用户名: 密码: 验证码:
染料敏化太阳能电池光阳极的制备、性质和光电转换机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
染料敏化TiO_2太阳能电池具有可见光响应强、光电转换效率高、环境友好和成本低等优点,对于新能源开发应用具有广阔的发展前景。但是,在光电转换的过程中,光生电子将通过染料敏化TiO_2太阳能电池的光阳极中的表面、界面缺陷,如,表面氧空位能级等与价带的光生空穴复合,从而降低了太阳能电池的光电转换效率。本论文针对上述难题,设计和制备了一系列新型染料敏化TiO_2太阳能电池的光阳极,详细研究了光阳极的物理化学性质,测定了染料敏化太阳能电池的光电转换效率,并讨论其光电转换机理。主要研究内容如下:
     1、采用改性的TiCl4水解法制备出TiO_2-5、TiO_2-10和TiO_2-20三种不同表面性质的样品。利用Rup2P((1,10-邻菲咯啉)2-2-(2-吡啶基)苯咪唑钌混配配合物)作为敏化剂,制备出Rup2P/TiO_2-5/ITO、Rup2P/TiO_2-10/ITO和Rup2P/TiO_2-20/ITO表面敏化薄膜电极。测试结果表明三种薄膜电极的光电转换效率为Rup2P/TiO_2-10/ITO最高,Rup2P/TiO_2-20/ITO次之,Rup2P/TiO_2-5/ITO最低。利用吸收光谱(DRS)、表面光电压谱(SPS)、荧光光谱(PL)和表面光电流作用谱等分析了Rup2P和三种TiO_2的能带结构和表面性质;利用光致循环伏安和表面光电流作用谱研究了三种薄膜电极的光致界面电荷转移过程。结果证明,在光致界面电荷转移过程中,TiO_2层表面氧空位对Rup2P/TiO_2-X/ITO薄膜电极光致电荷转移产生重要影响,并进一步讨论了Rup2P/TiO_2-X/ITO薄膜电极的光电流产生机理。
     2、采用溶胶-凝胶法制备出In表面修饰的TiO_2(TiO_2-Inx%)纳米粒子。利用N719(二(四丁基铵)顺式-双(异硫氰基)双(2,2'-联吡啶-4,4'-二羧酸)钌(II))作为敏化剂,制备出N719/TiO_2/FTO和N719/TiO_2-Inx%/FTO染料敏化薄膜电极。光电转换效率实验表明,N719/TiO_2-Inx%/FTO薄膜电极的光电转换效率均高于N719/TiO_2/FTO,其中N719/TiO_2-In0.1%/FTO的光电转换效率比N719/TiO_2/FTO提高了20%。利用X射线衍射谱(XRD)、X射线光电子能谱(XPS)、漫反射吸收光谱(DRS)、荧光光谱(PL)和表面光电流作用谱确定了TiO_2-Inx%样品中In离子的存在方式和能带结构;利用表面光电流作用谱研究了N719/TiO_2-Inx%/FTO薄膜电极的光致界面电荷转移过程。结果表明,In离子在TiO_2表面形成O-In-Cln(n=1或2)物种,该物种的表面态能级在导带下0.3eV;在光电流产生过程中,O-In-Cl(nn=1或2)表面态能级有效地抑制了光生载流子在TiO_2-Inx%层的复合,促进了阳极光电流的增加,从而导致N719/TiO_2-Inx%/FTO薄膜电极的光电转化效率高于N719/TiO_2/FTO,并进一步讨论了光致界面电荷转移的机理。
     3、采用溶胶-凝胶法制备出Sn掺杂的TiO_2(TiO_2-Snx%)纳米粒子。利用N719作为敏化剂,制备出N719/TiO_2/FTO和N719/TiO_2-Snx%/FTO染料敏化薄膜电极。利用X射线衍射谱(XRD)、X射线光电子能谱(XPS)、漫反射吸收光谱(DRS)、荧光光谱(PL)和表面光电流作用谱确定了TiO_2-Snx%样品中Sn离子的存在方式和能带结构。研究结果表明,Sn离子以取代式掺杂方式进入TiO_2晶格,在TiO_2下方0.1eV处形成掺杂能级;在光电流产生过程中,掺杂能级有效地抑制了光生载流子在TiO_2-Snx%层的复合,促进了阳极光电流的增加。光电转换效率实验表明,N719/TiO_2-Snx%/FTO薄膜电极的光电转换效率均高于N719/TiO_2/FTO,其中N719/TiO_2-In0.2%/FTO的光电转换效率比N719/TiO_2/FTO提高了46%。同时,利用表面光电流作用谱研究了N719/TiO_2-Snx%/FTO薄膜电极的光致界面电荷转移过程,并进一步讨论了光致界面电荷转移的机理。
     4、采用溶胶-凝胶法制备出B掺杂的TiO_2(TiO_2-Bx%)纳米粒子。利用N719作为敏化剂,制备出N719/TiO_2/FTO和N719/TiO_2-Bx%/FTO染料敏化薄膜电极。利用X射线衍射谱(XRD)、X射线光电子能谱(XPS)、漫反射吸收光谱(DRS)、荧光光谱(PL)和表面光电流作用谱确定了TiO_2-Bx%样品中B离子的存在方式和能带结构。结果表明,B离子以间隙式掺杂方式进入TiO_2晶格,掺杂能级的位置在TiO_2价带上方0.1eV。在光电流产生过程中,B掺杂有效地抑制了光生载流子在TiO_2-Bx%层的复合,促进了阳极光电流的增加。光电转换效率实验表明,N719/TiO_2-Bx%/FTO薄膜电极的光电转换效率高于N719/TiO_2/FTO,其中N719/TiO_2-B0.05%/FTO的光电转换效率比N719/TiO_2/FTO提高了15.8%。利用表面光电流作用谱研究了N719/TiO_2-Bx%/FTO薄膜电极的光致界面电荷转移过程,并进一步讨论了光致界面电荷转移的机理。
Dye-sensitized TiO_2solar cells with strong visible light response, highphotoelectric conversion efficiency, environment-friendly and low cost, and hasbroad prospects for development in the new energy development. However, in theprocess of the photoelectric conversion, photo-generated electrons will compositewith photo-generated holes of the valence band by the surface of the photoanode andinterface defects, such as surface oxygen vacancies energy levels, which wouldreducing the photoelectric conversion efficiency. In response to these problems, inthis paper we designed and prepared a series of new nano-titanium dioxide electrode,a detailed study of the physical and chemical properties of the thin-film electrode,photoelectric conversion efficiency of dye-sensitized solar cell and discuss itsphotoelectric conversion mechanism. The main points could be summarized asfollows:
     1、TiO_2-5, TiO_2-10and TiO_2-20samples prepared by modified TiCl4hydrolyzed,have different properties on surface. Then they were further surface-sensitized withthe Rup2P(Ru(phen)2(PIBH) complex)for surface sensitization film electrode ofRup2P/TiO_2-5/ITO, Rup2P/TiO_2-10/ITO and Rup2P/TiO_2-20/ITO. The measuredresults of photovoltaic properties of the three films revealed that Rup2P/TiO_2-10/ITOis best and the Rup2P/TiO_2-5/ITO is worst. We analyzed the energy band structures,properties on surface of Rup2P and the three TiO_2samples using DRS, SPS, PL andphotocurrent action spectrum; studied the photo-induced charge transfer process withcyclic voltammograms under irradiation and photocurrent action spectra. The resultsrevealed the oxygen vacancy at the TiO_2surface was very important for thephoto-induced charge transfer process of Rup2P/TiO_2-X/ITO, and further more wediscussed the photocurrent mechanism of Rup2P/TiO_2-X/ITO.
     2、We prepared surface-modified TiO_2nanoparticle (TiO_2-Inx%) by using sol-gelmethod. By using N719([NaRu(4,40-bis-(5-(hexylthio)thiophen-2-yl)-2,20-bipyridine)(4-carboxylicacid-40-carboxylate-2,20-bipyridine)(NCS)2]) as thesensitizing agent, the N719/TiO_2/FTO and N719/TiO_2-Inx%/FTO film electrodes were prepared. Under the solar cell structure of the thin film electrodes, thephotoelectric conversion efficiency of all the N719/TiO_2-Inx%/FTO film electrodeswere higher than that of N719/TiO_2/FTO, and the photoelectric conversion efficiencyof the N719/TiO_2-In0.1%/FTO was enhanced by20%than that of N719/TiO_2/FTO.We analyzed the band structure and presence of In ion in TiO_2-Inx%samples usingXRD, XPS, DRS, PL spectra and surface photocurrent action spectra. Thephoto-induced charge transfer process of the N719/TiO_2-Inx%/FTO film electrodeswere studied by surface photocurrent action spectra. The results show that the speciesO-In-Cl(nn=1or2)are formed at the TiO_2surface, and the surface state energy levelsof the species locates at0.3eV below the conduction band of TiO_2. The surface stateenergy levels of the species can effectively inhibit the recombination ofphoto-generated carrier in the process of photocurrent generation, increase the anodicphotocurrent, and improve the photoelectric conversion efficiency ofN719/TiO_2-Inx%/FTO thin film electrode significantly. And the charge transfermechanism in the light-induced interfacial is further discussed.
     3、We prepared Sn ions doped TiO_2nanoparticle (TiO_2-Snx%) by using sol-gelmethod. By using N719as the sensitizing agent, the N719/TiO_2/FTO andN719/TiO_2-Snx%/FTO film electrodes were prepared. We analyzed the bandstructure and presence of Sn ion in TiO_2-Snx%samples using XRD, XPS, DRS, PLspectra and surface photocurrent action spectra. The results show that the Sn ionssubstituted the lattice titanium ions in TiO_2lattice. And thus, the doping energy levelwas located at0.1eV below the conduction band of TiO_2; The energy levels of thespecies can effectively inhibit the recombination of photo-generated carrier in theprocess of photocurrent generation, increase the anodic photocurrent. Under the solarcell structure of the thin film electrodes, the photoelectric conversion efficiency of allthe N719/TiO_2-Snx%/FTO film electrodes were higher than that of N719/TiO_2/FTO,and the photoelectric conversion efficiency of the N719/TiO_2-Sn0.2%/FTO wasenhanced by46%than that of N719/TiO_2/FTO. The photo-induced charge transferprocess of the N719/TiO_2-Snx%/FTO film electrodes were studied by surfacephotocurrent action spectra. And the charge transfer mechanism in the light-inducedinterfacial is further discussed.
