用户名: 密码: 验证码:
控制性增温和施氮对荒漠草原植物群落和土壤的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以内蒙古高原短花针茅(Stipa breviflora)+冷蒿(Artemisia frigida)+无芒隐子草(Cleistogenes songorica)的荒漠草原为研究对象,在野外自然条件下进行生态系统控制性增温与施氮肥实验。在模拟全球气候变暖的条件下,研究温度和氮素的增加对荒漠草原植物群落和土壤可能产生的影响,探讨荒漠草原生态系统对全球气候变化的响应机制,为我国全球变化与陆地生态系统关系提供长期的研究平台。
     实验期间内(2006年6月24日至2007年10月11日),增温处理样地0cm,7.5cm,15cm,30cm和50cm土壤平均温度与对照样地相比,平均增加了1.32 oC,0.92 oC,0.88 oC,0.80 oC,0.74 oC,土壤温度呈现出上层变异性大于下层的规律,不同土层土壤温度显著增加(P<0.05)。
     控制性增温和施氮肥对荒漠草原植物群落和土壤都产生了一定的影响,同时,各项测定指标对增温和施氮的响应程度不同。土壤温度的增加虽然使0-30cm土壤湿度有所提高,但变化差异不显著,模拟增温没有改变土壤水分固有的季节变化规律;增温和施氮的互作效应使土壤全氮含量显著高于单一的增温处理和施氮处理以及对照(P<0.05),增温和施氮的交互作用也使土壤全磷、全钾含量增加,但差异不显著;铵态氮(NH_4~+-N)、硝态氮(NH_3~--N)与不同土壤深度的土壤温度均成正相关关系,增温使土壤中铵态氮和硝态氮含量增加,铵态氮含量的变化差异达到显著水平,0-30cm土壤中硝态氮含量在增温和施氮互作效应下的变化差异也达到显著水平(P<0.05);虽然增温和对照样地不同深度的土壤温度与土壤呼吸速率均呈正相关关系,但无论是季节还是日变化上,增温作用没有增加土壤的呼吸速率,施氮作用也没有使土壤呼吸作用明显加强。
     荒漠草原土壤温室气体(CO_2、CH_4、N_2O)的通量变化表现出对CO_2和N_2O排放,对CH_4吸收;CO_2、CH_4浓度和排放通量具有明显的季节变化规律,而各季节N_2O浓度差异不大,一年中N_2O排放通量峰值总是波动出现;增温作用对CO_2、CH_4、N_2O浓度和排放通量没有显著的影响;人为施氮肥使各个季节的N_2O排放通量均增加,夏季CO_2排放通量降低,CH_4排放通量没有明显变化。
     模拟增温使荒漠草原部分植物春季返青提前,植物总物候持续天数延长,增温作用不仅增加了植物营养生长的时间,而且使花期延长;增温和施用氮肥没有明显的改变植物群落组成,建群种、优势种和主要伴生种在群落中的地位和作用也没有因为温度和养分的突变而发生明显的改变;增温使荒漠草原植物群落的均匀度增加,但并没有提高草地植物的丰富度和物种多样性,施肥作用提高了物种Margalef丰富度指数,而Pielou均匀度指数和Shannon-wiener多样性指数降低。
     对于地上生物量,生长初期,增温促进了植物生长,植物群落地上生物量高于对照,而生长盛期和末期,温度升高并没有使地上生物量增加;从植物功能群上来看,多年生禾草和多年生杂类草组成稳定,受温度影响较小,相对生物量变化不大;半灌木、小半灌木和一、二年生植物的组成和数量都不稳定,地上生物量有较大差异。施用氮肥的效果在植物生长后期才明显的表现出来,施氮样地地上生物量明显提高;增温和施氮作用使地下生物量发生了一定变化,但无显著差异;通过多元逐步回归发现,影响植物群落地上生物量和地下生物量最显著的因子是10-20cm土层的土壤湿度。
     增温和对照样地的功能群多样性与地上生物量均呈显著的负二次函数关系(P<0.05),说明,一定范围内的温度增加,虽然使功能群多样性与地上生物量之间的负二次函数关系的拟合性表现的更好,但并不会使它们之间相互关系的形式(即单峰曲线形式)发生显著性的改变。对于地表凋落物和种子雨的变化,两年的增温和施氮并不起主要作用。
     冷蒿对于温度的增加表现出明显差异,增温作用不仅没有延长冷蒿生长季,反而在2007年的9月上旬增温样地的冷蒿就出现枯黄现象,并且增温样地冷蒿的综合优势比(SDR_3)都显著的低于对照,相比其它植物,冷蒿的物候特征和营养生长对温度增加表现的更敏感。
We examined the effect of experimental warming and nitrogen addition in a desert steppe, in which the constructive species is Stipa breviflora and some companion species is Artemisia frigida, Cleistogenes songorica. Infrared heaters were employed to increase soil surface throughout the May, 2006, nitrogen fertilizer (NH_4NO_3,nitrogen contents is 33%~35%) was applied in rain season early July. Soil temperatures at depths of 0 cm , 7.5 cm , 15 cm , 30 cm and 50 cm increased by 1.32℃, 0.92℃, 0.88℃, 0.80℃and 0.74℃in the warmed plots, respectively. There was significant difference (P﹤0.05) between warmed and control plots on the soil temperature. The result showed obvious effects on soil temperature and an increase in ambrent air temperature.
     Soil moisture had similar seasonal fluctuation in warmed and control plots; although soil moisture content of 0 -30cm in warmed plot was higher than control, soil moisture content under warming had no obvious change with the control (P>0.05). Warming and nitrogen additon influenced soil nitrogen obviously, interactions of experimental warming and nitrogen addition significantly increased the total nitrogen (N) content of soil (P﹤0.05), and the total phosphorus (P) content and potassium (K) content of soil were also higher in warming and nitrogen addition plots than in control , but no siginificant difference between control and treatments. Contents of NH_4~+-N and NH_3~--N showed increases under the experimental warming, especially NH_4~+-N contents. NH_3~--N content of 0-30cm had great increase under interactions between experimental warming and nitrogen addition. Not only experimental warming but also nitrogen addition, soil respiration rate did not significantly increase, although soil temperature with depths had positive correlation with soil respiration rate.
     Soil greenhouse gas (GHG) fluxes of CO_2, CH_4 and N_2O in a Desert Steppe showed the CO_2 and N_2O emission fluxes, CH_4 sink. Warming had no effect on greenhouse gas (GHG) concentrations or emissions in a xeric Desert Steppe environment. Here, the primary influence on GHG's was associated with season. Nitrogen addition advanced the N_2O emission fluxes in all seasons, CO_2 emission fluxes deceased in summer and CH_4 sink had no obvious change.
