用户名: 密码: 验证码:
甚高精度星模拟器及其关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
星敏感器作为一种高精度空间姿态光学敏感器,在航天领域得到了广泛应用。随着航天技术的发展,对星敏感器的测量精度提出了更高的要求,高精度星敏感器的研制已迫在眉睫,星敏感器的精度标定是实现其姿态准确测量必不可缺少的重要环节,因此星敏感器的高精度标定问题是深空探测、导航领域急待解决的难题。而目前国内外地面标定所采用的方法精度只能达到10”左右,不能满足高精度星敏感器精度(≤1”)的标定要求。为此本文在探索星敏感器高精度标定方法和解决途径的基础上,以提高标定精度为目标,开展甚高精度星模拟器及其关键技术研究,并设计一种精度优于0.5”(1σ)的甚高精度星模拟器,以解决星敏感器的地面高精度标定难题,其可用于高精度星敏感器测量精度的地面标定和仿真试验,对研究高精度星敏感器、深空探测与高精度导航技术具有重要意义和应用价值。
     在研究分析国内外星敏感器各种标定方法及特点的基础上,采用长焦距高成像质量准直光学系统和单点可控星图模拟方法与控制技术,提出了一种甚高精度星模拟器的总体设计方案,实现了固定天区动静态星图的模拟与显示。模拟器主要由长焦距高成像质量准直光学系统和高精度可变星等目标标准源组成,在长焦距高成像质量准直光学系统的焦面上放置一个刻有具有一定大小和分布规律的多个透光微孔作为星点的高精度可变星等目标源,每个星点的位置和亮度可设定与控制,由多个星点组合可形成固定天区的动静态星图,该星图经过长焦距高成像质量准直光学系统后成平行光出射,在光学系统出瞳处产生星图,从而实现了固定天区星图的动静态模拟。
     针对星点成像质量问题,设计了一种长焦距高成像质量准直光学系统。准直光学系统是甚高精度星模拟器最重要的组成部分,在遵循模拟器光学系统设计原则的基础上,采用长焦距、大视场光学系统设计与计算方法,利用zEMAX对准直光学系统进行了优化设计,严格控制系统畸变和能量中心与主光线偏差,确定系统的结构参数,并对光学系统进行了像质评价与光学公差分析,得出畸变和能量中心与主光线偏差的设计值,分析其对星模拟器精度的影响。通过上述的设计、计算与分析为甚高精度星模拟器的研究提供了设计依据,并为甚高精度星模拟器的实现奠定了基础。
     对现有的星模拟器星图显示方式进行了全面分析和研究后,从提高星点定位精度并且实现星图变换的目的出发,基于静态星模拟器星图显示技术的原理,提出了一种用静态目标标准源实现固定天区星图动态模拟与显示方法,并对高精度可变星等目标标准源进行了设计。利用激光直写技术刻划星点的精度优势(位置精度≤0.5μ m),并突破传统静态星模拟器照明方式,采用单点可控矩阵式LED照明技术为星图靶标提供光源,控制每个星点的亮灭和亮度,实现固定天区星图的动静态模拟。该方法可模拟的动态星图虽然样式有限,但克服了传统的动态星图模拟精度受显示器件像素尺寸影响的难题,并且在星图显示系统中也无需加入复杂的计算控制软件,简化了系统的设计难度,为甚高精度星模拟器的实现奠定了技术基础,并具有工程应用价值。
     详细分析了甚高精度星模拟器的精度评价方法。星模拟器以星光出射精度作为精度评价指标,影响星光出射精度的误差源主要有准直光学系统引入的误差和星点刻划方式引入的误差。分别从光学系统理论设计的结果和实际加工与装调后的结果两个方面,对影响星光出射精度的误差源进行了理论分析与计算。结果表明:甚高精度星模拟器的星光出射精度,在理论设计的指标下进行精度分析可达到0.0651”;在实际加工与装调后的指标下进行精度分析可达到0.2312”,均满足星敏感器高精度地面标定的要求。
     综上所述,本文研究的甚高精度星模拟器,能够在地面上模拟星空中有限个不同形式的星图,并且星光出射精度优于0.5”(1σ),可用于高精度星敏感器测量精度的地面标定和仿真试验,解决了星敏感器的高精度标定难题,为研制高精度星敏感器奠定了基础。
Star sensor is a kind of high precision space optical sensor, which has been widely applied in aerospace field. With the development of aerospace technology, the precision of star sensor has been put forward higher requirements, high precision of star sensor development has been imminent, the accuracy of the star sensor calibration is the indispensable important link to achieve accurate measurement of its attitude, so, deep space guide star sensor calibration with high precision is the problem in deep space exploration and navigation field. However, at present domestic and foreign ground calibration methods used in precision can only achieve10" above, can not meet the high accuracy calibration requirements of the star sensor precision (less thanl"). In this paper, based on exploring precision calibration method and solution of the star sensor, in order to improve the calibration accuracy, high precision star simulator and its key technology research are carried out. Design a very high-precision star simulator which has an accuracy of better than0.5"(la) to solve the problem of ground high precision calibration.The simulator can be used for ground calibration and simulation test in measurement precision of high precision star sensor, it has important significance and application value to study the high precision of star sensor, deep space exploration and high precision navigation.