     4、We prepared B ions doped TiO_2nanoparticle (TiO_2-Bx%) by using sol-gelmethod. By using N719as the sensitizing agent, the N719/TiO_2/FTO andN719/TiO_2-Bx%/FTO film electrodes were prepared. We analyzed the band structureand presence of Sn ion in TiO_2-Bx%samples using XRD, XPS, DRS, PL spectra andsurface photocurrent action spectra. The results show that the B ions gap-type dopinginto the TiO_2lattice; the doping energy level was located at0.1eV on the valenceband of TiO_2. The B doped TiO_2can effectively inhibit the recombination ofphoto-generated carrier in the process of photocurrent generation, increase the anodicphotocurrent. Under the solar cell structure of the thin film electrodes, thephotoelectric conversion efficiency of the N719/TiO_2-Bx%/FTO film electrodes werehigher than that of N719/TiO_2/FTO, and the photoelectric conversion efficiency ofthe N719/TiO_2-B0.05%/FTO was enhanced by15.8%than that of N719/TiO_2/FTO.The photo-induced charge transfer process of the N719/TiO_2-Bx%/FTO filmelectrodes were studied by surface photocurrent action spectra., and the chargetransfer mechanism in the light-induced interfacial is further discussed.
引文
[1] Green M A. Photovoltaic principles. Physica E.2002,14:11-17.
    [2] Becquerel A E. Recherches sur les effets de la radiation chimique de la lumiere solaire,aumoyen descourants electriques.C.R. Acad.Sci.,Paris.1839,9:561-567.
    [3] Adams W G,Day R E. Proc.Roy.Soc.London A.1877,25:113
    [4] Firtts C E.Am.J.Sci.1883,26:465.
    [5] Ohl RS.Light-sensitive device ineluding silieon.US Patent No.2443542,1941.
    [6] Chapin D M,Fullerand C S,Pearson G L.A new silicon p-n junction photocell for convertingsolar radiation into electrical power[J].J.Appl.Phys.1954,25:676.
    [7] J.Zhao,A.Wang,M.A.Green,F.Femzza,Appl.Phys.Lett.1998,73,1991.
    [8] Ralph,E.L. Intersociety energy conversion engineering conference.1968,2,116
    [9] Hill,R. Renewable Energy World1998,1,22.
    [10]蒋荣华,肖顺珍.杨卫东。硅基太阳能电池与材料[J].新材料产业,2003,(7):8213.
    [11] Carlson,D. E.; Wronski,“Amorphous silicon solar cell”, Appl. Phys. Lett.1976,28,671
    [12] Kazmerski,L. Solar photovoltaics at the tipping point: a technology overview.2006,150,105.
    [13] Hill,R. Renewable Energy World1998,1,22.
    [14] Kurtz,S. R.; McConnell,R. A. Conf. Proc.1997,404,191
    [15] Kazmerski,L. L.; White,F. R.; Morgan, G. K. Thin-film CuInSe2/CdS heterojunction solarcells[J]. Appl.Phys.Lett.1976,29,268.
    [16] Yang,J. X.; Jin,Z. G.; Chai,Y. T. Thin solid films.2009,517,6617.
    [17] Kondo,k.;Sano,H.;Sato,K.Thin solid films.1998,326,83.
    [18]宋慧瑾. CdTe太阳电池的不同背电极及封装特性研究.[硕士学位论文].四川:四川大学,2006.
    [19] Regan B O’,Gr tzel M,A low-cost,high-efficiency solar cell based on dye-sensitizedcolloidal TiO_2films,Nature,1991,353:737-740
    [20] A.A.Gribb and J.F.Banfield,Particle size effects on transformation kinetics and phasestability in nanocrystalline TiO_2.American Mineralogist,1997.82(7-8):p.717-728.
    [21]刘昭麟,张志焜,纳米TiO_2的结构相变和光学性能,青岛科技大学学报,2004,25:26-8
    [22] Aparicio M,Klein L C.Sol-gel synthesis and characterization of SiO_2-P2O5-ZrO_2[J].Journalof Sol-Gel Science and Technology,2003,28(2):199-204.
    [23] Xia X H, Liang Y, Wang Z, et al.Synthesis and photocatalytic properties of TiO_2nanostructures[J].Materials Research Bulletin,2008,43(8-9):2187-2195.
    [24]陈春英等.二氧化钛纳米材料生物效应与安全应用.北京:科学出版社;2010.
    [25]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002
    [26] Leland J K,Bard A J,Photochemistry of colloidal semiconducting iron oxide polymorphs,Journal of Physical Chemistry,1987,91:5076-83
    [27] Farin D,Kiwi J,Avnir D,Size effects in photoprocesses on dispersed catalysts, Journal ofPhysical Chemistry,1989,93:5851-4
    [28] Gr tzel M,Sol-gel processed TiO2films for photovoltaic applications,Journal of Sol-GelScience and Technology,2001,22:7-13
    [29]王维波,李学萍,肖绪瑞,TiO2多孔薄膜电极的制备、微结构及光电化学性能研究,感光科学与光化学,1997,15:161-4
    [30] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity bycis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers (X=Cl-,B-,I-, CN-,and SCN-) on nanocrystalline TiO2electrodes, Journal of the American ChemicalSociety,1993,115:6382-6390
    [31] Regan B O’,Gr tzel M,A low-cost,high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films,Nature,1991,353:737-40
    [32]刘永兴,尚华美,于玲,等,溶胶―凝胶法制备稀土掺杂多孔TiO2薄膜的表面形貌及性能研究,材料导报,2001,15:64-6
    [33]程黎放,王瑜,戴松元,等,纳米晶体TiO2多孔膜的制备、性能及其在太阳能电池中的应用,材料研究学报,1996,10:404-8
    [34] Nicholas A K,Fiona C M,Janos H F,Monoparticulate layers of titanium dioxidenanocrystallites with controllable interparticle distances,Journal of Physical Chemistry,1994,98:8827-30
    [35] Stephen D,Donald F,Preparation and characterization of transparent nanocrystalline TiO2films possessing well-defined morphologies,Journal of Physical Chemistry,1996,100:10732-70738
    [36] Kato K,Tsuzuki A,Torii Y,et al.Morphology of thin antase coatings prepared from alkoxidesolutions containing organic polymer,affecting the photocatalytic decompositionof aqueousacetic acid,Journal of Materials Science,1995,30:837-41
    [37]陈文梅,赵修建,溶胶凝胶法制备TiO2多孔纳米薄膜,武汉工业大学学报,2000,22:6-9
    [38]雅菁,徐明霞,溶胶-凝胶技术在氧化物薄膜制备方面的应用,材料工程,1996,5:21-3
    [39] Scherer G W,Stress and fracture during drying of gels,Journal of Non-CrystallineSolids,1990,121:104-9
    [40] Sakka S,Kamiya K,Makita K,et al.Formation of sheets and coating films from alkoxidesolutions,Journal of Non-Crystalline Solids,1984,63:223-35
    [41]胡勇胜,陈文,徐庚,溶胶―凝胶在薄膜制备技术的研究,陶瓷工程,2000,34:7-9
    [42]孙一军,张志峰,用MOCVD方法制备TiO2薄膜:工艺及进展,硅酸盐通报,1997,2:37-40
    [43]曹亚安,沈东方,张昕彤,等,Sn4+掺杂对TiO2纳米颗粒膜光催化降解苯酚活性的影响,高等学校化学学报,2001,22:1910-2
    [44] Weinberger B R,Garber R B,Titanium dioxide photocatalysts produced by reactivemagnetron sputtering,Applied Physics Letters,1995,66:2409-11
    [45] Nagayama H,Honda H,Kawahara H,Physical and chemical properties of silicon dioxide filmdeposited by new process,Journal of The Electrochemical Society,1998,135:2013-6
    [46] Deki S,Aoi Y,Kajinami A,A novel wet process for the preparation of vanadium dioxide thinfilm,Journal of Materials Science,1997,32:4269-73
    [47] Baskaran L,Song J,Liu Y L,et al.Low-temperature synthesis of anatase thin films on glassand organic substrates by direct deposition from aqueous solutions,Thin Solid Films,1999,351:220-4
    [48] Baskaran L,Song J,Liu Y L,et al.Titanium oxide thin films on organic inter-faces throughbiomimetic processing,Journal of the American Ceramics Society,1998,81:401-8
    [49] Deki S,Aoi Y,Hiroi O,et al.Titanium(IV)oxide thin films prepared from aqueoussolution,Chemistry Letters,1996,294:433-4
    [50] Karuppuchamy S,Nonomura K,Yoshida T,et al.Cathodic electrodeposition of oxidesemiconductor thin films and their application to dye-sensitized solar cells,Solid StateIonics,2002,151:19-21
    [51]罗瑾,周静,祖延兵,等,电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究,高等学校化学学报,1998,19:1484-7
    [52] Zhang D S,Yoshida T,Minoura H,Low temperature synthesis of porous nanocrystalline TiO2thick film for dye-sensitized solar cells by hydrothermal crystallization,ChemistryLetters,2002,31:874-5
    [53] Lao C F,Chuai Y T,Su L,et al.Mix-solvent-thermal method for the synthesis of anatasenanocrystalline titanium dioxide used in dye-sensitized solar cell, Solar Energy Materials andSolar Cells,2005,85:457-65
    [54] Hirashima H,Imai H,Balek V,Preparation of meso-porous TiO2gels and theircharacterization,Journal of Non-Crystalline Solids,2001,285:96-100
    [55] Yamashita H,Ichihashi Y,Anpo M,et al.Photocatalycic decomposition of NO at275K ontitanium oxides included within Y-zeolites, Journal of Physical Chemistry,1996,100:16041-4
    [56]李晓平,徐宝琨,刘国范,等,纳米TiO2光催化降解水中有机污染物的研究与发展,功能材料,1999,30:242-5
    [57] Fujishima A,Honda K,Electrochemical photolysis of water at a semiconductor electrode,Nature,1972,238:37-8
