern Mallee[J]. Australian Journal of Agricultural Research. 2003, 54:487–497.
    [113]石德成,赵可夫. NaCl和Na2CO3对星星草生长及营养液中主要矿质元素存在状态的影响[J].草业学报. 1997, 6:51–61.
    [114]Sharma P C, Mishra B, R. Singh K, et al. Adaptability of onion (Allium cepa) genotypes to alkali andsalinity stresses[J]. Indian Journal of Agriculture Science. 2001,70: 674–678.
    [115]James S A, Bell D T, Robso A D. Growth response of highly tolerant eucalyptus species to alkaline pH, bicarbonate and low iron supply[J]. Australian Journal of Agricultural Research. 2002, 42:65–70.
    [116]El S H M A, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants[J]. Journal of Plant Nutrition. 1996, 19: 717–728.
    [117]Aziz A, Martin-Tanguy J, Larher F. Salt stress induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs[J]. Plant Science. 1999,145: 83–91.
    [118]Dubey R S. Photosynthesis in plants under stressful conditions[M]. In: M. Pessarakli (Ed.), Handbook of Photosynthesis. Marcel DEkker, New York, 1997, 859-875.
    [119]Gzik A. Accumulation of proline and pattern of amino acids in sugar beet plants in response to osmotic, water and salt[J]. Environmental and Experimental Botany. 1995, 36: 29–38.
    [120]Ashraf M, Nazir N, McNeilly T. Comparative salt tolerance of amphidiploid and diploid Brassica species[J]. Plant Science. 2001, 160:683–689
    [121]Khan M S A, Hamid A, Salahuddin A B M. Effect of NaCl on growth, photosynthesis and mineral ions accumulation of different types of rice (Oryza sativa L.) [J]. Journal of Agronomy and Crop Science.1997, 179:149~161
    [122]Mahajan, S., and N. Tuteja, 2005: Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics. 444,139–158.
    [123]王萍,殷立娟,李建东.中性盐和碱性盐对羊草幼苗胁迫的研究[J].草业学报.1994,3(2): 37-43.
    [124]Kao W Y, Tsai T T ,Tsai H C. Response of three Glycine species to salt stress[J]. Environmental and Experimental Botany. 2006, 56 :120–125.
    [125]Lynch J, Polito V S, Lauchli A. Salinity stress increases cytoplasmic Ca activity in maize root protoplasts[J]. Plant Physiology. 1989, 90:1271–1274.
    [126]Cramer G R, Epstein E, Lauchli A. Effects of sodium, potassium and calcium on salt-stressed barley. I. Growth analysis[J]. Physiologia Plantarum. 1990, 80: 83–88.
    [127]Niu X, Bressan R A, Hasegawa P M. Ion-homeostasis in NaCl stress environments[J]. Plant Physiology. 1995, 109:735–742
    [128]Dionisio-Sese M L, Tobita S. Antioxidant responses of rice seedlings to salinity stress[J]. Plant Science. 1998, 135: 1–9.
    [129]Sreenivasulu N, Grimm B, Wobus U,et al. Differential response of antioxidant components to salinity stress in salt-tolerant and salt sensitive seedlings of foxtail millet (Setaria italica) [J]. Physiologia Plantarum. 2000, 109: 435–442.
    [130]Bor M, Zdemir F ?, T?rka I. The effect of salt stress on lipid peroxidation and antioxidants in leaves of sugar beet (Beta vulgaris L.) and wild beet (Beta maritime L.). Plant Science. 2003, 164: 77–84
    [131]Noctor G, Foyer C H. Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology. 1998, 49: 249–279
    [132]Lauchli A, Schubert S. The role of calcium in the regulation of membrane and cellular growth processes under salt stress [J]. NATO ASI Series, Series G Ecological Sciences. 1989, 19: 131–137
    [133]Agarwal S, Sairam K R, Srivastava G C,et al. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings[J]. Plant Science. 2005, 169: 559–570.