     Based on the study and analysis of the various calibration method and the characteristics of sensor home and abroad, used high imaging quality collimating optical system with long focal length and single point controllable star image simulation method and control technology, put forward a design program of very high accuracy star simulator, which realizes dynamic simulation and displays of a number of maps. The simulator is mainly composed of a high imaging quality collimating optical system with a long focal length and a standard target source with high precision and variable magnitude. High precision variable magnitude target source which has a plurality of transparent microporous with a certain size and distribution is placed on focal plane of the collimating optical system with high imaging quality and a long focal length. Each star's position and brightness can be set and controlled, multiple stars can be combined to form the different area of particular star map, the star map is exited through high imaging quality collimating optical system with a long focal length in parallel light, and is produced on the exit pupil of the optical system, achieving star map simulation with a small celestial body full vision field and high precision. According to the problem of star position accuracy of the image, designed a kind of high imaging quality optical system with a long focal length. Collimating optical system is the most important part in very high accuracy star simulator; following the principle of designing a simulator, optical system with a long focal length, large field of view and calculation method is used. Use ZEMAX to optimize the collimating optical system, strictly control of system distortion and deviation of energy center and the main light, determine the structure parameters of the system, and give optical tolerance analysis and evaluation of image quality of the optical system, obtain deviation value of design of the distortion and energy center and the main light analyze its effect on the precision of star simulator. Design basis is provided for the study of very high accuracy star simulator by the design calculation and analysis, and for very high accuracy star simulator which establishes the basis.
     The star map display mode of star simulator is comprehensively analyzed and researched. In order to improve the positioning accuracy and the realization of the map star transformation, based on star map display technology principle of static star simulator, put forward a method which uses a static target standard source to achieve chart dynamic simulation and display, design high precision variable target standard source.
     Using the technology of laser direct writing scoring aster ion (the position precision is less than or equal to0.5u m), and breaking through the traditional mode for illumination of static star simulator, use the lighting technology of a single point controllable matrix LED as light source of star tester, control each star's light and brightness, realize a small area of the sky star map of dynamic transformation. This method can simulate the dynamic star map, although its style is limited, overcome the problem of traditional simulation accuracy of dynamic star map by effecting of the pixel size, and the map display system is also without adding complicated calculation and controlling software, simplifies design difficulty of the system, achieves very high precision star simulator lay theoretical foundation for achieving very high precision star simulator, and has engineering application value.
     Accuracy evaluation method of the very high accuracy star simulator is analyzed in detail. Exiting accuracy of starlight is used as accuracy evaluation index of star simulator, collimated optical system error introduced by collimating optical system and display mode of star map effect on exiting accuracy of starlight. Error source which effects emitting accuracy of starlight is analyzed and calculated in the aspect of theory from theory results and actual machining and assembling the results of optical system. The results showed that: very high accuracy star simulator emitting accuracy of starlight can reach0.065" under the theoretical design; accuracy reached0.2312"after actual processing and alignment, can meet ground calibration requirements of the high accuracy of star sensor.
     In a word, the very high accuracy star simulator in this paper can be capable of simulating different forms of Star map, and the emitting accuracy of starlight is better than0.5"(1σ), can be used for ground calibration and simulation test of high accuracy star sensor, solves the problem of high precision calibration of star sensor, laid the foundation for the development of high precision star sensor.