    [58]祖庸,雷闫盈,李晓娥,等,纳米TiO2―一种新型的无机抗菌剂,现代化工,1999,19:46-8
    [59] Khalil L B,Mourad W E,Rophael M W,Photocatalytic reduction of environmental pollutantCr(VI)over some semiconductors under UV/visible light illumination,Applied CatalysisB:Environmental,1998,17:267-73
    [60]余家国,赵修建,多孔TiO2薄膜自洁净玻璃亲水性和光催化活性,高等学校化学学报,2000,21:1437-40
    [61] Gao L,Li Q,Song Z,et al. Preparation of nano-scale titania thick film and its oxygensensitivity,Sensors and Actuators B:Chemical,2000,71:179-83
    [62]戴松元,王孔嘉,邬钦崇,等,NPC电池高光电转化效率的原因探讨,太阳能学报,1996,6:220-5
    [63] Dai S Y, Wang K J, Optimum nanoporous TiO2film and its application to dye-sensitizedsolar cells,Chinese Physics Letters,2003,20:953-5
    [64] Mohammad K,Nazeeruddin P P,Thierry R,et al.Engineering of efficient panchromaticsensitized for nanocrystalline TiO2-based solar cells,Journal of the American ChemicalSociety,2001,123:1613-24
    [65] Gr tzel M,Sol-gel processed TiO2films for photovoltaic applications,Journal of Sol-GelScience and Technology,2001,22:7-13
    [66] Regan B O’,Gr tzel M,A low-cost,high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films,Nature,1991,353:737-40
    [67] Gr tzel M,Conversion of sunlight to electric power by nanocrystalline dye-sensitized solarcells,Journal of Photochemistry and Photobiology A:Chemistry,2004,164:3-14
    [68] Nazeeruddin M K,De Angelis F,Fantacci S,et al.Combined experimental and DFT-TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers,Journal of theAmerican Chemical Society,2005,127:16835-47
    [69] Ito S,Liska P,Comte P,et al.Control of Dark Current in Photoelectrochemieal (TiO-2/I/I-3)and dye-sensitizedsolareells[J].Chemieal Communications.2005,34:4351-4353
    [70] Chen R,Yang X,Tian H,et al. Effect of Tetrahydroquinoline Dyes Structure on thePerformance of Organic Dye-Sensitized Solar Cells[J].Chemistry of Materials.2007,19(16):4007-4015
    [71] Hara K,Miyamoto K,Abe Y,et al. Electron Transport in Coumarin-Dye-SensitizedNanocrystalline TiO2Electrodes[J].The Journal of Physical Chemistry B.2005,109(50):23776-23778
    [72] Hara K,Dan-oh Y,Kasada C,et al. Effect of Additives on the Photovoltaic Performance ofCoumarin-Dye-Sensitized Nanocrystalline TiO2Solar Cells[J]. Langmuir.2004,20(10):4205-4210
    [73] Jang S R,Lee C,Choi H,et al. Oligophenyleneviylene-Funetionalized Ru(Ⅱ)-bipyridineSensitizers for Efficient Dye-Sensitized Nanocrystalline TiO2Solar Cells[J].Chemistry ofMaterials.2006,l8(23):5604-5608
    [74] Klein C,Nazeeruddin M K,Liska P,et al. Engineering of a Novel Ruthenium Sensitizer andIts Application in Dye-Sensitized Solar Cells for Conversion of Sunlight intoElectricity[J].Inorganic Chemistry.2004,44(2):178-180
    [75] Nazeeruddin M K,De Angelis F,Fantacci S,et al.Combined experimental and DFT-TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers, Journal of theAmerican Chemical Society,2005,127:16835-16847
    [76] Wang P,Zakeeruddin S M,Humphry-Baker R,et al. A Binary Ionic Liquid Electrolyte toAchieve>7%Power Conversion Efficiencies in Dye-Sensitized Solar Cells[J]. Chemisty ofMaterials.2004,16(14):2694-2696
    [77] Wang P,Zakeeruddin S M,Comte P,et al. Gelation of Ionic Liquid-Based Electrolytes WithSilica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells[J].Journal of theAmerican Chemical Society.2003,125(5):1166-1167
    [78] Wang P,Zakeeruddin S M,Moser J-E,et al. A New Ionic Liquid Electrolyte Enhances theConversion Efficiency of Dye-Sensitized Solar Cells[J].The Journal of Physical ChemistryB.2003,107(48):13280-13285
    [79] Hagfeldt A,Gr tzel M. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chem.Rev.,1995,95:49-68.
    [80] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers (X=Cl-, B-,I-,CN-,and SCN-) on nanocrystalline TiO2electrodes, Journal of the American ChemicalSociety,1993,115:6382-6390
    [81]田海宁.芳胺类光敏染料用于染料敏化太阳能电池的研究:[博士学位论文].大连:大连理工大学,2009.
    [82]杨述明.染料敏化纳米晶太阳能电池[硕士学位论文].郑州:郑州大学出版社,2007.
    [83] Ooyama Y,Harima Y. Molecular Designs and Syntheses of Organic Dyes for Dye-SensitizedSolar Cells[J].Eur.J.Org.Chem.,2009,2903-2934.
    [84]高建华,钱伟君,吴伟等.染料敏化太阳能电池TiO2薄膜的制备方法[J].理化检验(物理分册),2008,44(08):431-437.
    [85] Charoensirithavorn P,Ogomi Y,Sagawa T,et al.Improvement of Dye-Sensitized Solar CellThrough TiCl4-Treated TiO2Nanotube Arrays[J]. Journal of the Electrochemical Society,2010,157(3):B354-B356.
    [86] Roy P,Kim D,Paramasivam I,et al.Improved efficiency of TiO2nanotubes in dye sensitizedsolar cells by decoration with TiO2nanoparticles[J]. Electrochemistry Communications,2009,11(5):1001-1004.
    [87]张东社,刘尧,王维波等.纳晶多孔TiO2薄膜电极的化学处理[J].科学通报,2000,45(9):929-932.
    [88]李文欣,胡林华,戴松元.染料敏化太阳电池研究进[J].中国材料进展,2009,28(7-8):20-26.
    [89] Hao S C,Wu J H,Fan L Q,et al.The influence of acid treatment of TiO2porous film electrodeon photoelectric performance of dye-sensitized solar cell[J].Solar Energy,2004,76(6):745-750.
    [90] Park K H,Jin E M,Gu H B,et al.Effects of HNO3treatment of TiO2nanoparticles on thephotovoltaic properties of dye-sensitized solar cells[J]. Materials Letters,2009,63(26):2208-2211.
    [91] Balraju P,Kumar M,Roy M S,et al.Dye sensitized solar cells(DSSCs)based on modified ironphthalocyanine nanostructured TiO2electrode and PEDOT:PSS counter electrode[J].Synthetic Metals,2009,159(13):1325-1331.
    [92] Wang Z S,Li F Y,Huang C H.Photocurrent enhancement of hemicyanine dyes containingRSO3-group through treating TiO2films with hydrochloric acid[J]. Journal of PhysicalChemistry B,2001,105(38):9210-9217.
    [93] Sharma S,Varghese O K,Mor G K,et al.Ethanol vapor processing of titania nanotube arrayfilms:enhanced crystallization and photoelectrochemical performance[J].Journal of MaterialsChemistry,2009,19(23):3895-3898.
    [94] Murayama M,Mori T.Evaluation of treatment effects for high-performance dye-sensitizedsolar cells using equivalent circuit analysis[J].Thin Solid Films,2006,509(1-2):123-126.
    [95] Ma T L,Akiyama M,Abe E,et al.High-efficiency dye-sensitized solar cell based on anitrogen-doped nanostructured titania electrode[J].Nano Letters,2005,5(12):2543-2547.
    [96] Tian H J,Hu L H,Zhang C N,et al.Retarded Charge Recombination in Dye-SensitizedNitrogen-Doped TiO2Solar Cells[J].Journal of Physical Chemistry C,2010,114(3):1627-1632.
    [97] Reyes-Gil K R,Reyes-Garcia E A,Raftery D.Photoelectrochemical analysis of anion-dopedTiO2colloidal and powder thin-film electrodes[J].Journal of the Electrochemical Society,2006,153(7):A1296-A1301.
    [98] Kang S H,Kim J Y,Kim Y K,et al.Effects of the incorporation of carbon powder intonanostructured TiO2film for dye-sensitized solar cell[J].Journal of Photochemistry andPhotobiology a-Chemistry,2007,186(2-3):234-241.
    [99] Kang S H,Kim J Y,Sung Y E.Role of surface state on the electron flow in modified TiO2filmincorporating carbon powder for a dye-sensitized solar cell[J]. Electrochimica Acta,2007,52(16):5242-5250.
    [100] Wang, K. P., Teng, H. Zinc-doping in TiO2films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.2009,11,9489.
    [101] Lu, X., Mou, X., Wu, J. et al. Ultraviolet Sensors: An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability.Adv.Funct. Mater.2010,20,509.
    [102] Iwamoto, S., Sazanami, Y., Inoue, M., et al. Fabrication of Dye-Sensitized Solar Cells withan Open-Circuit Photovoltage of1V.ChemSusChem2008,1,401.
    [103] Du1rr, M, Rosselli, S, Yasuda, A. Band-Gap Engineering of Metal Oxides for Dye-Sensitized Solar Cells.J. Phys. Chem. B2006,110,21899.
    [104] Alarcon H,Hedlund M,Johansson E M J,et al.Modification of nanostructured TiO2electrodes by electrochemical Al3+insertion:Effects on dye-sensitized solar cellperformance[J]. Journal of Physical Chemistry C,2007,111(35):13267-13274.