    [134]Chen W P, Li P H. Chilling induced Ca2+ overload enhances production of active oxygen species in maize (Zea mays L.) cultured cells: the effect of abscisic acid treatment[J].Plant Cell and Environment. 2001, 24: 791–800
    [135]Wang S M, Zheng W J, Ren J Z, et al. Selectivity of various types of salt-resistant plants for K+ over Na+[J]. Journal of Arid Environments. 2002, 52: 457-472
    [136]恽锐,李建东.松嫩平原羊草、虎尾草群落钠元素分布特征的比较研究[J].草地学报. 1994, 2(2): 20-26
    [137]郭继勋,祝廷成.羊草草甸枯枝落叶的分解、积累与营养物质含量动态[J].植物生态与地值物学报. 1988, 197-203
    [138]Clarkson D T, Lüttge U. Mineral nutrition: inducible and repressible nutrient transport system[J]. Progress in Botany. 1991, 52:61–83
    [139]Bul B, Weber D J, Khan M A. Growth, ionic and osmotic relations of an Allenrolfea occidentalis population in an inland salt playa of the Great Basin Desert[J]. Journal of Arid Environments. 2001, 48: 445-460
    [140]陈托兄,张金林,陆妮等.不同类型抗盐植物整株水平游离脯氨酸的分配[J].草业学报. 2006, 15(1): 36-41
    [141]Tarakcioglu C, Inal A. Changes induced by salinity, demarcating specific ion ratio (Na/Cl) and osmolality on ion and proline accumulation, nitrate reductase activity, and growth performance of lettuce[J]. Journal of Plant Nutrition. 2002, 25: 27–41.
    [142]Borsani O, Valpuesta V, Botella M A. Evidence for a role of salicylicacid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings[J]. Plant Physiology. 2001,126: 1024–1030
    [143]Robinson M F, Véry A A, Sanders D, et al. How can stomata contribute to salt tolerance? [J]. Annals of Botany. 1997, 80: 387–393.
    [144]Serraj R, Sinclair T R. Osmolyte accumulation: can it really help increase crop yield under drought conditions? [J]. Plant Cell and Environment. 2002, 25: 333–341
    [145]Holmstr?m K O, Somersalo S, Mandal A, et al. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine[J]. Journal of Experimental Botany. 2000, 51: 177–185
    [146]DeWald D B, Torabinejad J, Jones C A, et al. Rapid accumulation of phosphatidylinositol -4, 5 - bisphosphate and inositol - 1, 4, 5 - trisphosphate correlates with calcium mobilization in salt-stressed arabidopsis[J]. Plant Physiology. 2001,126: 759–769
    [147]Benlloch-González M, Fournier J M, Ramos J, et al. Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus[J]. Plant Science. 2005, 168: 653-659
    [148]Nguyen H, Calvo Polanca M, Zwiazek J J. Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana seedlings to NaCl and Na2SO4[J]. Plant Biology. 2006, 8: 646– 652.
    [149]Rogers M E, Grieve C M, Shannon M C. The response of Lucerne (Medicago sativa L.) to sodium sulphate and chloride salinity[J]. Plant Soil. 1998, 202: 271–280.
    [150]Abdelgadir E M, Oka M, Fujiyama H. Nitrogen nutrition of rice plants under salinity[J]. Biologia Plantarum. 2005, 49: 99–104.
    [151]Turan M, Aydin A. Effects of different salt sources on growth, inorganic ions and proline accumulation in corn (Zea mays L.)[J]. European Journal of Horticultural Science. 2005, 70: 149–155
    [152]Renault S, Croser C, Franklin J A, Zwiazek J J. Effects of NaCl and Na2SO4 on red-osier dogwood (Cornus stolonifera Michx) seedlings[J]. Plant Soil. 2001, 233: 261–268
    [153]Abd El-samad H M, Shaddad M A K. Comparative effect of sodium carbonate, sodium sulfate and sodium chloride on the growth and related metabolic activities of pea plants. Journal of Plant Nutrition. 1996, 19: 717–728
    [154]da Silva E C, Custódio Nogueira R J M, de Araújo F P,et al. Physiological responses to salt stress in young umbu plants[J]. Environmental and Experimental Botany. 2008,63, 147–157
    [155]Huang J, Redmann R.E. Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Canadian Journal of Plant Science. 1995, 75: 815–819.
    [156]Greenway H, Munns R. Mechanism of salt tolerance in nonhalophytes[J]. Annual Review of Plant Physiology. 1980, 31:149–190.
    [157]Adams P, Ho L C. Uptake and distribution of nutrients in relation to tomato fruit quality[J]. Acta Horticulturae. 1995, 412: 374–387.