     Experimental warming made reviving in advance and lasting days of phenological periods prolong in warmed plots. All treatments expressed similar compositions primarily, as the constructive species and some companion species, warming and N addition did not significantly influence those in plant community. Experimental warming improved the evenness of plant community, but the richness and species diversity reduced. The Margalef richness index (Ma) increased and the Pielou evenness (JP) and Shannon-Wiener diversity index (H’) of plant community decreased under nitrogen addition plot. Experimental warming increased aboveground biomass in the early growth stage and decreased it in faster growing and latter stages. Seen from the functional group, perennial grasses and forbs had stable compositions, but compositions and number of shrubs, half shrubs, small half shrubs, annuals and biennials were unsteadiness, where aboveground biomass in warmed plots was much difference with control. Nitrogen addition may enhance aboveground biomass obviously from latter growth stages. Underground biomass were no significant difference whether experimental warming or nitrogen addition. The main factor was soil moisture content of 10-20cm depth that affected aboveground and underground biomass. The relationship between aboveground biomass and functional group diversity was of a unimodal pattern irrespective of air temperature treatment in some degree. Change of plant litter and seed rain was not significantly correlated with temperature and nitrogen addition.
     Artemisia frigida had significant response to warming; the lengths of phenological growth periods for Artemisia frigida did not show an increasing trend in warmed plots, even disappeared in early September. Summed dominance ratio (SDR_3) of Artemisia frigida was lower (P0.05) in the warmed plot than in the control plot, Artemisia frigida is more sensitive to temperature changes than other species.
引文
1 Houghton R A.The annual net flux of carbon to the atmosphere from changes in land use 1850-1990, Tellus, 50B, 298-313. Houghton, R A J L Hackler. and K T Lawrence, 1999,The U.S. carbon budget: contributions from land-use change[J]. Science, 1999,285,574-578
    2 Honghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis[M]. Cambridge: Cambridge University Press,2001.881
    3 IPCC. IPCC WGI Fourth Assessment Report. Climatic change 2007: the physical science basis[M]. Geneva: Intergovernmental Panel on Climate Change
    4沈永平.IPCC WGI第四次评估报告关于全球气候变化的科学要点[J].冰川冻土,2007. 29(1): 16-18
    5方修琦,余卫红.物候对全球变暖响应的研究综述[J].地球科学进展,2002.17(5):714-719
    6唐国利,任国玉.近百年中国地表气温变化趋势的再分析[J].气候与环境研究,2005,10(4): 791-798
    7王长科,刘洪滨,罗勇.气候变化及其对农业和生态系统的影响[J].科学中国人,2005,11: 24-26
    8气候变化国家评估报告[M].北京:科学出版社,2007.23-33
    9马瑞芳.内蒙古草原区近50年气候变化及其对草地生产力的影响[D].硕士学位论文,中国农业科学院,2007,25
    10 Liu J G.Impacts of the rising CO2concentration and global warming on six biological levels: a review. In: liu J G&R S.eds. Advance in modern ecology[M]. Beijing: Chinese Science and Technology Press.1992.369-380(in chinese)
    11钟章成.森林植物种群与温室效应.见:生态学研究进展[M].北京:中国科学技术出版社, 1991. 20-22
    12王辉民,周广胜,邢学荣.中国油松林净第一性生产力及其对气候变化的响应[J].植物学通报,1995,12:102-108
    13 Jackdon R B, Sala O E. CO2 alters water use, arbon gain, and yield for the dominant species in a natural grassland[J]. Oecologica,1994,98:257~262
    14 Vitousek P M. Beyond global warming: ecology and global chance[J]. Ecology, 1994, 75:1861-1876
    15 Chapin F S. et al.Arctic plant physiological ecology in an ecosystem context. In: Chapin F S,Jefferies R L, Reynolds J F, Shaver G R and Svoboda J eds. Arctic ecosystems in a changing climate: an ecophysiological perspective[M]. San Diego: Academic Press, 1992.441-452
    16 Korner Ch. Response of alpine vegetation to global climate change. In: International conference on landscape ecological impact of climate change[M]. Lunteren, The Netherlands: Catena Verlag,1992,22:85-96
    17 Grabherr G, Gottfried M, Pauli H. Climate effects on mountain plants[J]. Nature,1994, 369:448-450
    18 Herik S, et al. Tree and forest functioning in response to global warming[J]. New Phytologist,2001,149:369-400
    19 Carter K K. Proveance tests as indicators of growth response to climate change in
    10 north temperate tree species[J]. Canadian Journal of Forest Research, 1996, 26: 1089-1095
    20 Krankina O N, Dixon R K, Kirlenko A P, et al. Global climate change adaptation: examples from Russian boreal forest[J]. Climatic Change, 1997,36:197-215
    21 Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature,1991,351:304-306
    22 Kirschbaum M U F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage[J]. Soil Biology and Biochemistry,1995,27:753-760
    23 White T A, Campbell B D, Kemp P D, et al. Sensitivity of three grassland communities to simulated extreme temperature and rainfall events[J]. Global Change Biology, 2000,6:671-684
    24 Peng C H, Apps M J. Simulating carbon dynamics along the Boreal Forest Transect Case Study (BFTCS) in central Canada I. Sensitivity to climate change[J]. Global Biogeochemical Cycles,1998,12:393-402
    25 Smith T M, Shugart H H. The transient response of terrestrial carbon storage to a perturbed climate[J]. Nature,1993,361:523-526
    26 Oechel W C, Vourlitis G L, Hastings S J, et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming[J]. Nature,2000, 406:978-981
    27 Houghton J T, Jenkins G T, Ephraums J J. Climate change: the IPCC scientific assessment[M]. Cambridge: Cambridge university press,1990.365
    28 Rosenzweig C, Parry M L. Potential impact of climate change on world food supply[J]. Nature,1994,367:133-138
    29 Begon M, et al. Individuals, population and communities[M]. 2nd ed. Boston: Blackwell scientific publications Ecology,1990.816-844
    30 Dwire K A, Kauffman J B, Brookshire E N J, et al. Plant biomass and species composition along an environmental gradient in montane riparian meadows[M]. Oecologia,2004, 139:309-317
    31 Fitter A H, Fitter R S R. Rapid changes in flowering time in British plants[J]. Science, 2002,296:1687-1691
    32 Post E, Stenseth N C. Climatic variability, plant phenology, and northern ungulates[J]. Ecology,1999,80:1322-1339