    [105] Kim C,Kim K S,Kim H Y,et al.Modification of a TiO2photoanode by using Cr-doped TiO2with an influence on the photovoltaic efficiency of a dye-sensitized solar cell[J].Journal ofMaterials Chemistry,2008,18(47):5809-5814.
    [106]杨术明,李福友,黄春辉.染料敏化稀土离子修饰二氧化钛纳米晶电极的光电化学性质[J].《中国科学》(B辑),2003,33(1):59-65.
    [107]李树全,林建明,吴季怀,等.Ho3+上转换发光在染料敏化太阳能电池中的应用[J].功能材料,2009,40(1):82-85.
    [108] Sawatsuk T,Chindaduang A,Sae-Kung C,et al.Dye-sensitized solar cells based on TiO2-MWCNTs composite electrodes:Performance improvement and their mechanisms[J].Diamond and Related Materials,2009,18(2-3):524-527.
    [109] Palomares, E., Clifford, J. N., Haque, S. A. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide BlockingLayers.J. Am. Chem. Soc.2003,125,475.
    [110]庞山,谢腾峰,张宇,等.TiO2/ZnO薄膜电极中光生电子的传输及其在太阳电池中的应用[J].高等学校化学学报,2007,28(11):2187-2189.
    [111]王育乔,孙岳明,代云茜,等.二氧化钛纳米管复合薄膜电极制备及其在染料敏化太阳能电池中的应用[J].东南大学学报:自然科学版,2008,38(1):162-165.
    [112] Kitiyanan A,Sakulkhaemaruethai S,Suzuki Y,et al.Structural and photovoltaic properties ofbinary TiO2-ZrO2oxides system prepared by sol-gel method[J]. Composites Science andTechnology,2006,66(10):1259-1265.
    [113] Chou C S,Yang R Y,Yeh C K,et al.Preparation of TiO2/Nano-metal composite particles andtheir applications in dye-sensitized solar cells[J].Powder Technology,2009,194(1-2):95-105.
    [114] Gong D,Grimes C A,Varghese O K,et al.Titanium oxide nanotube arrays prepared byanodic oxidation[J].Journal of Materials Research,2001,16(12):3331-3334.
    [115] Shankar K,Mor G K,Prakasam H E,et al.Highly-ordered TiO2nanotube arrays up to220mum in length:use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology,2007,18(6):11.
    [116] Allam N K,Grimes C A.Formation of vertically oriented TiO2nanotube arrays using afluoride free HCl aqueous electrolyte[J].Journal of Physical Chemistry C,2007,111(35):13028-13032.
    [117] Varghese O K,Paulose M,Grimes C A.Long vertically aligned titania nanotubes ontransparent conducting oxide for highly efficient solar cells[J]. Nature Nanotechnology,2009,4(9):592-597.
    [118] Shankar K,Basham J I,Allam N K,et al.Recent Advances in the Use of TiO2Nanotube andNanowire Arrays for Oxidative Photoelectrochemistry[J].Journal of Physical ChemistryC,2009,113(16):6327-6359.
    [119] Shankar K,Bandara J,Paulose M,et al.Highly efficient solar cells using TiO2nanotubearrays sensitized with a donor-antenna dye[J].Nano Letters,2008,8(6):1654-1659.
    [120] Paulose M,Shankar K,Varghese O K,et al.Application of highly-ordered TiO2nanotube-arrays in heterojunction dye-sensitized solar cells[J].Journal of Physics D-Applied Physics,2006,39(12):2498-2503.
    [121] Paulose M,Shankar K,Varghese O K,et al.Backside illuminated dye-sensitized solar cellsbased on titania nanotube array electrodes[J].Nanotechnology,2006,17(5):1446-1448.
    [122] Ong K G,Varghese O K,Mor G K,et al.Application of finite-difference time domain todye-sensitized solar cells:The effect of nanotube-array negative electrode dimensions onlight absorption[J].Solar Energy Materials and Solar Cells,2007,91(4):250-257.
    [123] Grimes C A.Synthesis and application of highly ordered arrays of TiO2nanotubes[J].Journal of Materials Chemistry,2007,17(15):1451-1457.
    [124] Fabregat-Santiago F,Barea E M,Bisquert J,et al.High carrier density and capacitance inTiO2nanotube arrays induced by electrochemical doping[J]. Journal of The AmericanChemical Society,2008,130(34):11312-11316.
    [125] Allam N K,Shankar K,Grimes C A.A General Method for the Anodic Formation ofCrystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing[J].Advanced Materials,2008,20(20):3942-3946.
    [126] Allam N K,Grimes C A.Effect of cathode material on the morphology andphotoelectrochemical properties of vertically oriented TiO2nanotube arrays[J]. SolarEnergy Materials and Solar Cells,2008,92(11):1468-1475.
    [127] Jiu J T,Wang F M,Isoda S,et al.Highly efficient dye-sensitized solar cells based on singlecrystalline TiO2nanorod film[J].Chemistry Letters,2005,34(11):1506-1507.
    [128] Jiu J T,Isoda S,Wang F M,et al.Dye-sensitized solar cells based on a single-crystalline TiO2nanorod film[J].Journal of Physical Chemistry B,2006,110(5):2087-2092.
    [129] Adachi M,Murata Y,Okada I,et al.Formation of titania nanotubes and applications fordye-sensitized solar cells[J].Journal of the Electrochemical Society,2003,150(8):G488-G493.
    [130] Adachi M,Murata Y,Takao J,et al.Highly efficient dye-sensitized solar cells with a titaniathin-film electrode composed of a network structure of single-crystal-like TiO2nanowiresmade by the"oriented attachment" mechanism [J].Journal of The American ChemicalSociety,2004,126(45):14943-14949.
    [131]王育乔,孙岳明,代云茜,等.二氧化钛纳米管复合薄膜电极制备及其在染料敏化太阳能电池中的应用[J].东南大学学报:自然科学版,2008,38(1):162-165.
    [132] Feng X J,Shankar K,Varghese O K,et al.Vertically Aligned Single Crystal TiO2NanowireArrays Grown Directly on Transparent Conducting Oxide Coated Glass:Synthesis Detailsand Applications[J].Nano Letters,2008,8(11):3781-3786.
    [133] Wang W L,Lin H,Li J B,et al.Formation of titania nanoarrays by hydrothermal reaction andtheir application in photovoltaic cells[J].Journal of the American Ceramic Society,2008,91(2):628-631.
    [134] Yang L,Lin Y,Jia J G,et al.Light harvesting enhancement for dye-sensitized solar cells bynovel anode containing cauliflower-like TiO2spheres[J].Journal of Power Sources,2008,182(1):370-376.
    [135] Kang S H,Lim J W,Kim H S,et al.Photo and Electrochemical Characteristics Dependent onthe Phase Ratio of Nanocolumnar Structured TiO2Films by RF Magnetron SputteringTechnique[J].Chemistry of Materials,2009,21(13):2777-2788.
    [136] Kang S H,Kang M S,Kim H S,et al.Columnar rutile TiO2based dye-sensitized solar cells byradio-frequency magnetron sputtering[J].Journal of Power Sources,2008,184(1):331-335.
    [137] Kang S H,Kim H S,Kim J Y,et al.An investigation on electron behavior employingvertically-aligned TiO2nanotube electrodes for dye-sensitized solar cells[J].Nanotechnology,2009,20(35):6.
    [138] Kang S H,Lim J W,Kim H S,et al.Photo and Electrochemical Characteristics Dependent onthe Phase Ratio of Nanocolumnar Structured TiO2Films by RF Magnetron SputteringTechnique[J].Chemistry of Materials,2009,21(13):2777-2788.
    [139] Gao X P,Zhu H Y,Pan G L,et al.Preparation and electrochemical characterization of anatasenanorods for lithium-inserting electrode material[J]. Journal of Physical Chemistry B,2004,108(9):2868-2872.
    [140] Chen P,Brillet J,Bala H,et al.Solid-state dye-sensitized solar cells using TiO2nanotubearrays on FTO glass[J].Journal of Materials Chemistry,2009,19(30):5325-5328.
    [141] de Tacconi N R,Chanmanee W,Rajeshwar K,et al.Photoelectrochemical Behavior ofPolychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays forDye-Sensitized Solar Cells[J].Journal of Physical Chemistry C,2009,113(7):2996-3006.
    [142] Zhang X T,Liu H W,Taguchi T,et al.Slow interfacial charge recombination in solid-statedye-sensitized solar cell using Al2O3-coated nanoporous TiO2films[J].Solar EnergyMaterials and Solar Cells,2004,81(2):197-203.
    [143] Menzies D B,Dai Q,Bourgeois L,et al.Modification of mesoporous TiO2electrodes bysurface treatment with titanium(IV),indium(III)and zirconium (IV)oxide precursors:preparation, characterization and photovoltaic performance in dye-sensitizednanocrystalline solar cells[J].Nanotechnology,2007,18(12):1-11.
    [144] Kim S S,Yum J H,Sung Y E.Improved performance of a dye-sensitized solar cell using aTiO2/ZnO/Eosin Y electrode[J].Solar Energy Materials and Solar Cells,2003,79(4):495-505.
    [145] Diamant Y,Chen S G,Melamed O,et al.Core-shell nanoporous electrode for dye sensitizedsolar cells:the effect of the SrTiO3shell on the electronic properties of the TiO2core[J].Journal of Physical Chemistry B,2003,107(9):1977-1981.
    [146] Wu S J,Han H W,Tai Q D,et al.Improvement in dye-sensitized solar cells employing TiO2electrodes coated with Al2O3by reactive direct current magnetron sputtering[J]. Journal ofPower Sources,2008,182(1):119-123.
    [147] Zhang X T,Sutanto I,Taguchi T,et al.Al2O3-coated nanoporous TiO2electrode for solid-statedye-sensitized solar cell[J].Solar Energy Materials and Solar Cells,2003,80(3):315-326.
    [148]周卫,付宏刚,潘凯,等.电泳沉积法制备介孔TiO2/单壁碳纳米管薄膜[J].高等学校化学学报,2009,30(10):2036-2039.