    [158]Suhayda C G, Redmann R E, Harvey B L,et al. Comparative response of culutivivated and wild barley species to salinity stress and calcium supply[J]. Crop Science. 1992,32: 154-163.
    [159]Wang Y, Guo J X, Meng Q L, et al. Physiological responses of krishum (Iris lactea Pall. var. chinensis Koidz) to neutral and alkaline salts[J]. Journal of Agronomy and Crop Science. 2008,194: 429–437
    [160]Niu G, Rodriguez D S. Relative salt tolerance of selected herbaceous perennials and groundcovers[J]. Scientia Horticulturae(2006).doi: 10.1016/j. scienta. 2006. 07.020
    [161]Zheng Y H, Jia A J, Ning T Y, et al. Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance[J]. Journal of Plant Physiology (2008). doi: 10.1016/j. jplph. 2008. 01. 001.
    [162]Dudley L M. in: M. Pessarakli (Ed.), Handbook of Plant and Crop Stress, Marcel Dekker Inc., NY, Basel, Hong Kong, 1992, 13.
    [163]Herdari-Sharifabad H, Mirzaie-Nodoushan H. Salinity-induced growth and some metabolic changes in three Salsola species[J]. Journal of Arid Environments. 2006, 67: 715-720
    [164]马文月.植物抗盐性研究进展[J].农业与技术. 2004, 24(4): 95-99
    [165]张波,张怀刚.甜菜碱提高植物抗盐性的作用机理及其遗传工程研究进展[J].西北植物学报,2005,25 (9):1888—1893
    [166]陈现臣,吕有军,王彩霞.盐环境下西葫芦幼苗生长发育研究[J]. 2007, 26 (17): 42-44
    [167]许兴,郑国琦,邓西平等.水分和盐分胁迫下春小麦幼苗渗透调节物质积累的比较研究[J].干旱地区农业研究. 2002, 20(1): 52-56
    [168]Dix P J, Pearce R S. Proline accumulation in NaCl resistant and sensitive cell lines of Nicotana sylvestris[J]. Zeitschrift fur Pflanzenschuts Physionlogie.1981, 102: 243-248
    [169]Heuer B. Osmoregulatory role of proline inwater and salt stressed plants[M]. In: Pessarakli, M. (Ed.), Handbook of Plant and Crop Stress. Marcel Dekker, New York, 1994,363–381.
    [170]Moftah M H, Michel B E. The effect of sodium chloride on solute potential and proline accumulation in soybean leaves[J]. Plant Physiology. 1987,83: 238-240
    [171]Gao Z F, Sagi M, Lips S H. Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity[J]. Plant Science. 1998,135: 149–159
    [172]Lee G N, Duncan R. Synthesis of organic osmolytes and salt tolerance mechanisms in Paspalum vaginatum[J]. Environmental and Experimental Botany. 2008, 63: 19–27
    [173]Sánchez F J, Manzanares M, de Andres E F, et al.Turgor maintenance, osmotic adjustment and soluble sugar and praline in 49 pea cultivars in response to water stress[J]. Field Crops Research. 1998, 59: 225-235.
    [174]Colmer T D, Epstein E, Dvorak J. Differential solute regulation in leaf blades of various ages in salt sensitive wheat and a salt-tolerant wheat x Lophopyrum elongatum (Host.) A. Love amphiploid[J]. Plant Physiology. 1995, 108: 1715–1724.
    [175]Garcia-Sanchez F., Carvajal M., Sanchez-Pina M.A., et al. Salinity resistance of citrus seedlings in relation to hydraulic conductance, plasma membrane ATPase and anatomy of the roots[J]. Journal of Plant Physiology. 2000, 156:724–730
    [176]翁森红,李维炯,刘玉新等.关于植物的耐盐性和抗盐性的研究.内蒙古科技与经济[J]. 2005, 10:15-17
    [177]汤章城.植物对水分胁迫的反应和适应性I.抗逆性的一般概念和植物的抗涝性[J].植物生理学通讯. 1983, 3: 24-29
    [178]Gossett, D R, Millhollon E P, Lucas M C. Antioxidant response to NaCl stress salt-tolerant andsalt-sensitive cultivars of cotton[J]. Crop Science. 1994, 34: 706–714.