    33 Roy D B, Sparks T H. Phenology of British butterflies and climate change[J]. Global Change Biology,2000,6:407-416
    34 Kaduk J, Heimann M A. Prognostic phenology scheme for global terrestrial carbon cycle models[J]. Climate Research,1996,6:1-9
    35陆佩玲,于强,贺庆棠.植物物候对气候变化的响应[J].生态学报,2006,26(3):923-929
    36 Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981 to 1991[J]. Nature,1997,386:698-702
    37 Keeling C D, Chin J F S. Whorf T P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements[J]. Nature,1996,382:146-149
    38 Ahas R, Aasa A, Menzel A, et al. Changes in European spring phenology[J].International Journal of Climatology,2002,22:1727-1738
    39 Chmielewski F M, Retzer T. Response of tree phenology to climate change across Europe[J]. Agriculture and Forest Meteorology,2001,108:101-112
    40 Sparks T H, Jeffree E P, Jeffree C E. An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the U K[J]. International Journal of Biometeorology,2000,44:82-87
    41 Menzel A, Fabian P. Growing season extended in Europe[J]. Nature,1999,397:659
    42 Walkovszky A. Changes in phenology ofthe locust tree (Robinia pseudoacacia) in Hungary[J]. International Journal of Biometeorology,1998,41:155-160
    43姜允迪,叶笃正,董文杰.从季节角度看中国区域气候变化[J].气候变化通讯,2004,3(2):8-9
    44徐雨晴,陆佩玲,于强.近50年北京树木物候对气候变化的响应[J].地理研究,2005, 24(3):412-420
    45郑景云,郭全胜,郝志新.气候增暖对我国近40年植物物候变化的影响[J].科学通报, 2002, 47(20):1582-1587
    46郑景云,郭全胜,赵会霞.近40年中国植物物候对气候变化的响应研究[J].中国农业气象, 2003,24(1):28-32
    47 Sherry R A, Zhou X H, GU S L, et al.Divergence of reproductive phenology under climatewarming[J]. PNAS,2007,104:198-202
    48 Pose E, Fprchammer M C, Stenseth N C, Callaghan T V.The timing of life history events in a changing climate[J]. Proc.Soc.London B,2001,268:15-23
    49 Hughes L. Biological consequences of global warming: is the signal already[J]. Trends in Ecology and Evolution, 2000, 15:56-61
    50李元恒.内蒙古典型草原植物生殖物候对气候变化和人为干扰的响应[D].硕士学位论文,甘肃农业大学,2008,38
    51杨永辉,托尼·哈里森,费尔·安纳逊.山地草原生物量的垂直变化及其与气候变暖和施肥的关系[J].植物生态学报,1997,21:234-241
    52 Perkins D F. The growth of plants in an upland environment[J]. The Welsh Soils Discussion Group Report,1967,8:79~86
    53 Grace J, Woolharse H W. A physiological and mathematical study ofgrowth and productivity of a Callunasphagnum community[J]. Journal of Applied Ecology, 1974, 11:281~295
    54 Grace, J. Temperature as a determinant of plant productivity[M]. Plants and Temperature (Ed. by S. P. Long & F I. Woodward), Society of Experimental Biology, 1988a.91-107
    55 Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environmental changes suppressed by elevated C02[J]. Science,2002,298:1987-1990
    56周广胜,张新时.自然植被净第一生产力模型初探[J].植物生态学报.1995,19(3):193-200
    57邓慧平,刘厚凤,祝廷成.松嫩草地40余年气温、降水变化及其若干影响研究[J].地理科学,1999,19(6):220-224
    58李晓兵等.气候变化对中国北方荒漠化草原植被的影响[J].地球科学进展,2002, 17(2): 254-261
    59史瑞琴.气候变化对中国北方草地生产力的影响研究[D].南京信息工程大学,硕士学位论文, 2006.32
    60吴榜华,孟庆繁,赵元根等.全球气候变化与生物多样性[J].吉林林学院学报, 1997, 13(3): 142-146
    61 Peters R L, Darling J D. The Greenhouse Effect and Nature Reserves[J]. Biosci, 1985,35(11):707-717
    62牛建明.气候变化对内蒙古草原分布和生产力影响的预测研究[J].草地学报,2001, 9(4): 277-279
    63牟长城.长白山落叶松和白桦-沼泽生态交错带群落演替规律研究[J].应用生态学报,2003, 14:1813-1819
    64陈孝全,苟新京.三江源自然保护区生态环境[M].西宁:青海人民出版社,2002
    65蔡晓明.生态系统生态学[M].北京:科学技术出版社,2000.106-110
    66张继义,赵哈林.植被(植物群落)稳定性研究评述[J].生态学杂志,2003,22(4):42-48
    67刘德辉,陶于祥.土壤、农业与全球气候变化[J].火山地质与矿产,21(4):290-295
    68 Raich J W, Schkesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus,1992,44B:81-92
    69 Whittaker R H, Likens G E. Carbon in the biota[M]. In: Woodwell G M, Pecan E V ed. Carbon and the Biosphere. CONF720510, Washington, D. C. National Technical Information Service,1973.281~302
    70 Schlesinger W H. An overview of the carbon cycle[M]. In: Lai R et al. Ed. Soils and Global Change. Florida: CRC press, Boca Raton,1995.9-25
    71 Houghton R A. Changes in the storage of terrestrial carbon since 1850[M]. In:Lai R et al. Ed. Soils and Global Change. Florida: CRC press,Inc.Boca Raton,1995.45-65
    72 Raich J W. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate.[J]Tellus B,1992,44:81-99
    73 Post W M, Rmanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature,1982.298:156-159
    74郭广芬,张称意,徐影.气候变化对陆地生态系统土壤有机碳储量变化的影响[J].生态学杂志, 2006,25(4):435-442
    75柏晶瑜,施小英,于淑秋.西北地区东部春季土壤适度变化的初步研究[J].气象科技,2003, 31(4):226-230
    76马柱国,魏和林,符涂斌.土壤湿度与气候变化关系的研究进展与展望[J].地球科学进展,1999, 14(3):299-305
    77刘永强,叶笃正,季劲钧.土壤湿度和植被对气候的影响——Ⅰ.短期气候异常持续性的理论分析[J].中国利学(B辑),1992,00B(4):441-448
    78马柱国,魏和林,符涂斌.中国东部区域土壤湿度的变化及其与气候变率的关系[J].气象学报, 2000,58(3):278-287
    79全球气候变化的最新科学事实和研究进展——IPCC第一工作组第四次评估报告初步解读[J].环境保护,2007,6A27-30
    80 Trenberth K E, Shea D J. Relationships between precipitation andsurface temperature[J]. Geophys Res Lett, 2005,32,L14703
    81 Déry S J, Wood E F. Observed twentieth century land surface airtemperature and precipitation co-variability[N]. Geophys Res Lett, 2005,32,L21414
    82苏明峰,王会军.全球变暖背景下中国夏季表面气温与土壤湿度的年代际共变率[J].科学通报,2007,52(8):965-971
    83 Bonanomi, G, Giannino, F. Mazzoleni, S. Negative plant-soil feedback and species coexistence[J]. Oikos,2005,111,11-321
    84 Agren G I, Mcmurtrie R F, Parton W J, et al. State-of-art of models of production decomposition linkages in conifer and grassland ecosystems[J]. Ecological Applications,1991,1:118-138
    85 Freeman C M, Lock A, Reynolds B. Climate change and mathematical study of growth and productivity of a calluna sphagum community[J]. Journal of Applied Ecology,1993, 11:281-295
    86 Coughenour M B, Chen D X. Assessment of grassland ecosystem response to atmospheric change using linked plant-soil process models[J]. Ecological Applications, 1997,7: 802-827
    87 Harrison A F, et al. Role of nitrogen in herbage production by Agrostis Festuca hill grassland[J]. Journal of Applied Ecology,1994,31:351-360
    88 Bowman W D, Theodose T A, Fisk M C. Physiological and production response of plant growth forms to increases in limiting resources in alpine tundra: implications for differential community response to environmental change[J]. Oecologia,1995, 101: 217-227
    89 Theodese T A, Bowman W D. Nutrient availability, plant abundance, and species diversity in two alpine tundra communities[J]. Ecology,1997,78:1861-1872