    [149] Seabold J A,Shankar K,Wilke R H T,et al.Photoelectrochemical Properties ofHeterojunction CdTe/TiO2Electrodes Constructed Using Highly Ordered TiO2NanotubeArrays[J].Chemistry of Materials,2008,20(16):5266-5273.
    [150] Liu Z Y,Pan K,Liu M,et al.Al2O3-coated SnO2/TiO2composite electrode for thedye-sensitized solar cell[J].Electrochimica Acta,2005,50(13):2583-2589.
    [151] Kang S H,Kim J Y,Kim Y,et al.Surface modification of stretched TiO2nanotubes forsolid-state dye-sensitized solar cells[J].Journal of Physical Chemistry C,2007,111(26):9614-9623.
    [152] Kuang S Y,Yang L X,Luo S L,et al.Fabrication,characterization and photoelectrochemicalproperties of Fe2O3modified TiO2nanotube arrays[J]. Applied Surface Science,2009,255(16):7385-7388.
    [1] O’Regan, B., Gr tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature.1991,353,737.
    [2] Gr tzel, M. J. Dye-sensitized solar cells.Photochem. Photobiol. C-Photochem. Rev.2003,4,145.
    [3] Peng, B., Jungmann, G., Jager, C, et al. Systematic investigation of the role of compact TiO2layer in solid state dye-sensitized TiO2solar cells. Coord. Chem. Rev.2004,248,1479.
    [4] Nazeeruddin, M. K., Gratzel, M. Engineering of Efficient Panchromatic Sensitizers forNanocrystalline TiO2-Based Solar Cells. J. Am. Chem. Soc.2001,123,1613.
    [5] Wang, P., Zakeeruddin, S. M., Gratzel, M. Enhance the Performance of Dye-Sensitized SolarCells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid onTiO2Nanocrystals. J. Phys. Chem. B.2003,107,14336
    [6] Gr tzel, M. Photoelectrochemical cells. Nature.,2001,414,338
    [7] Min-Hye K., Young-Uk K. Semiconductor CdO as a Blocking Layer Material on DSSCElectrode: Mechanism and Application. J. Phys. Chem. C.2009,113,17176
    [8] Zaban, A., Zhang, J. Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations.J. Phys. Chem. B.2003,107,6022
    [9] Hagfeldt, A.; Gr tzel, M. Molecular Photovoltaics. Acc. Chem. Res.2000,33,269
    [10] Gr tzel, M. Applied physics:Solar cells to dye for.Nature.2003,421,586
    [11] Gr tzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells.Inorg. Chem.2005,44,6841
    [12] Kopidakis, N., Benkstein, K. D., Lagemaat, J.,et al. Effect of Electron-Electron Interactionon Transport in Dye-Sensitized Nanocrystalline TiO2. J. J. Phys.Chem. B.2003,107,11307
    [13] Bach, U., Lupo, D., Comte, P., et al. Solid-state dye-sensitized mesoporous TiO2solar cellswith high photon-to-electron conversion efficiencies. Nature.1998,395,583
    [14] Srinivas,K.; Yesudas, K. A Combined Experimental and Computational Investigation ofAnthracene Based Sensitizers for DSSC: Comparison of Cyanoacrylic and Malonic AcidElectron Withdrawing Groups Binding onto the TiO2Anatase (101) Surface. J. Phys. Chem.C.2009,113,20117
    [15] Dong Shi, Yiming Cao, New Organic Sensitizer for Stable Dye-Sensitized Solar Cells withSolvent-Free Ionic Liquid Electrolytes.J. Phys. Chem. C.2008,112,17478
    [16] Gebeyehu, D.; Brabec, C. J.; Sariciftci, N. S.,et al. Hybrid solar cells based on dye-sensitizednanoporous TiO2electrodes and conjugated polymers as hole transport materials.SyntheticMetals.2001,126,279
    [17] Lagemaat, J.; Park, N. G.; Frank, A. J. Influence of Electrical Potential Distribution, ChargeTransport, and Recombination on the Photopotential and Photocurrent Conversion Efficiencyof Dye-Sensitized Nanocrystalline TiO2Solar Cells: A Study by Electrical Impedance andOptical Modulation Techniques.J. Phys. Chem. B.2000,104,2044
    [18] Hagfeldt, A., Gr tzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems. Chem.Rev.1995,95,49
    [19]陈亦琳,李旦振,吴清萍,付贤智,王绪绪,苯在Pt/SO2-4/TiO2上的光催化降解.高等学校化学学报.2006,27,340
    [20] Cao, Y., Yang, W., Chen, Y.,et al. Effect of chemisorbed surface species on thephotocatalytic activity of TiO2nanoparticulate films. Appl. Surf. Sci.2004,236,223
    [21]翟晓辉,赵俊岩,巢晖,曹亚安, Rup2p表面敏化TiO2基复合薄膜光致电荷转移的研究.物理化学学报.2010,26,1617
    [22]朱伟玲,刘学文,王惠,于会娟,黎爱珍,巢辉,郑康成,计亮年.钌(Ⅱ)配合物与DNA相互作用的瞬态发光特性.发光学报,2007,28,510
    [23] Li, D., Haneda, H., Hishita, S., Ohashi, N. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification.Chem. Mater.2005,17,2596
    [24] Serpone, N., Lawless, D., Khairutdinov, R. Size Effects on the Photophysical Properties ofColloidal Anatase TiO2Particles: Size Quantization versus Direct Transitions in ThisIndirect Semiconductor? J. Phys.Chem.1995,99,16646
    [25] Lei, Y., Zhang, L. D., Meng, G. W., et al. Preparation and photoluminescence of highlyordered TiO2nanowire arrays. Appl. Phys.Lett.2001,78,1125
    [26] Li J., Peat R., Peter L. M., Surface recombination at semiconductor electrodes: Part I.Transient and steady-state photocurrents.J. Electroanal. Chem.1984,165,29
    [27] Huang, S. Y., Schlichtho¨rl, G., Nozik, A. J., et al. Charge Recombination in Dye-SensitizedNanocrystalline TiO2Solar Cells.J. J. Phys. Chem. B.1997,101,2576.
    [1] O’Regan, B., Gr tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature.1991,353,737.
    [2] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers(X=Cl-, B-, I-, CN-,andSCN-) on nanocrystalline TiO2electrodes, J. Am. Chem. Soc.1993,115,6382-6390
    [3] Gr tzel, M. J. Dye-sensitized solar cells.Photochem. Photobiol. C-Photochem. Rev.2003,4,145.
    [4] Dloczik, L., Ileperuma, O., Lauermann, I. et al. Dynamic Response of Dye-SensitizedNanocrystalline Solar Cells: Characterization by Intensity-Modulated PhotocurrentSpectroscopy.J. Phys. Chem. B1997,101,10281.
    [5] Snaith, H. J., Schmidt-Mende, L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells.Adv. Mater.2007,19,3187.
    [6] Ito, S., Zakeeruddin, S. M and Gr tzel, M. High-Efficiency Organic-Dye-Sensitized SolarCells Controlled by Nanocrystalline-TiO2Electrode ThicknessAdv. Mater.2006,18,1202.
    [7] Adachi, M., Murata, Y., Takao, J. Highly Efficient Dye-Sensitized Solar Cells with a TitaniaThin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2NanowiresMade by the “Oriented Attachment” Mechanism.J. Am. Chem. Soc.2004,126,14943.
    [8] Palomares, E., Clifford, J. N., Haque, S. A. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide BlockingLayers.J. Am. Chem. Soc.2003,125,475.
    [9] Chiba, Y., Islam, A., Watanabe, Y. et al. Dye-Sensitized Solar Cells with ConversionEfficiency of11.1%.J. Appl. Phys.2006,45, L638.
    [10] Gao, F., Wang, Y., Gr tzel, M. et al. Enhance the Optical Absorptivity of NanocrystallineTiO2Film with High Molar Extinction Coefficient Ruthenium Sensitizers for HighPerformance Dye-Sensitized Solar Cells.J. Am. Chem. Soc.2008,130,10720.
    [11] Yu, Q., Wang, Y., Wang, P. et al. High-Efficiency Dye-Sensitized Solar Cells: The Influenceof Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States.ACSNano2010,4,6032.
    [12] Wang, K. P., Teng, H. Zinc-doping in TiO2films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.2009,11,9489.
    [13] Lu, X., Mou, X., Wu, J. et al. Ultraviolet Sensors: An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability.Adv. Funct.Mater.2010,20,509.
    [14] Imahori, H., Hayashi, S., Umeyama, T. et al. Comparison of Electrode Structures andPhotovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2and Nb, Ge, Zr-Added TiO2Composite Electrodes.Langmuir2006,22,11405.
    [15] Okuya, M., Nakade, K., Kaneko, S. Porous TiO2thin films synthesized by a spray pyrolysisdeposition (SPD) technique and their application to dye-sensitized solar cells. Sol. EnergyMater. Sol. Cells2002,70,425.
    [16] Ko, K. H., Lee, Y. C., Jung, Y. J. Enhanced efficiency of dye-sensitized TiO2solar cells(DSSC) by doping of metal ions.J. Colloid Interface Sci.2005,283,482.
    [17] Chandiran, A. K., Sauvage, F., Casas-Cabanas, M.,et al. Doping a TiO2Photoanode withNb5+to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized SolarCells. J. Phys. Chem. C2010,114,15849.
    [18] Iwamoto, S., Sazanami, Y., Inoue, M., et al. Fabrication of Dye-Sensitized Solar Cells withan Open-Circuit Photovoltage of1V.ChemSusChem2008,1,401.
    [19] Jing, L. Q., Sun, X. J., Xin, B. F.,et al. The preparation and characterization of La dopedTiO2nanoparticles and their photocatalytic activity. J. Solid State Chem.2004,177,3375.
    [20] Ma, T., Akiyama, M., Abe, E.,et al. High-Efficiency Dye-Sensitized Solar Cell Based on aNitrogen-Doped Nanostructured Titania Electrode. Nano Lett.2005,5,2543.