引文
[1]欧阳名钊.透射式高精度星模拟器光学系统设计:[硕士学位论文].长春:长春理工大学光学工程系,2010
    [2]耿建中.基于紫外敏感器的卫星自主导航方法研究.航天控制.2007,25(2):47-51
    [3]孙高飞,张国玉,姜会林等.甚高精度星模拟器设计.光学精密工程.2011,19(8):1730-1735
    [4]唐琼.基于星光折射航天器自主轨道确定:[硕士学位论文].西安:西北工业大学,2007
    [5]郭敬明.CCD星图模拟器的设计及验证.中国光学与应用光学.2010,3(5):487-492
    [6]袁彦红等.基于陆标敏感器对星敏感器在轨标定算法研究.哈尔滨商业大学学报.2008,24(4):448-453
    [7]姚静.基于GNSS的分布式SAR卫星系统空间状态确定方法研究:[博士学位论文].北京:国防科学技术大学,2008
    [8]房建成.航天器自主天文导航原理与方法.北京:国防工业出版社,2006:16-30
    [9]龙瑞等.一种新的SINS/星敏感器组合导航姿态匹配算法.西北工业大学学报.2011,29(3):477-479
    [10]马苑学.动态星模拟器光学系统设计出处:[硕士学位论文].长春:长春理工大学光学工程系,2010
    [11]郝允慧等.小型静态星模拟器光学系统设计.长春理工大学学报.2009,32(4):545-549
    [12]潘平.单星模拟器数字光源研制技术:[硕士学位论文].西安:中国科学院西安光学精密机械研究所,2005
    [13]王俣,张国玉等.基于TFT-LCD的动态星模拟器星点位置修正方法.中国光学.2011,4(3):247-251
    [14]贾辉.高精度星敏感器星点提取与星图识别研究:[博士学位论文].国防科学技术大学物理学.2010
    [15]张文明,林玲,郝永杰等.小型星模拟器中星图动态显示系统的设计.光电工程.2000,27(5):11-14
    [16]李平.提高星敏感器测角精度的研究:[硕士学位论文].哈尔滨:哈尔滨工程大学光学工程,2006
    [17]鞠雁志.用可旋转光楔实现星敏感器标检.控制工程.1995(2)
    [18]谢茜.关于培养我国航天专业紧缺人才的研究.科技资讯.2008,(14):200
    [19]王礼恒.我国航天的成就与发展.中国工程科学.2008,12(10):10-12
    [20]廖家莉.图像传感器噪声对恒星定位精度影响的理论与实验研究:[硕士学位论文].国防科学技术大学.2010
    [21]张丽敏.卫星多传感器自主导航方案及算法研究:[硕士学位论文].南京航空航天大学检测技术与自动化装置系.2008
    [22]潘旺华.基于多传感器信息融合的卫星姿态确定技术研究:[硕士学位论文].北京:国防科学技术大学兵器发射理论与技术,2004
    [23]张丽敏.卫星多传感器自主导航方案及算法研究:[硕士学位论文].南京航空航天大学检测技术与自动化装置系.2008
    [24]张辉.恒星敏感器.河池学报.2004,24(4):54-56
    [25]王晓东.大视场高精度星敏感器技术研究:[博士学位论文].长春:中国科学院研究生院,2003
    [26]张锐.基于CCD星敏感器的星图识别算法的设计与实现:[硕士学位论文].中国人民解放军信息工程大学摄影测量与遥感系.2007
    [27]杨锋.三轴稳定卫星姿态确定及控制系统的研究:[硕士学位论文].西北工业大学.2006
    [28]Shuster M D, OHS D. Three-axis attitude determination from vec-tor observation[J]. Journal of Guidance and Control, AIAA-81-4003,1981,1(4):70-77
    [29]屠善澄.卫星姿态动力学与控制.北京:宇航出版社,2001:330-336
    [30]Liebe C C, Alkalai L, Domingo G,etal. Miero APS based star traeker. In:IEEE Aerospaee Conferenee Proeeeding,2002,5(3):9-16
    [31]尹智科CMOS星敏感器卫星姿态定位系统设计:[硕士学位论文].武汉:华中科技大学模式识别与智能系统系,2006
    [32]屠善澄.卫星姿态动力学与控制.北京:宇航出版社,2001:277-281
    [33]刘垒,张路,郑辛等.星敏感器技术研究现状及发展趋势.红外与激光工程.2007,36(s2)530-533
    [34]M. Hlond, M. Bzowski. Star Sensor Deviee Simulation Prograjn. Seienee Working Team Meeting, Bern, Apirl 2007
    [35]Puneet Singla. A New Attitude Determination Approach Using Split Field of View Star Camera. Texas A&M University MASTER OFSCIENCE.2002:58-61