    90 Samuel M J, Hart R H. Nitrogen fertilization, botanical composition and biomass production on mixed-grass rangeland[J]. Journal of Rangeland Management,1998, 51: 408-416
    91 Harrison A F, et al. Potential of a root bioassay for determination of P-deficiency in high-altitude grasslands[J]. Journal of Applied Ecology,1991,11:277-289
    92赵义海,柴琦.全球气候变化与草地生态系统[J].草业科学. 2000, 17(5):49-54
    93 Freeman C, Lock M A, Reynolds B. Climatic change and the release of immobilized nutrients from Welsh riparian wetland soils[J]. Ecological Engineering,1993,2: 367-373
    94 Chapin F S III,Shaver G R, Gibbin A E, et al. Responses of arctic tundra to experimental an observed changes in climate[J]. Ecology,1995,76:694-711
    95 Zak D R, Holmes W E, MacDonald N W,Pregitzer K S. Soil temperature, metric potential, and the kinetics of microbial respiration and nitrogen mineralization[J]. Soil science society of American Journal,1999,63:575-584
    96 Klingensmith K M, Van Cleve, K. Patterns of nitrogen mineralization and nitrification in floodplain is successional soils along the Tarmna River, Interior Alaska[J]. Canadian Journal of Forest Research,1993,23:964-969
    97 Robertson G P,Huston M A,Evans F C, Tiedje J M. Spatial variability in a successional plant community[J]. Ecology,1988,69(5):1517-1524
    98 Rustard L E, Campbell J L, Marion G M, et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming[J]. Oecologia,2001,126:543-562
    99王其兵,李凌浩,白永飞,邢雪荣.气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J].植物生态学报,2000,24(6):687-692
    100 Ineson P, Benham D G, Poskitt J, et al. Effects of climate change on nitrogen dynamics in upland soils. 2. A soil warming study[J]. Global Change Biology,1998,4(1):153-161.
    101 Turner J, Olson P R. Nitrogen relation in a Douglas-fir plantation[J]. Annals of Botany,1976,40:1185-1193
    102 Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus,1992,44(B):81-99
    103 Saussure Th D E. Recherches chimiques sur la. Vegetation[M]. GauthierVillars. Paris. (in:Magnusson,1992).1804
    104 Albert R. Bodenuntersuchungen im Gebiete der Luneburger Heide[J]. Zeitschrift fur Forst-and Jagdwesen,1912,44:655-671
    105 Fodor J Von. Experimentelle Untersuchungen uber Boden und Bodengase[J]. Deutsche Viertelsjahrscrilte fur offentlicher Gesundheitsllege,1875,7:205-213
    106 Romell L G. Luftvlingen i marken som ekologisk factor[J]. Die Bodenventilation fran Statens Skogsforsok sanstalt,1992,19:125-359
    107 Russel E J, Appleyard A. The atmosphere of the soil: its composition and the causes of variation[J]. J.Agri.Sci,1915,7:1-48
    108 Jenkinson D S, Adams D E, Wild A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature,1991,351:304-306
    109 Berger B, Johnstone J, Treseder K K. Experimental warming and burn severity alter soil CO2 flux and soil functional groups in a recently burned boreal forest[J]. Global Change Biology,2004,10:1996-2004
    110 Rayment M B, Jarvis P G. Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest[J]. Soil BiolBiochem,2000,32:35-45
    111 Jones M H, Fahnestock J T, Walker D A, et al. Carbon dioxide fluxes in moist and dryarctic tundra during the snow-free season: response to increase in summer temperature and winter snow accumulation[J]. Arctic Alp. Res.,1998,30(4):373-380
    112 Foster D R, Aber J D, Melillon, et al. Forest response to disturbance and anthropogenic stress[J]. Bioscience,1997,47:437-445
    113 Lanl R, Kimble J, Levine E, Stewart b A. Soil management and the greenhouse effect[M]. CRC,London.1995
    114 Fang C. Moncrieff J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biology and Biochemistry,2001,33:155-165
    115贾丙瑞,周广胜,王风玉等.放牧与围栏羊草草原生态系统土壤呼吸作用比较[J].应用生态学报,2004,15(9):1611-1615
    116 Kutsch W L, Kappen L. Aspects of carbon and nitrogen cycling in soils of the Bornhoved Lake district. II. Modeling the influence of temperature increase on soil respiration and organic carbon content in arable soils under different managements[J]. Biogeochemistry,1997,39:207-224
    117 Oechel W C,Vourlitis G L,Hastings S J,et al. Acclimation of ecosystem CO2 exchange in the Alaskan Artic in response to decadal climate warming[J]. Nature,2000,406: 978-981
    118 Giardina C P, Ryan M G. Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature[J]. Nature,2000,404:858-861
    119 Saleska S, Harte J, Torn M. The effect of experimental ecosystem warming on CO2 fluxes in a montane meadow[J]. Global change Biology,1999,5:125-141
    120 Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science,2002,298:2173-2176
    121 Grace J, Rayment M. Respiration in the balance[J]. Nature,2000,404:819
    122 Davidson E A, Trubore S E, Amundson R. Biogeochemistry: Soil warming and organic carbon content[J]. Nature,2000,408:789
    123 Rustad L E, Fernandez L J. Experimental soil warming effects on CO2 and CH4 flux from a low elevation sprucefir forest soil in Maine. U.S.A[J]. Global Change Biol,1998, 4:597-605
    124 Schimel D S, Braswell B H, Holland E A, et al. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochem Cycles,1994,8: 279-293
    125 Mcguire A D, Melillo J M, Kicklighter D W, et al. Equilibrium responses of soil carbon to climate change: empirical and process-based estimates[J].Biogeog,1995,22:785-796
    126 Janssens F,Peeters A,Bakker J P,et al. Relationship between soil chemical factors and grassland diversity[J]. Plant and soil,1998,202:69-78
    127 Passioura J B. soil structure and plant growth[J]. Aust. J. Soil Res.,1991,29:717-728
    128 Inouye R S,Huntly N J,Tilman D, Tester J R. Poeket gophers (Geomys bursarius), vegetation, and soil nitrogen along a successional sere in east central Minesota[J]. Oecologia (Berlin),1987,72:178-184
    129 Shiyomi M. Spatial pattern changes in aboveground plant biomass in a grazing pasture[J]. Ecol. Res.,1998,13:313-322
    130周广胜.全球碳循环[M].北京:气象出版社,2003
    131李克让.土地利用变化和温室气体净排放与陆地生态系统碳循环[M].北京:气象出版社,2002
    132 Chapin FSⅢ, Maston PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology[M].New York:Springer-verlag Berlin Heidelberg,2002
    133徐小峰,田汉勤,万师强.气候变化对陆地生态系统碳循环的影响.植物生态学报, 2007, 31(2):175-188
    134 Cox P M, Betts R A, Jones C D, et al. Acceleration of globalwarming due to carbon-cycle feedbacks in acoupled climate model.Nature,2000,408:184-187