    [21] Tian, H., Hu, L., Li, W., et al. A facile synthesis of anatase N,B codoped TiO2anodes forimproved-performance dye-sensitized solar cells.J. Mater. Chem.2011,21,7074.
    [22] Wang E J., Yang W S., Cao Y A. Unique Surface Chemical Species on Indium Doped TiO2and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C2009,113,20912.
    [23] Du1rr, M, Rosselli, S, Yasuda, A. Band-Gap Engineering of Metal Oxides forDye-Sensitized Solar Cells.J. Phys. Chem. B2006,110,21899.
    [24] Lee, J.-C., Kim, T. G., Lee, W.,et al. Growth of CdS Nanorod-Coated TiO2Nanowires onConductive Glass for Photovoltaic Applications. Crystal. Growth. Design2009,9,4519.
    [25]翟晓辉,赵俊岩,巢晖,曹亚安, Rup2p表面敏化TiO2基复合薄膜光致电荷转移的研究.物理化学学报.2010,26,1617
    [26]董江舟,赵峻岩,巢晖,曹亚安,表面敏化TiO2基复合薄膜的能带结构与光致电荷转移的研究.化学学报.2011,69(23):2781.
    [27] Gao, B., Ma, Y., Cao, Y.,et al. Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. J. Phys. Chem. B2006,110,14391.
    [28] Surolia, P. K., Tayade, R. J., Jasra, R. V. Effect of Anions on the Photocatalytic Activity ofFe(III) Salts Impregnated TiO2. Ind. Eng. Chem. Res.2007,46,6196.
    [29] Cao, Y., Yang, W., Zhang, W. et al. Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition New. J.Chem.2004,28,218.
    [30] Okushita, H., Shimidzu, T. Bull. Selective and Active Transport of In3+through N-Nitroso-N-p-octadecylphenylhydroxylamine Ammonium Salt Impregnated Membrane. Chem. Soc.Jpn.1990,63,920.
    [31] Reddya, B. M., Chowdhury, B., Smirniotis, P. G. An XPS study of La2O3and In2O3influence on the physicochemical properties of MoO3/TiO2catalysts. Applied Catalysis A2001,219,53.
    [32] Mousty-Desbuquoit C., Riga J., Verbist J.J. Solid state effects in the electronic structure ofTiCl4studied by XPS. J. Chem. Phys.1983,79,26.
    [33] Freeland, B.H., Habeeb, J.J., Tuck, D.G. Coordination compounds of indium. Part XXXIII.X-Ray photoelectron spectroscopy of neutral and anionic indium halide species. Can. J.Chem.1977,55,1528.
    [34] Zhu, J., Zheng, W., He, B. et al. Characterization of Fe–TiO2photocatalysts synthesized byhydrothermal method and their photocatalytic reactivity for photodegradation of XRG dyediluted in water.J. Mol. Catal. A2004,216,35.
    [35] Liang, C., Li, F.; Liu, C., Lu, J.; Wang, X. The enhancement of adsorption and photocatalyticactivity of rare earth ions doped TiO2for the degradation of Orange. Dyes Pigm.2008,76,477.
    [36] Li, D., Haneda, H.; Hishita, S., Ohashi, N. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification. Chem. Mater.2005,17,2596.
    [37] Serpone, N., Lawless, D., Khairutdinov, R. Subnanosecond Relaxation Dynamics in TiO2Colloidal Sols (Particle Sizes Rp=1.0-13.4nm). Relevance to Heterogeneous Photocatalysis.J. Phys. Chem.1995,99,16655.
    [38] Yu, J. C., Ho, W., Yu, J. et al. Effects of Trifluoroacetic Acid Modification on the SurfaceMicrostructures and Photocatalytic Activity of Mesoporous TiO2Thin Films. Langmuir.2003,19,3889.
    [39] Saraf, L. V., Patil, S. I., Ogale, S. B. et al. Synthesis of Nanophase TiO2by Ion BeamSputtering and Cold Condensation Technique. Int. J. Mod. Phys. B1998,12,2635.
    [40] Matar, F., Ghaddar, T. H., O’Regan, B. A new ruthenium polypyridyl dye, TG6, whoseperformance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye tobeat’ for17years. J. Mater. Chem.2008,18,4246.
    [1] O’Regan, B., Gr tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature.1991,353,737.
    [2] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers(X=Cl-, B-, I-, CN-,andSCN-) on nanocrystalline TiO2electrodes, J. Am. Chem. Soc.1993,115,6382-6390
    [3] Gr tzel, M. J. Dye-sensitized solar cells.Photochem. Photobiol. C-Photochem. Rev.2003,4,145.
    [4] Dloczik, L., Ileperuma, O., Lauermann, I. et al. Dynamic Response of Dye-SensitizedNanocrystalline Solar Cells: Characterization by Intensity-Modulated PhotocurrentSpectroscopy.J. Phys. Chem. B1997,101,10281.
    [5] Snaith, H. J., Schmidt-Mende, L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells.Adv. Mater.2007,19,3187.
    [6] Ito, S., Zakeeruddin, S. M and Gr tzel, M. High-Efficiency Organic-Dye-Sensitized SolarCells Controlled by Nanocrystalline-TiO2Electrode ThicknessAdv. Mater.2006,18,1202.
    [7] Adachi, M., Murata, Y., Takao, J. Highly Efficient Dye-Sensitized Solar Cells with a TitaniaThin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2NanowiresMade by the “Oriented Attachment” Mechanism.J. Am. Chem. Soc.2004,126,14943.
    [8] Palomares, E., Clifford, J. N., Haque, S. A. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide BlockingLayers.J. Am. Chem. Soc.2003,125,475.
    [9] Chiba, Y., Islam, A., Watanabe, Y. et al. Dye-Sensitized Solar Cells with ConversionEfficiency of11.1%.J. Appl. Phys.2006,45, L638.
    [10] Gao, F., Wang, Y., Gr tzel, M. et al. Enhance the Optical Absorptivity of NanocrystallineTiO2Film with High Molar Extinction Coefficient Ruthenium Sensitizers for HighPerformance Dye-Sensitized Solar Cells.J. Am. Chem. Soc.2008,130,10720.
    [11] Yu, Q., Wang, Y., Wang, P. et al. High-Efficiency Dye-Sensitized Solar Cells: The Influenceof Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States.ACSNano2010,4,6032.
    [12] Wang, K. P., Teng, H. Zinc-doping in TiO2films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.2009,11,9489.
    [13] Lu, X., Mou, X., Wu, J. et al. Ultraviolet Sensors: An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability.Adv. Funct.Mater.2010,20,509.
    [14] Imahori, H., Hayashi, S., Umeyama, T. et al. Comparison of Electrode Structures andPhotovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2and Nb, Ge,Zr-Added TiO2Composite Electrodes.Langmuir2006,22,11405.
    [15] Okuya, M., Nakade, K., Kaneko, S. Porous TiO2thin films synthesized by a spray pyrolysisdeposition (SPD) technique and their application to dye-sensitized solar cells. Sol. EnergyMater. Sol. Cells2002,70,425.
    [16] Ko, K. H., Lee, Y. C., Jung, Y. J. Enhanced efficiency of dye-sensitized TiO2solar cells(DSSC) by doping of metal ions.J. Colloid Interface Sci.2005,283,482.
    [17] Chandiran, A. K., Sauvage, F., Casas-Cabanas, M.,et al. Doping a TiO2Photoanode withNb5+to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized SolarCells. J. Phys. Chem. C2010,114,15849.
    [18] Iwamoto, S., Sazanami, Y., Inoue, M., et al. Fabrication of Dye-Sensitized Solar Cells withan Open-Circuit Photovoltage of1V.ChemSusChem2008,1,401.
    [19] Jing, L. Q., Sun, X. J., Xin, B. F.,et al. The preparation and characterization of La dopedTiO2nanoparticles and their photocatalytic activity. J. Solid State Chem.2004,177,3375.
    [20] Ma, T., Akiyama, M., Abe, E.,et al. High-Efficiency Dye-Sensitized Solar Cell Based on aNitrogen-Doped Nanostructured Titania Electrode. Nano Lett.2005,5,2543.
    [21] Tian, H., Hu, L., Li, W., et al. A facile synthesis of anatase N,B codoped TiO2anodes forimproved-performance dye-sensitized solar cells.J. Mater. Chem.2011,21,7074.
    [22] Wang E J., Yang W S., Cao Y A. Unique Surface Chemical Species on Indium Doped TiO2and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C2009,113,20912.
    [23] Du1rr, M, Rosselli, S, Yasuda, A. Band-Gap Engineering of Metal Oxides forDye-Sensitized Solar Cells.J. Phys. Chem. B2006,110,21899.
    [24] Lee, J.-C., Kim, T. G., Lee, W.,et al. Growth of CdS Nanorod-Coated TiO2Nanowires onConductive Glass for Photovoltaic Applications. Crystal. Growth. Design2009,9,4519.
    [25]翟晓辉,赵俊岩,巢晖,曹亚安, Rup2p表面敏化TiO2基复合薄膜光致电荷转移的研究.物理化学学报.2010,26,1617
    [26]董江舟,赵峻岩,巢晖,曹亚安,表面敏化TiO2基复合薄膜的能带结构与光致电荷转移的研究.化学学报.2011,69(23):2781.
    [27] Gao, B., Ma, Y., Cao, Y.,et al. Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. J. Phys. Chem. B2006,110,14391.
    [28] Surolia, P. K., Tayade, R. J., Jasra, R. V. Effect of Anions on the Photocatalytic Activity ofFe(III) Salts Impregnated TiO2. Ind. Eng. Chem. Res.2007,46,6196.
    [29] Cao, Y., Yang, W., Zhang, W. et al. Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition New. J.Chem.2004,28,218.
    [30] Y. L. Xu, The Basics of Semiconducting Oxides and Compounds, Press of Xi’an ElectronicScience and Technology University, Xi’an,1991.