    [36]郑万波.基于星敏感器的全天自主分层星识别算法研究:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所光学工程系,2004
    [37]JinehunWang, Joohwan Chun. Attitude Determination Using a Single-Star Sensor and a Star-Density Table. Jouranl of Guidanee, Control, and Dynamies,2006,29(6):1329-1338
    [38]李春艳,李怀锋,孙才红.高精度星敏感器天文标定方法及观测分析.光学精密工程.2006,14(4):558-563
    [39]李杰.APS星敏感器关键技术的研究.:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所光学工程系,2005
    [40]钟红军,杨孟飞,卢欣.APS图像传感器及其在星敏感器中的应用.光学技术.2009,35(2):204-208
    [41]黄欣.一体化小型星敏感器.航天控制.2002(2):12-17
    [42]刘剑辉.航天器星光自主导航仿真系统研究与实现:[博士学位论文].北京:国防科学技术大学计算机科学与技术系,2008
    [43]陈吉.基于液晶光阀的星模拟器研究:[硕士学位论文].长春理工大学仪器科学与技术系.2008
    [44]杨锋.三轴稳定卫星姿态确定及控制系统的研究:[硕士学位论文].西安:西北工业大学系统工程系,2006
    [45]刘一武.惯性敏感器与星敏感器之间在轨自主标定比较研究.航天控制.2005,32(2):59-63
    [46]王炯琦等.复杂卫星抖动下的星敏感器姿态测量数据处理技术.电子与信息学报.2010,32(8):1885-1891
    [47]张辉等.电路噪声对星敏感器星点定位精度的影响.光学精密工程.2006,14(6):1053-1056
    [48]王安国,王华斌,唐君等.基于星图自动辨识的光学系统精确标定方法.电子学报.2011,39(3):575-578
    [49]袁彦红,耿云海等.陀螺/星敏感器在轨标定算法研究.系统工程与电子技术.2008,30(1):121-123
    [50]MA Jianbo, XU Jin, CAO Zhibin.A method of autonomous orbit determination for satellite using star sensor [J]. Science in China Ser. G Physics, Mechanics & Astronomy,2005,48(3):268-281.
    [51]王淑一.环境减灾-1A、1B卫星控制系统方案及在轨验证.航天器工程.2009,18(6):68-75
    [52]常晓华,崔平远等.太阳矢量在行星际探测器姿态估计中的应用研究.宇航学报.2010,31(3):759-762
    [53]袁彦红,耿云海,陈雪芹等.星敏感器自主在轨标定算法.上海航天.2008,3(5):7-9
    [54]陈雪芹等.基于二阶非线性滤波的星上陀螺在轨标定.哈尔滨工业大学学报.2008,40(11):1690-1695
    [55]段晓东.全天球实时星光模拟器的设计与标定.控制工程.1997(2)
    [56]李学夔,李杰.一种非设备方式对星敏感器进行精度标定的新方法.电子器件.2009,32(1):205-207
    [57]宋晓龙.全轨道实时星模拟器.系统仿真学报.1995,7(2):40-45
    [58]MARK E PITTELKAU. Kalman filter for spacecraft sys-tem alignment calibration [J]. Journal of Guidance, Control and Dynamics,2001,24(6):1187-1195
    [59]Malak A. Samaan, Todd Griffith, Puneet Singla, JohnL. Junkins. Autonomous On-Orbit Calibration of StarTrackers. PPT. Paper Presented at SpaceCore Technology Conference Colorado Springs, Co.2001:1-11
    [60]Puneet Singla. A New Attitude Determination Approach Using Split Field of View Star Camera. Texas A&M University MASTER OFSCIENCE.2002:58-61
    [61]Paul Sanneman, Teresa Hunt, Kathie Blackman. Design of the E0-1 Pulsed Plasma Thruster Attitude Control Experiment. Charles Zakrzwski.37th AIAA/ASME/SAE/ASEE Joint Propulsion. Conference.8~11 July 2001. Salt Lake City, Utah:3-11