    135 Oechel W C, Vourlitis G L, Hastings S J,et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming.Nature,2000,406:78-981
    136 Vukicevic T,Braswell B H,Scheimel D. A diagnostic studyof temperature controls on global terrestrial carbon exchange[J].Tellus B,2001,53:150-170
    137 Yang X,Wang M X,Huang Y. The climatic-induced netcarbon sink by terrestrial biosphere over 1901-1995[J].Adv.Atmos.Sci.,2001,18(6):1192-1206
    138 Houghton R A. Terrestrial carbon sinks—uncertain explanations[J].Biologist,2002, 49(4):155-160
    139 Smith T M, Leemans R, Shugart H H. Sensitivity of terrestrial carbon storage to CO2induced climate change: comparison of four scenarios based on general circulation model[J]s.Climatic Change,1992,21:367-384
    140 Prentice I C, Sykes M T. Vegetation geography and global carbon storage changes. In: Woodwell GM, Mackenie FT eds.Biotic Feedbacks in the Global Climatic System[J]. Oxford University Press, NewYork,1995,300-312
    141 Gu L H,Baldocchi D D,Wofsy S C,et al. Response of a deciduous forest to the mount pinatubo eruption: enhanced photosynthesis[J].Science, 2003,299:2035-2038
    142 Tian H Q, Melillo J M, Kicklighter D W, et al. The sensitivity of terrestrial carbon storage to historical climate variability and atmospheric CO2 in the UnitedStates[J].Tellus,1999,51B:414-452
    143 King A W, Post W M, Wullschleger S D. The potential response of terrestrial carbon storage to changes in climate and atmospheric CO2[J].Climatic Change,1997,35:199-227
    144 Keyser A R, Kimball J S, Nemani R R, Running S W.Simulating the effects of climate change on the carbon balance of North American high-latitude forests[J].Global Change Biology,2000,6(Suppl.1):185-195
    145 Lapenis A, Shvidenko A, Shepaschenko D, Nilsson S, Aiyyer A. Acclimation of Russian forests to recent changes in climate[J].Global Change Biology, 2005,11:1-13
    146 Stirling C M, Davey P A, Williams T G, Long SP. Acclimation of photosynthesis to elevated CO2 and temperature in fiveBritish native species of contrasting functional type[J].Global Change Biology,1997,3:237-246
    147 Carte A J, Seholes R J.Spatial global database of soil Properties.IGBP Global Soil Data Task CD-ROM[J]. International Geosphere-Biosphere Programme (IGBP) Data Information Systems. Toulouse, France,2000
    148陈华,Mark.Harm On,田汉勤.全球变化对陆地生态系统枯落物的影响(英文) [J].生态学报,2001,21:1549-1563
    149 Wan S, Hui D, Wallace L, Luo Y. Direct and indirect ef-fects of experimental warming on ecosystem carbon processes in a tallgrass prairie[J].Global Biogeochemical Cycles,2005,19, (2005)GB2014, doi:10.1029/2004GB002315
    150 Anderson D W, Coleman D C. The dynamics of organic matter in grassland soil[J]. Journal of soil and water conservation, 1985,40:211-216
    151 Tiessen H J, Steward W B, Bettany J R. Cultivation effects on the amount and concentration of carbon, nitrogen and phosphorus in grassland soil[J]. Agronomy journal, 1982,74:831
    152 Aguilar R, Kelly E F, Heil R D. Effects of cultivation on soils in northern great plains rangeland[J]. Soil science society of America journal, 1988,52:1081-1085
    153 Davidson E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously untilled soils[J]. Biogeochemistry, 1993,20:161-193
    154 Risser D G, Biney E C, Blocker H D.The true prairie ecosystem[J]. Huchinson Ross Publ. Comp., Stroudsburg/Pennsylvania, 1981,244-246
    155 Ojima D S, Parton W J, Schimel D S et al. Modeling the effects of climatic and CO2 change on grassland storage of soil C[J]. Water, air and soil Pollution, 1993a, 70:643-657
    156 Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration andits relationship to vegetation and climate[J]. Tellus, 1992,44B:81-99
    157 Smith J B, D Tirpak.The potential effects of global climate change on the United States[R]. U. S. EPA.Washington DC.USA,1989:1-20
    158刘国华,傅伯杰.全球气候变化对森林生态系统的影响[J].自然资源学报, 2001,16(1):71-78
    159 Davis M B. Lags in vegetation response to greenhouse warming[J]. Climatic Change, 1989,15:75-82
    160 Dickinson R E, A Henderson-Sellers, C Rosenzweig, et al. Evapotranspiration models with canopy resistance for use in climate models[J]. Agricultural and Forest Meteorology, 1992,54:373-388
    161 Bonan G B. Comparison of two land-surface proccess models using prescribed forcings[J]. Journal of Geophysical Research, 1994,99:25803-25818
    162 Sellers P J, D A Randall, G J Collatz. A revised land surface parameterizati on (SiB2) for atmospheric GCMs. Part 1: Model formulation[J]. Journal of Climate, 1996, 9:676-705
    163 Katz R W, B G Brown. Extreme events in a changing climate: variability is more important than averages[J]. Climatic Change,1992,21:289-302
    164 Bassow S L, K D M McConnaughay, F A Bazzaz.The response of temperate tree seedling grown in elevated CO2 to extreme Temperature events[J]. Ecological Applications, 1994,4(3):593-603
    165 Foley J A, S Levis, I C Prenrice,et al. Coupling dynamic models of climate and vegetation[J]. Global Change Biology,1998,4:561-579
    166牛书丽,韩兴国,马克平,万师强.全球变暖与陆地生态系统研究中的野外增温装置.植物生态学报,2007,31(2):262-271
    167 Niu Shuli, Mingyu Wu, Yi Han, et al. Water-mediated responses of ecosystem carbon climatic change in a temperate steppe[J]. New Phytologist,2007,177:209-219
    168中国科学院内蒙古宁夏综合考察队.内蒙古植被[M].北京:科学出版社,1985
    169李德新.内蒙古高原荒漠草原生态系统概论.见:赛胜宝,李德新著.荒漠草原生态系统研究[C].呼和浩特:内蒙古人民出版社出版社,1994,1-7
    170中华人民共和国农业部畜牧兽医司.中国草地资源数据[M].北京:中国农业科技出版社,1992.115-125
    171 Shaver G R, Canadell J, Chapin III F S et al. Global warming and terrestrial ecosystems: a conceptual framework for analysis. BioScience,2000,50:871-882
    172鲍士旦编.土壤农化分析(土壤农业化学资源与环境专业用)[M].北京:中国农业出版社,2003
    173 Hao X, Chang C, Carefoot JM, Janzen HH, Ellert BH. Nitrous oxide emissions from anirrigated soil as affected by fertilizer and straw management[J]. Nutr Cycl Agroecosys,2001, 60:1–8
    174倍桀芒(郑钧镛译).地植物研究中的物候学观测方法[M].北京:科学出版社,1958,39-45.张堰青,周兴民,王启基,张耀生.金露梅灌丛主要植物种物候特征的数值分析[A].见:姜恕等著.植被生态学.北京:科学出版社,1994,289-296
    175王长庭,龙瑞军,丁路明.高寒草甸不同草地类型功能群多样性及组成对植物群落生产力的影响[J].生物多样性,2004,12(4):403-409
    176任继周主编.草业科学研究方法[M].中国农业出版社,1998
    177姜恕等编著.草地生态研究方法.[M]农业出版社,1986
    178戈峰.现代生态学[M].北京:科学出版社,2002,73-88. 93-101. 193-205. 209-272. 277-294.