    [31] Li, D., Haneda, H.; Hishita, S., Ohashi, N. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification. Chem. Mater.2005,17,2596.
    [32] Serpone, N., Lawless, D., Khairutdinov, R. Subnanosecond Relaxation Dynamics in TiO2Colloidal Sols (Particle Sizes Rp=1.0-13.4nm). Relevance to Heterogeneous Photocatalysis.J. Phys. Chem.1995,99,16655.
    [33] Yu, J. C., Ho, W., Yu, J. et al. Effects of Trifluoroacetic Acid Modification on the SurfaceMicrostructures and Photocatalytic Activity of Mesoporous TiO2Thin Films. Langmuir.2003,19,3889.
    [34] Saraf, L. V., Patil, S. I., Ogale, S. B. et al. Synthesis of Nanophase TiO2by Ion BeamSputtering and Cold Condensation Technique. Int. J. Mod. Phys. B1998,12,2635.
    [35] Matar, F., Ghaddar, T. H., O’Regan, B. A new ruthenium polypyridyl dye, TG6, whoseperformance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye tobeat’ for17years. J. Mater. Chem.2008,18,4246.
    [1] O’Regan, B., Gr tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature.1991,353,737.
    [2] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers(X=Cl-, B-, I-, CN-,andSCN-) on nanocrystalline TiO2electrodes, J. Am. Chem. Soc.1993,115,6382-6390
    [3] Gr tzel, M. J. Dye-sensitized solar cells.Photochem. Photobiol. C-Photochem. Rev.2003,4,145.
    [4] Dloczik, L., Ileperuma, O., Lauermann, I. et al. Dynamic Response of Dye-SensitizedNanocrystalline Solar Cells: Characterization by Intensity-Modulated PhotocurrentSpectroscopy.J. Phys. Chem. B1997,101,10281.
    [5] Snaith, H. J., Schmidt-Mende, L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells.Adv. Mater.2007,19,3187.
    [6] Ito, S., Zakeeruddin, S. M and Gr tzel, M. High-Efficiency Organic-Dye-Sensitized SolarCells Controlled by Nanocrystalline-TiO2Electrode ThicknessAdv. Mater.2006,18,1202.
    [7] Adachi, M., Murata, Y., Takao, J. Highly Efficient Dye-Sensitized Solar Cells with a TitaniaThin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2NanowiresMade by the “Oriented Attachment” Mechanism.J. Am. Chem. Soc.2004,126,14943.
    [8] Palomares, E., Clifford, J. N., Haque, S. A. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide BlockingLayers.J. Am. Chem. Soc.2003,125,475.
    [9] Chiba, Y., Islam, A., Watanabe, Y. et al. Dye-Sensitized Solar Cells with ConversionEfficiency of11.1%.J. Appl. Phys.2006,45, L638.
    [10] Gao, F., Wang, Y., Gr tzel, M. et al. Enhance the Optical Absorptivity of NanocrystallineTiO2Film with High Molar Extinction Coefficient Ruthenium Sensitizers for HighPerformance Dye-Sensitized Solar Cells.J. Am. Chem. Soc.2008,130,10720.
    [11] Yu, Q., Wang, Y., Wang, P. et al. High-Efficiency Dye-Sensitized Solar Cells: The Influenceof Lithium Ions on Exciton Dissociation, Charge Recombination, and Surface States.ACSNano2010,4,6032.
    [12] Wang, K. P., Teng, H. Zinc-doping in TiO2films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.2009,11,9489.
    [13] Lu, X., Mou, X., Wu, J. et al. Ultraviolet Sensors: An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability.Adv. Funct.Mater.2010,20,509.
    [14] Imahori, H., Hayashi, S., Umeyama, T. et al. Comparison of Electrode Structures andPhotovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2and Nb, Ge,Zr-Added TiO2Composite Electrodes.Langmuir2006,22,11405.
    [15] Okuya, M., Nakade, K., Kaneko, S. Porous TiO2thin films synthesized by a spray pyrolysisdeposition (SPD) technique and their application to dye-sensitized solar cells. Sol. EnergyMater. Sol. Cells2002,70,425.
    [16] Ko, K. H., Lee, Y. C., Jung, Y. J. Enhanced efficiency of dye-sensitized TiO2solar cells(DSSC) by doping of metal ions.J. Colloid Interface Sci.2005,283,482.
    [17] Chandiran, A. K., Sauvage, F., Casas-Cabanas, M.,et al. Doping a TiO2Photoanode withNb5+to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized SolarCells. J. Phys. Chem. C2010,114,15849.
    [18] Iwamoto, S., Sazanami, Y., Inoue, M., et al. Fabrication of Dye-Sensitized Solar Cells withan Open-Circuit Photovoltage of1V.ChemSusChem2008,1,401.
    [19] Jing, L. Q., Sun, X. J., Xin, B. F.,et al. The preparation and characterization of La dopedTiO2nanoparticles and their photocatalytic activity. J. Solid State Chem.2004,177,3375.
    [20] Ma, T., Akiyama, M., Abe, E.,et al. High-Efficiency Dye-Sensitized Solar Cell Based on aNitrogen-Doped Nanostructured Titania Electrode. Nano Lett.2005,5,2543.
    [21] Tian, H., Hu, L., Li, W., et al. A facile synthesis of anatase N,B codoped TiO2anodes forimproved-performance dye-sensitized solar cells.J. Mater. Chem.2011,21,7074.
    [22] Wang E J., Yang W S., Cao Y A. Unique Surface Chemical Species on Indium Doped TiO2and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C2009,113,20912.
    [23] Du1rr, M, Rosselli, S, Yasuda, A. Band-Gap Engineering of Metal Oxides forDye-Sensitized Solar Cells.J. Phys. Chem. B2006,110,21899.
    [24] Lee, J.-C., Kim, T. G., Lee, W.,et al. Growth of CdS Nanorod-Coated TiO2Nanowires onConductive Glass for Photovoltaic Applications. Crystal. Growth. Design2009,9,4519.
    [25]翟晓辉,赵俊岩,巢晖,曹亚安, Rup2p表面敏化TiO2基复合薄膜光致电荷转移的研究.物理化学学报.2010,26,1617
    [26]董江舟,赵峻岩,巢晖,曹亚安,表面敏化TiO2基复合薄膜的能带结构与光致电荷转移的研究.化学学报.2011,69(23):2781.
    [27] Cao, Y., Yang, W., Zhang, W. et al. Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition New. J.Chem.2004,28,218.
    [28] Yu, J. C., Yu, J., Ho, W., et al. Effects of F-Doping on the Photocatalytic Activity andMicrostructures of Nanocrystalline TiO2Powders. Chem. Mater.2002,14,3808.
    [29] Luo, H., Takata, T., Lee, Y., et al. Photocatalytic Activity Enhancing for Titanium Dioxideby Co-doping with Bromine and Chlorine. Chem.Mater.2004,16,846.
    [30] Lettmann, C., Hildenbrand, K., Kisch, H., et al. Visible light photodegradation of4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal., B:EnViron.2001,32,215.
    [31] Sakthivel, S., Kisch, H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide.Angew. Chem., Int. Ed.2003,42,4908.
    [32] Ohno, T., Akiyoshi, M., Umebayashi, T., et al. Preparation of S-doped TiO2photocatalystsand their photocatalytic activities under visible light.Appl. Catal., A: Gen.2004,265,115.
    [33] Li, D., Haneda, H., Hishita, S., et al. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification. Chem. Mater.2005,17,2596.
    [34] Moon, S. C., Mametsuka, H., Soichi, T., et al. Photocatalytic production of hydrogen fromwater using TiO2and B/TiO2. Catal. Today2000,58,125.
    [35] Jung, K. Y., Park, S. B., Ihm, S.-K. Local structure and photocatalytic activity of B2O3-SiO2/TiO2ternary mixed oxides prepared by sol-gel method. Appl. Catal., B: EnViron.2004,51,239.
    [36] Jin, Z.-L., Lu, G.-X. Efficient Photocatalytic Hydrogen Evolution over Ptx-/TiO2-yByCatalysts in a Ternary System of K+, Mg2+/B24O-7/H2O.Energy Fuels2005,19,1126.
    [37] Gao, B., Ma, Y., Cao, Y.,et al. Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. J. Phys. Chem. B2006,110,14391.
    [38] Surolia, P. K., Tayade, R. J., Jasra, R. V. Effect of Anions on the Photocatalytic Activity ofFe(III) Salts Impregnated TiO2. Ind. Eng. Chem. Res.2007,46,6196.
    [39] Cao, Y., Yang, W., Zhang, W. et al. Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition New. J.Chem.2004,28,218.
    [40] Y. L. Xu, The Basics of Semiconducting Oxides and Compounds, Press of Xi’an ElectronicScience and Technology University, Xi’an,1991.
    [41] Chen, D. M., Yang, D, Wang,Q. Effects of Boron Doping on Photocatalytic Activity andMicrostructure of Titanium Dioxide Nanoparticles. Ind. Eng. Chem. Res.2006,45,4110-4116
    [42] Zhao, W., Ma, W. H., Chen, C. C. et al. Efficient Degradation of Toxic Organic Pollutantswith Ni2O3/TiO2-xBx under Visible Irradiation. J.Am. Chem. Soc.2004,126,4782.
    [43] Yuan J.X., Wang E.J., Chen Y.M. Doping mode, band structure and photocatalyticmechanism of B-N-Codoped TiO2. Appl.Surf.Sci.,2011,257:7355-7342
    [44] Li, D., Haneda, H.; Hishita, S., Ohashi, N. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification. Chem. Mater.2005,17,2596.
    [45] Serpone, N., Lawless, D., Khairutdinov, R. Subnanosecond Relaxation Dynamics in TiO2Colloidal Sols (Particle Sizes Rp=1.0-13.4nm). Relevance to Heterogeneous Photocatalysis.J. Phys. Chem.1995,99,16655.
    [46] Yu, J. C., Ho, W., Yu, J. et al. Effects of Trifluoroacetic Acid Modification on the SurfaceMicrostructures and Photocatalytic Activity of Mesoporous TiO2Thin Films. Langmuir.2003,19,3889.