    [62]Travis, H. D. Attitude Determination Using Star Tracker Data withKalman Filters:[Master's thesis]. Naval Postgraduate School, Monterey, CA. Dec 2001:2-11
    [63]胡绍林,黄刘生.自旋稳定卫星姿态参数的容错Kalman滤波.中国空间科学技术,2003(1):66-125
    [64]庄显忠.快速区域星图显示与分析:[硕士学位论文].南京航空航天大学光学工程系.2006
    [65]曲兆俊.基于电阻阵列红外场景投射的准直光学系统设计.红外技术.2009,31(8):446-449
    [66]李保中,韩邦杰,李艳晓.光电系统半实物仿真系统技术概述.电光与控制.2010,17(4):30-37
    [67]李明群等.基于资源一号02B卫星姿态敏感器的自主导航.空间控制技术与应用.2009,35(3):59-60
    [68]巩岩,胡宜宁,赵阳等.基于数字光处理技术的小型星模拟器设计.光学精密工程.2007,15(11):1699-1702
    [69]全伟,房建成等.天文导航系统半物理仿真研究.系统仿真学报.2006,18(2):353-358
    [70]陈志刚.对接仿真试验台姿态模拟装置优化设计与试验研究.机械工程学报.2006,42(3):203-205
    [71]钟红军,杨孟飞,卢欣.星敏感器标定方法研究.光学学报.2010,30(5):1343-1348
    [72]邢飞,尤政,董瑛.基于导航星域和K矢量的快速星图识别算法.宇航学报.2010,31(10):2302-2308
    [73]张晨.基于星跟踪器的航天器姿态确定方法研究:[硕士学位论文].华中科技大学模式识别与智能系统系.2005
    [74]郝雪涛,张广军,江浩.星敏感器模型参数分析与校准方法研究.光电工程.2005,32(3):6-8
    [75]王洪涛,罗长洲,王渝.星敏感器模型参数分析及校准方法研究.电子科技大学学报.2010,39(6):880-885
    [76]矫媛媛,周海银,李新娜.星敏感器光轴测量的锥面误差模型及其应用.宇航学报.2010,31(9):2138-2143
    [77]张辉,田宏,袁家虎等.星敏感器参数标定及误差补偿.光电工程.2005,32(9):1-4
    [78]郭敏等.CCD数字摄影在天文定位测量中的应用探讨.测绘技术装备.2005,7(1):28-29
    [79]苗永宽.球面天文学[M].科学出版社,1983:46-73
    [80]Carl Christian LIEBE. Accuracy Performance of Star Trackers-A Tutorial[J]. IEEE Trans. On Aerospace and Electronics System,2002,38(2):587-599.
    [81]郝雪涛,张广军,江浩.星敏感器模型参数分析与校准方法研究.光电工程.2005,32(3):6-8
    [82]常耀天等.一种广角镜头成像几何畸变校正算法实现.甘肃科技.2007年12期
    [83]M. Kruijff, N. v. d. Heiden. Automated Star Sensor Performance Assessment using Real-Sky Data of MEFIST 11[J]. Silver Spring,1989,8(3):85-95.
    [84]刑飞,武延鹏,董瑛,等.微型星敏感器实验室测试系统研究.光学技术,2004,30(6):703-709.
    [85]宿德志.一种快速稳定的星图识别方法及单星模拟器的调校:[硕士学位论文].国防科学技术大学国防科学技术大学.2010
    [86]刘亚平,李娟,张宏.星模拟器的设计与标定[J].红外与激光工程,2006,10(35):24-28
    [87]孙高飞,张国玉等.静态星模拟器及星点修正方法.激光与光电子学进展.2011,48(9):091201-1-091201-5
    [88]陆敬辉,王宏力,孙渊.应用相近模式向量的主星星图识别算法.红外与激光工程.2011,40(1):165-167
    [89]索旭华等.全天球实时恒星模拟器技术.航天控制.2002年1期
    [90]刘海波等.考虑卫星轨道运动和像移影响的星敏感器星图模拟方法.宇航学报.2011,32(5):1190-1194
    [91]陈吉.基于液晶光阀的星模拟器研究.长春理工大学.2008
    [92]赵晨光,谭久彬,刘俭,等.用于天文导航设备检测的星模拟装置.光学精密工程,2010,18(6):1326-1332.
    [93]刘海波,谭吉春,沈本剑等.像差对星敏感器星点定位精度的影响.光学技术.2009,35(3):471-473
    [94]欧阳桦.基于CCD星敏感器的星图模拟和导航星提取的方法研究.武汉:华中科技大学,2005
    [95]魏新国,张广军等.星敏感器中星图图像的细分定位方法研究.航天航空大学学报,2003,29(9):812-815.