    179 Olson J S. Energy storage and the balance of producers and decomposers in ecological systems[J]. Ecology,44:322-331
    180裴喜春,薛河儒主编.SAS及应用[M].中国农业出版社,1997
    181徐跃,姚天全,永塚镇男.气候因素对土壤有机质组成和性质的影响[J].山地研究,1994,12(3): 163-168
    182 Su Y C, Gou Y B, Zhang Z H,et al. Ecology characters of soil faunas and microorganisms in the north-east heavy frigid region of China[J]. Acta Ecologica sinica, 2001, 21(10):1613-1619 ( in Chinese)
    183杨永辉,渡边正孝,王智平等.气候变化对太行山土壤水分及植被的影响[J].地理学报, 2004, 59(1):56-63
    184 Chapin III, F S H, P. Vitousel &K.V. Cleve. The nature of nutrient limitation in plant communities[J]. American Naturalist,1986,127:148-158
    185 Rashid G H, Scheafer R. Seasonal variation in the nitrogen mineralization and mineral nitrogen accumulation in two temperate forest soils[J]. Pedobiologia, 1988,31: 335-347
    186 Peterjohn W T, Melillo J M, Steudler P A, et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures[J]. Ecological Applications,1994,4:617-625
    187陈全胜,李凌浩,韩兴国等.温带草原11个植物群落夏秋土壤呼吸对气温变化的响应[J].植物生态学报,2003,27(4):441-447
    188刘颖,韩士杰,胡艳玲,戴冠华.土壤温度和湿度对长白松林土壤呼吸速率的影响[J].应用生态学报,2005,16(9):1581-1585
    189贾丙瑞,周广胜,王风玉,王玉辉.放牧与围栏羊草草原生态系统土壤呼吸作用比较[J].应用生态学报,2004,15(9):1611-1615
    190陈四清,崔骁勇,周广胜等.内蒙古锡林河流域大针茅草原土壤呼吸和凋落物分解的CO2排放速率研究[J].植物学报,1999,41(6):645-650
    191焦树英.短花针茅草原生态系统对不同载畜率水平绵羊放牧的响应[D].博士学位论文,内蒙古农业大学,2006,77-79
    192陈全胜,李凌浩,韩兴国等.水分对土壤呼吸的影响及机理[J].生态学报,2003,23(5):972-978
    193 Dong Y S, Zhang S, Qi Y C, et al. Fluxes of CO2, N2O and CH4 from a typical temperature grassland in Inner Mongolia and its daily variation[J]. Chinese Science Bulletin, 2000,45(17):1590-1594
    194 Nakadai T, Yokozawa M, Ikeda H, et al. Diurnal changes of carbon dioxide flux from bare soil in agricultural field in Japan[J]. Applied Soil Ecology, 2002,19(2):161-171
    195吴仲民,曾庆波,李意德等.尖峰岭热带森林土壤C储量和CO2排放量的初步研究[J].植物生态学报,1997,21(5):416-423
    196 Eriksen J, Jensen L S. Soil respiration, nitrogen mineralization and uptake in barley following cultivation of grazed grassland.[J]Biology and Fertility of Soils, 2001, 33:139-145
    197 Buchmann N. Biotic and abiotic factors controlling soil respiration rates in Picea abies stands[J]. Soil Biology and Biochemistry,2000,32:1625-1635
    198崔骁勇,王艳芬,杜占池.内蒙古典型草原主要植物群落土壤呼吸的初步研究[J].草地学报,1999,7(3):245-250
    199刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5): 469-476
    200 Mathes K, Schriefer Th. Soil respiration during secondary succession influence of temperature and moisture[J]. Soil biology and biochemistry,1985,17(2):205-211
    201 Buyanovsky G A, Wangner G H, Gantzer C J.Soil respiration in a winter wheat ecosystem[J]. Soil Science Society of America Journal,1986,50:338-344
    202 Liu X Z, Wan S Q, Su B, et al. Response of soil CO2 efflux to water manipulation in a tall grass prairie ecosystem[J]. Plant and Soil,2002,240:213-223
    203 Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems[J]. Botanical Review,1977,43:449-528
    204 Keith H, Jacobsen K L,Raison R J. Effects of soil phosphorus availability, temperature and moisture on soil respiration in Eucalyptus pauciflora forest[J]. Plant and Soil, 1997,190:127-141
    205 Raich J W, Schlisinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus(B),1992,44:81-99
    206 Whalen S C,Reeburgh W S. Consumption of atmospheric methane by tundra soils[J].Nature,1990,346:160-162
    207 Shrestha B M, Sitaula B K, Singh B R, Bajracharya R M.Fluxes of CO2 and CH4 in soil profiles of a mountainous watershed of Nepal as influenced by land use, temperature, moisture and substrate addition[J]. Nutr Cycl Agroecosys,2004,68:155–164
    208曾小平,赵平,孙谷畴.气候变暖对陆地植物的影响[J].应用生态学报,2006,17(12):确2445-2450
    209 Harte J, Torn M S, Chang F R, et al. Global warming and soil microclimate: results from a meadow-warming experiment[J]. Ecological Application,1995,5:132-150
    210 Wan S, Luo Y, Wallace LL. Changes in microclimate induced by experimental warming across the tundra biome[J]. Proceedings of the national academy of sciences, 2002,103:1342-1346
    211 Noormets A, Chen J, Bridgham S, et al. The effects of infrared loading and water table on soil energy fluxes in northern peatlands[J]. Ecosystem, 2004,7:573-582
    212 Kimball B A. Theory and performance of an infrared heated for warming ecosystems[J]. Global change biology,2005,11:2041-2056
    213 Bridgham S D, Pastor J, Updegraff K, et al. Paper presented at the Ecological society of America annual meeting[J].Snowbird, Utah, July 30 to August 3, 1995
    214 Nijs I, Kockelbergh F, Teughels H, et al. Free Air Temperature Increase(FATI): A new tool to study global warming effects on plants in the field[J]. Plant, Cell, and Environment,1996,19:495-502