    [179]Hernandez J A, Olmos E, Corpas F J, et al. Salt-induced oxidative stress in chloroplasts of pea plants[J]. Plant Science. 1995,105: 151–167.
    [180]Mittova V, Guy M, Tal M, et al. Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt dependent oxidative stress: increased activities of antioxidant enzymes in root plastids[J]. Free radical research. 2002, 36: 195–202.
    [181]Meneguzzo S, Navari-Izzo F, Izzo R.. Antioxidative responses of shoots and roots of wheat to increasing NaCl concentrations[J]. Journal of Plant Physiology. 1999, 155: 274–280.
    [182]鲍雅静,李政海,韩兴国等.植物热值及其生物生态学属性[J].生态学杂志.2006, 25(9): 1095-1103.
    [183]林鹏,林光辉.几种红树植物的热值和灰分含量研究[J].植物生态学与地植物学学报. 1991,15(2):114-120.
    [184]官丽莉,周小勇,罗艳,我国植物热值研究综述[J].生态学杂志. 2005, 24(4): 452-457
    [185]郭继勋,王若丹,包国章,东北羊草草原主要植物热值[J].植物生态学报,2001,25(6):746-750
    [186]Chaudhary, B. L. & G. S.Deora. Calorific value of some mosses[J]. Indian Botanical Contactor. 1993,10: 5-6.
    [187]Gorham E, Sanger J.Caloric value of organic matter in woodland, swamp, and lare soils[J]. Ecology. 1967,48: 492-494.
    [188]林鹏,林益明,李振基等.武夷山黄山松群落能量的研究[J].生态学报. 1999,19:504-508
    [189]吴厚水,刘慧屏,黄大基等.鼎湖山自然保护区3种群落的能量流和能量利用效率[J].生态学报. 1998,18:82-89.
    [190]Jake T, Bolhar-Nordenkampf H R. Energy conversion efficiency and energy partitioning of white lupins[J]. Bioresource Technology,1991,41:129-133.
    [191] Kutbay H G, Kiline M. Seasonal changes in energy values of Phillyrea latiflia L. [J]. Turkish Journal of Botany,1994,18:489-491.
    [192]Abrahamson W G. On the comparative allocation of biomass,energy and nutrient in plant [J]. Ecology. 1982, 63: 982-991.
    [193]孙国夫,郑志明,王兆骞.水稻热值的动态变化研究[J].生态学杂志. 1993, 12(1): 1-4
    [194]任海,彭少麟.鼎湖山森林生态系统演替过程中的能量生态特征[J].生态学报. 1999,19(6): 817-822.
    [195]Golley F B. Energy values of ecological materials[J]. Ecology, 1962, 42: 581-584
    [196]郝朝运,刘鹏.浙江北山七子花群落主要植物叶热值[J].生态学报. 2006, 26(6): 1709-1717.
    [197]旷远文,温达志,周国逸.大气污染胁迫下9种植物幼苗叶片热值、C/N和灰分含量比较[J]. 2005, 13(2):117-122.
    [198]包国章,李向林,郭继勋.湖北高山草地白三叶种群的能量动态特征.东北师范大学学报(自然科学版) [J]. 2000, 33(2): 84-88
    [199]周道玮,姜世成,郭平等.火烧后草原植物营养和热值的变化.东北师范大学学报(自然科学版) [J]. 1999 (4): 100-104
    [200]杨京平,Wekesa Boniface,姜宁.不同施氮水平下气象因子对两种水稻热值影响的分析[J].中国水稻科学. 2001,15(3):233-236
    [201]林鹏,王文卿.盐胁迫下红树植物秋茄(Kandelia candel)热值变化的研究[J].植物生态学报. 1999, 23 (5): 466-470.
    [202]王文卿,叶庆华,王笑梅.盐胁迫对木榄幼苗各器官热值、能量积累及分配的影响[J].应用生态学报. 2001, 12 (1):8-12.
    [203]Long F L. Application of calorimetric methods to ecological research[J]. Plant Physiology. 1934, 9 (2): 323 -327.
    [204]Ovington J D. Some aspects of energy in plantations of Pinus sylvestris[J]. Annals of botany. 1961, 25 (27):12-30.
    [205]鲍雅静,李政海.内蒙古羊草草原群落主要植物的热值动态[J].生态学报. 2003, 23(3): 606-613

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700