    [96]孙向阳,张国玉,郝云彩.大尺寸高精度星模拟器光机结构设计.仪器仪表学报.2011,32(9):2121-2126
    [97]江万寿,谢俊峰,龚健雅.一种基于星形的星图识别算法.武汉大学学报.2008,33(1):13-16
    [98]张罡雷.星空背景建模算法及其在星敏感器上的应用:[硕士学位论文].燕山大学信息科学与工程学院.2007
    [99]http://baike.baidu.com/view/129862.htm
    [100]http://baike.baidu.com/view/7940.htm
    [101]http://baike.baidu.com/view/174223.htm
    [102]Hamid Hemmati. Deep Space Optical Communications[M]. Permissions Department,2006,4:181-191.
    [103]林子棋,张国玉等.基于TFT-LCD的动态星模拟器光学系统设计.长春理工大学学报.2011,34(2):28-29
    [104]李春霞,付苓,许世文等.星模拟器光学系统的设计.哈尔滨工业大学学报.1998,30(3):116-117
    [105]孙艳六.静态星模拟器自检星光学系统设计:[硕士学位论文].长春理工大学光学工程系.2010
    [106]Philippe Dierickx. HECTOMETRIC OPTICAL TELESCOPES ESO'S 100-M OWL TELESCOPE CONCEPT[J].European Southern Observatory,2003,29(5):73-86.
    [107]付虹,谢慕君,王志乾等.畸变补偿在光电测量系统中的应用.吉林大学学报.2009,47(6):1288-1290
    [108]Masanori ITABAI, Atsushi MINATol, Hiroki AZUM11, etc. Optical Design of a Space Retroreflector USing a Hybrid Search [J]. OPTICAL REVIEW,2002,9(1):25-28.
    [109]Bad Pyrmont, Mancheater. Principles of Optics[M]. Library of Congress in Publiaction Data,1988, 9(23):181-190.
    [110]刘钧.光学系统设计.西安:西安电子科技大学出版社,2006:244-258
    [111]袁健男.改进型卡塞格林望远光学系统的优化设计:[硕士学位论文].长春:长春理工大学光学工程系,2010
    [112]王志坚,王鹏,刘智颖.光学工程原理.北京:国防工业出版社,2010:156-158
    [113]宋东璠,张萍,王诚实等.基于ZEMAX的手机摄像镜头设计.应用光学.2010,31(1):35-38
    [114]苗兴华,薛鸣球,安葆青.长焦距平行光管.中国.ZL99256104.3
    [115]李春霞,茂华,董慧莲.长焦距宽谱段透射式光学系统的二级光谱与畸变.光学技术.1998,(6):23-25
    [116]陈塬,张文明.面向星模拟器的可调准色温光源.光电工程,2010,27(8):50-53.
    [117]胡宜,巩岩.星模拟器星光颜色模拟的初步研究.光电工程,2010,37(8):65-73.
    [118]Li Zi-wen. Sha Li-min. A serial LED display driver with Keyscan[J]. Control&Automation.2005. 21 (3):123-124.148
    [119]郑逢喜.单片机及DSP研发、智能化接口及计算机应用.南开大学南开大学.2002
    [120]路秋生.LED照明与应用.灯与光明.2010,33(4):24-28
    [121]刘文祥等.导航星座不完整对星间自主定轨几何精度因子的影响,空间科学学报,2011,31(3):366-371
    [122]杨维廉.一种高精度的卫星星历模型,空间科学学报,1999,19(2):148-153
    [123]郑冲,韩宏伟,周伯昭,吴杰.单星定向技术研究,空间科学学报,2006,26(4):282-286
    [124]刘延柱.星载光学敏感器受天体干扰的可能性分析,空间科学学报,2006,26(3):215-219
    [125]金尚忠,张树生,候民贤等.白光照明LED灯温度特性的研究.光源与照明.2004,6-8
    [126]杨伟,陈明宇等.一种时钟级处理器模拟器的快速开发方法.计算机工程与应用.2010,46(6):63-66
    [127]张以谟.应用光学.北京:电子工业出版社,2008:343-362
    [128]李春艳,谢华等.高精度星敏感器星点光斑质心算法.光电工程.2006,33(2):42-44
    [129]王有仁,周立民,吴一位等.精密测量相机畸变测量及数据处理.兵工学报.197,18(1):85-88
    [130]黄风山,钱惠芬.三坐标测量机驱动的摄像机标定技术.光学精密工程.2010,18(4):953-956

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700