    215 Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environmental changes suppressed by elevated CO2[J].Scinece,2002,298:1987-1990
    216 Beier C, Emmett B, Gundersen P,et al. Novel approaches to study climate change effects on terrestrial ecosystems in the field: Drought and passive night in warming[J]. Ecosystems,2004,7:583-597
    217侯琼,乌兰巴特尔.内蒙古典型草原区近40年气候变化及其对土壤水分的影响[J].气象科技,2006,34(1):102-106
    218夏自强.温度变化对土壤水运动影响研究[J].地球信息科学,2001,4:19-24
    219 Erika S Z, Brian D T, Nona R C. Plants reverse warming effect on ecosystemwater balance[J]. Eclolgy,2003,100(17):9892-9893
    220王常慧,邢雪荣,韩兴国.草地生态系统中土壤氮素矿化影响因素的研究进展[J].应用生态学报,2004,15(11):2184-2188
    221 Strader R H. Nitrogen mineralization in high elevation forests of the AppalachiansI.Regional patterns in southern sprucefir forest[J]. Biogeochemistry,1989,7:131-145
    222 Loiseau P, Soussana J F. Effects of elevated CO2 temperature and N fertilization on fluxes in a grassland ecosystem[J]. Global Change Biol,2000,6:953-965
    223 Haynes R J. Labile organic matter fractions and aggregate stability under short-term, grass-based leys[J]. Soil Biol Biochem,1999,31:1821-1830
    224 Klemmedson J O. Nitrogen mineralization in limed and gypsum-amended substrates from ameliorated acid forest soils[J]. Soil Sci,1989147(1):55-63
    225 Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soil[J]. Global Biogeochemical Cycles,1995,9(1):23-36
    226王庚辰,杜睿,孔琴心,吕达仁.中国温带典型草原土壤呼吸特征的实验研究[J].科学通报,2004,49(7):692-696
    227 McHale P J,Mitchell M J,Bowles F P.Soil warming in a northern hardwood forest:Trace gas fluxes and the litter decomposition[J].Canadian JoulTgal of Forest Research,1998,28:l365一l372
    228 Melillo J M,Steudler P A,Aber J D,et a1. Soil warming and carbon-cycle feedbacks to the climate systerm[J].Science,2002,298:2173—2176
    229 Rustad L E,Campbell J L,Marion G M,et a1.A meta—analysis of the response of soil respiration,net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming[J].Oecologia,2001,126:543-562
    230李明峰.草原生态系统温室气体排放与环境因子关系研究[D].硕士学位论文,中国科学院研究生院,2002,12-15
    231莫大伦,许洁忠.温室效应与土壤生态系统.见:《自然地理与环境研究》编辑委员会编.自然地理与环境研究[M].广州:中山大学出版社,1992,318-319
    232董云社,彭公炳,李俊.温带森林土壤排放CO2、CH4、N2O时空特征[J].地理学报,1996, 51:120-128
    233陈冠雄,黄斌等.我国一些典型陆地生态系统N2O和CH4的排放,见:中国的气候变化与气候影响研究(丁一汇主编)[M].北京:气象出版社,1997,70
    234 Updegraff Karen,Scott D.Bridgham,et al. Response of CO2 and CH4 emissions from peatlands to Warming and Water Table Manipulation. Ecological Applications, 2001, 11(2):311-326
    235 Zhou X, Sherry RA, An Y, Wallace LL, Luo Y. Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem[J]. Global Biogeochem Cy.2006, 20:GB1003. doi: 10.1029/2005GB002526
    236韩兴国,王智平.土壤生物多样性与微量气体(CO2,CH4,,N2O)代谢[J].生物多样性,2003,11(4):322-332
    237 Mosier A R. Soil processes and global change[J]. Biol Fertil Soils ,1998,27:221-229
    238 Abbasi M K, Adams W A. Gaseous N emission during simultaneous nitrification -denitrification associated with mineral N fertilization to a grassland soil under field conditions[J]. Soil Biol Biochem, 2000,32:1251-1259
    239 Glatzel S, Stahr K. Methane and nitrous oxide exchange in differently fertilised grassland in southern Germany[J]. Plant Soil,2001,231:21-35
    240 Kowalenko C G, Ivarson K C, Cameron D R. Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils[J]. Soil Bio Biochem,1978,10:417-423
    241王铸豪.植物与环境[M].北京:科学出版社,1986
    242王植,刘世荣.全球变化对植物武汉的影响[J].沈阳农业大学学报(社会科学版),2007,9(3): 350-353
    243李博等著.中国北方草地畜牧业动态监测研究(二)-中国北方草地畜牧业动态监测数据集[M].呼和浩特:内蒙古大学出版社,1996
    244 Yang Y H, Harrison A F, Ineson P. Biomass responses to a simulated global warming by changing of elevation and fertilizer addition in upland grassland[J]. Acta Phytoecological Sinica,1997,21(3):234-241
    245 Shaw M R, Zavaleta E S, Chiariello N R, et al. Grassland responses to global environmental changes suppressed by elevated CO2[J]. Science,2002,298:1987-1990
    246 Ramakrishna R N, Charles D. K, Hirofumi H, et al. Climate driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science,2003,300:1560
    247孙国钧,张荣,周立.植物功能群多样性与功能群的研究进展[J].生态学报,2003,23(7): 1430-1435
    248 Tilman D, Knops J, Wedin D, et al. The influence of functional diversity and composition on ecosystem processes[J]. Science,1997,277(29):1300-1302
    249孙力安,梁一民,刘国斌.草地地下生物量研究综述[J].国外畜牧学:草原与牧草,1993,1:6-14
    250宇万太,于永强.植物地下生物量研究进展[J].应用生态学报,2001,12(6):927-932
    251陈世璜.内蒙古草原区植被地下生物量分布的规律及其特点[J].内蒙古农牧学院学报, 1992, 13(1):1-7
    252李博主编.生态学[M].北京:高等教育出版社,2000,343-346
    253白永飞,李凌浩,王其兵等.锡林河流域草原群落植物多样性和初级生产力沿水热梯度变化的样带研究[J].2000,24(6):667-673
    254 Yang L M,et al. Relationship between productivity and plant species diversity ofgrassland communities in Songnen plain of northeast china[J]. Acta Phytoecological Sinica,2002,26(5):589-593
    255 Diaz S, Cabido M. Vice difference: plant functional diversity matters to ecosystem processes[J]. Trends in Ecology and Evolution,2001,16:646-655
    256 Grime J P. Biodiversity and ecosystem function: the debate deepens[J]. Science,1997, 277:1260-1261
    257 Huston M A, Aarssen K W, Austin M P, et al. No consistent effect of plant diversity on productivity[J]. Science,2000,289:1255-1259
    258 Tilman D. The ecological consequences of changes in biodiversity: a search for general principles[J]. Ecology,1999,80:1455-1474
    259 Fridley J D. The influence of species diversity on ecosystem productivity: how, where, and why[J]? Oikos,2001,93:514-526
    260陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社,2000,125-156
    261王娓,郭继勋,张宝田.东北松嫩草地羊草群落环境因素与凋落物分解季节动态[J].草业学报,2003,12(1): 47-52
    262 Berendse F. Litter decomposability a neglected component of plant fitness[J]. J.Ecol.,1994,82:187-190
    263黄德华,陈佐忠,孙昌在,那顺德力格.荒漠草原棕钙土地带凋落物分解速率与分解过程的研究[J].干旱区资源与环境,1989,3(20):54-62
    264尹承军,黄德华,陈佐忠.内蒙古典型草原4种植物凋落物分解速率与气候因子之间的定量关系[J].生态学报,1194,14(20):149-153
    265 Harper J L. Population Biology of Plant[M]. London:Academic Press,1977
    266于顺利,郎南军,彭明俊等.种子雨研究进展[J].生态学杂志,2007,26(10):1646-1652
    267邓自发,谢小玲,王启基等.高寒小嵩草草甸的种子库和种子雨动态分析[J].应用与环境生物学报,2003,9(1):7-10
    268 Menzel A, Estrella N, Fabian P. Spatial and temporal variability of the phonological seasons in Germany from 1951 to 1996[J]. Global Change Biology,2001,7:657-666
    269 Matsumoto K, Ohta T, Irasawa M, et al. Climate change and extension of the Ginkgo biloba L. growing season in Japan[J]. Global Change Biology,2003,9:1634-1642
    270 Gordo O, Sanz J J. Phenology and climate change: a long-term study in a Mediterranean locality[J]. Oecologia,2005,146:484-495
    271 Linderholm H W. Growing season changes in the last century[J]. Agricultural and Forest Meteorology,2006,137:1-14
    272郑景云,葛全胜,郝志新.气候增暖对我国近40年植物物候变化的影响[J].科学通报,2002,47(20):1582-1587
    273李荣平,周广胜,王玉辉,韩喜.羊草物候特征对气候因子的响应[J].生态学杂志,2006, 25(3):277-280
    274 Luo Y Q, Sherry R, Zhou X H, Wan S Q. Plant Ecophysiological regulation of terrestrial carbon-cycle feedback to climate warming.(on line)
    275李永宏.内蒙古草原草场放牧退化模式研究及退化监测专家系统刍议[J].植物生态学报,1994,18(1):68-79
    276李英年,赵亮,赵新全,周华坤.5年模拟增温后矮嵩草草甸群落结构及生产量的变化[J].草地学报,2004,12(3):237-239
    277刘钦普,林振山.内蒙古草原羊草群落优势物种对气候变化的响应[J].地理科学进展,2006, 25:63-71
    278刘钦普,林振山.内蒙古草原羊草群落优势物种对气候变暖的响应[J].地理科学进展,2006, 25(1):64-71
    279周勤,刘钦普,林振山.气候变暖对内蒙古羊草草原建群种的影响[J].生态学杂志,2006, 25(1):24-28
    280王玉辉,周广胜.内蒙古地区羊草草原植被对温度变化的动态响应[J].植物生态学报,2004, 28(4):507-514
    281 Myneni R B, Keeling C D, Tucker C J, et al. Increased plant growth in the northern high latitudes from 1981-1991[J]. Nature,1997,386:698-702
    282 Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science,2003,300:1560-1563
    283高永革,李德新.短花针茅草原群落植物生物量垂直结构特征及其与水热条件的关系.赛胜宝,李德新主编,荒漠草原生态系统研究[M].内蒙古人民出版社,1994,67-72
    284 Naeem S, Tompson L J, Lawler S P, et al. Declining biodiversity can alter the performance of ecosystem[J]. Nature,1994,368:734-737
    285 Tilman D, Reich P B, Wedin D, et al. Diversity and productivity in a long-term grassland experiment[J]. Science,2001,294:843-845
    286 Kassen R, Angus B, Graham B, et al. Diversity peaks at intermediate productivity in a laboratory microcosm[J]. Nature,2000,406:508-511
    287杨利民,周广胜,李建东.松嫩平原草地群落物种多样性与生产力关系的研究[J].植物生态学报,2002,26(5):589-593
    288王长庭,王启基,龙瑞军等.高寒草甸群落植物多样性和初级生产力沿海拔梯度变化的研究[J].植物生态学报,2004,28(2):240-245
    289黄建辉,白永飞,韩兴国.物种多样性与生态系统功能:影响机制及有关假说[J].生物多样性,2001,9(1):1-7
    290 Chase J M, Leibold M A. Spatial scale dictates the productivity–biodiversity relationship[J]. Nature,2002,416:427-430
    291 Chase J M, Ryberg W A. Connectivity, scale-dependence, and the productivity–diversity relationship[J]. Ecology Letters, 2004,7: 676-683
    292 Guo Q F, Berry W L. Species richness and biomass: dissection of the hump-shaped relationships[J]. Ecology,1998,79:2555-2559
    293 Hector A, Hooper R. Darwin and the first ecological experiment[J]. Science,2002, 295:639-640
    294 Gross K L, Willig M R, Gough L, et al. Patterns of species density and productivity at different spatial scales in herbaceous plant communities[J]. Oikos, 2000, 89: 417-427
    295 Mittelbach G G, Steiner C F, Scheiner S M, et al. What is the observed relationship between species richness and productivity[J]? Ecology,2001,82:2381-2396
    296 Alward R D, Detling J K, Milchunas D G. Grassland vegetation changes and nocturnal global warming[J]. Science,1999,283:229-231
    297 Easterling D R, Horton B, Jones P D, et al. Maximum and minimum temperature trends for the globe[J]. Science,1997,277:364-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700