    [47] Saraf, L. V., Patil, S. I., Ogale, S. B. et al. Synthesis of Nanophase TiO2by Ion BeamSputtering and Cold Condensation Technique. Int. J. Mod. Phys. B1998,12,2635.
    [48] Matar, F., Ghaddar, T. H., O’Regan, B. A new ruthenium polypyridyl dye, TG6, whoseperformance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye tobeat’ for17years. J. Mater. Chem.2008,18,4246.
    [1] Green M A. Photovoltaic principles. Physica E.2002,14:11-17.
    [2] Becquerel A E. Recherches sur les effets de la radiation chimique de la lumiere solaire,aumoyen descourants electriques.C.R. Acad.Sci.,Paris.1839,9:561-567.
    [3] Adams W G,Day R E. Proc.Roy.Soc.London A.1877,25:113
    [4] Firtts C E.Am.J.Sci.1883,26:465.
    [5] Ohl RS.Light-sensitive device ineluding silieon.US Patent No.2443542,1941.
    [6] Chapin D M,Fullerand C S,Pearson G L.A new silicon p-n junction photocell for convertingsolar radiation into electrical power[J].J.Appl.Phys.1954,25:676.
    [7] J.Zhao,A.Wang,M.A.Green,F.Femzza,Appl.Phys.Lett.1998,73,1991.
    [8] Ralph,E.L. Intersociety energy conversion engineering conference.1968,2,116
    [9] Hill,R. Renewable Energy World1998,1,22.
    [10]蒋荣华,肖顺珍,杨卫东.硅基太阳能电池与材料[J].新材料产业,2003,(7):8213.
    [11] Carlson,D. E.; Wronski,“Amorphous silicon solar cell”, Appl. Phys. Lett.1976,28,671
    [12] Kazmerski,L. Solar photovoltaics at the tipping point: a technology overview.2006,150,105.
    [13] Hill,R. Renewable Energy World1998,1,22.
    [14] Kurtz,S. R.; McConnell,R. A. Conf. Proc.1997,404,191
    [15] Kazmerski,L. L.; White,F. R.; Morgan, G. K. Thin-film CuInSe2/CdS heterojunction solarcells[J]. Appl.Phys.Lett.1976,29,268.
    [16] Yang,J. X.; Jin,Z. G.; Chai,Y. T. Thin solid films.2009,517,6617.
    [17] Kondo,k.;Sano,H.;Sato,K.Thin solid films.1998,326,83.
    [18]宋慧瑾. CdTe太阳电池的不同背电极及封装特性研究.[硕士学位论文].四川:四川大学,2006.
    [19] Regan B O’,Gr tzel M,A low-cost,high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films,Nature,1991,353:737-740
    [20] A.A.Gribb and J.F.Banfield,Particle size effects on transformation kinetics and phasestability in nanocrystalline TiO2.American Mineralogist,1997.82(7-8):p.717-728.
    [21]刘昭麟,张志焜,纳米TiO2的结构相变和光学性能,青岛科技大学学报,2004,25:26-8
    [22] Aparicio M,Klein L C.Sol-gel synthesis and characterization of SiO2-P2O5-ZrO2[J].Journalof Sol-Gel Science and Technology,2003,28(2):199-204.
    [23] Xia X H, Liang Y, Wang Z, et al.Synthesis and photocatalytic properties of TiO2nanostructures[J].Materials Research Bulletin,2008,43(8-9):2187-2195.
    [24]陈春英等.二氧化钛纳米材料生物效应与安全应用.北京:科学出版社;2010.
    [25]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002
    [26] Leland J K,Bard A J,Photochemistry of colloidal semiconducting iron oxide polymorphs,Journal of Physical Chemistry,1987,91:5076-83
    [27] Farin D,Kiwi J,Avnir D,Size effects in photoprocesses on dispersed catalysts, Journal ofPhysical Chemistry,1989,93:5851-4
    [28] Gr tzel M,Sol-gel processed TiO2films for photovoltaic applications,Journal of Sol-GelScience and Technology,2001,22:7-13
    [29]王维波,李学萍,肖绪瑞,TiO2多孔薄膜电极的制备、微结构及光电化学性能研究,感光科学与光化学,1997,15:161-4
    [30] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity bycis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers (X=Cl-,B-,I-, CN-,and SCN-) on nanocrystalline TiO2electrodes, Journal of the American ChemicalSociety,1993,115:6382-6390
    [31] Regan B O’,Gr tzel M,A low-cost,high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films,Nature,1991,353:737-40
    [32]刘永兴,尚华美,于玲,等,溶胶―凝胶法制备稀土掺杂多孔TiO2薄膜的表面形貌及性能研究,材料导报,2001,15:64-6
    [33]程黎放,王瑜,戴松元,等,纳米晶体TiO2多孔膜的制备、性能及其在太阳能电池中的应用,材料研究学报,1996,10:404-8
    [34] Nicholas A K,Fiona C M,Janos H F,Monoparticulate layers of titanium dioxidenanocrystallites with controllable interparticle distances,Journal of Physical Chemistry,1994,98:8827-30
    [35] Stephen D,Donald F,Preparation and characterization of transparent nanocrystalline TiO2films possessing well-defined morphologies,Journal of Physical Chemistry,1996,100:10732-70738
    [36] Kato K,Tsuzuki A,Torii Y,et al.Morphology of thin antase coatings prepared from alkoxidesolutions containing organic polymer,affecting the photocatalytic decompositionof aqueousacetic acid,Journal of Materials Science,1995,30:837-41
    [37]陈文梅,赵修建,溶胶凝胶法制备TiO2多孔纳米薄膜,武汉工业大学学报,2000,22:6-9
    [38]雅菁,徐明霞,溶胶-凝胶技术在氧化物薄膜制备方面的应用,材料工程,1996,5:21-3
    [39] Scherer G W,Stress and fracture during drying of gels,Journal of Non-CrystallineSolids,1990,121:104-9
    [40] Sakka S,Kamiya K,Makita K,et al.Formation of sheets and coating films from alkoxidesolutions,Journal of Non-Crystalline Solids,1984,63:223-35
    [41]胡勇胜,陈文,徐庚,溶胶―凝胶在薄膜制备技术的研究,陶瓷工程,2000,34:7-9
    [42]孙一军,张志峰,用MOCVD方法制备TiO2薄膜:工艺及进展,硅酸盐通报,1997,2:37-40
    [43]曹亚安,沈东方,张昕彤,等,Sn4+掺杂对TiO2纳米颗粒膜光催化降解苯酚活性的影响,高等学校化学学报,2001,22:1910-2
    [44] Weinberger B R,Garber R B,Titanium dioxide photocatalysts produced by reactivemagnetron sputtering,Applied Physics Letters,1995,66:2409-11
    [45] Nagayama H,Honda H,Kawahara H,Physical and chemical properties of silicon dioxide filmdeposited by new process,Journal of The Electrochemical Society,1998,135:2013-6
    [46] Deki S,Aoi Y,Kajinami A,A novel wet process for the preparation of vanadium dioxide thinfilm,Journal of Materials Science,1997,32:4269-73
    [47] Baskaran L,Song J,Liu Y L,et al.Low-temperature synthesis of anatase thin films on glassand organic substrates by direct deposition from aqueous solutions,Thin Solid Films,1999,351:220-4
    [48] Baskaran L,Song J,Liu Y L,et al.Titanium oxide thin films on organic inter-faces throughbiomimetic processing,Journal of the American Ceramics Society,1998,81:401-8
    [49] Deki S,Aoi Y,Hiroi O,et al.Titanium(IV)oxide thin films prepared from aqueoussolution,Chemistry Letters,1996,294:433-4
    [50] Karuppuchamy S,Nonomura K,Yoshida T,et al.Cathodic electrodeposition of oxidesemiconductor thin films and their application to dye-sensitized solar cells,Solid StateIonics,2002,151:19-21
    [51]罗瑾,周静,祖延兵,等,电沉积二氧化钛纳米微粒膜的光电化学性能和表面形貌研究,高等学校化学学报,1998,19:1484-7
    [52] Zhang D S,Yoshida T,Minoura H,Low temperature synthesis of porous nanocrystalline TiO2thick film for dye-sensitized solar cells by hydrothermal crystallization,ChemistryLetters,2002,31:874-5
    [53] Lao C F,Chuai Y T,Su L,et al.Mix-solvent-thermal method for the synthesis of anatasenanocrystalline titanium dioxide used in dye-sensitized solar cell, Solar Energy Materials andSolar Cells,2005,85:457-65
    [54] Hirashima H,Imai H,Balek V,Preparation of meso-porous TiO2gels and theircharacterization,Journal of Non-Crystalline Solids,2001,285:96-100
    [55] Yamashita H,Ichihashi Y,Anpo M,et al.Photocatalycic decomposition of NO at275K ontitanium oxides included within Y-zeolites, Journal of Physical Chemistry,1996,100:16041-4
    [56]李晓平,徐宝琨,刘国范,等,纳米TiO2光催化降解水中有机污染物的研究与发展,功能材料,1999,30:242-5
    [57] Fujishima A,Honda K,Electrochemical photolysis of water at a semiconductor electrode,Nature,1972,238:37-8
    [58]祖庸,雷闫盈,李晓娥,等,纳米TiO2―一种新型的无机抗菌剂,现代化工,1999,19:46-8
    [59] Khalil L B,Mourad W E,Rophael M W,Photocatalytic reduction of environmental pollutantCr(VI)over some semiconductors under UV/visible light illumination,Applied CatalysisB:Environmental,1998,17:267-73
    [60]余家国,赵修建,多孔TiO2薄膜自洁净玻璃亲水性和光催化活性,高等学校化学学报,2000,21:1437-40
    [61] Gao L,Li Q,Song Z,et al. Preparation of nano-scale titania thick film and its oxygensensitivity,Sensors and Actuators B:Chemical,2000,71:179-83
    [62]戴松元,王孔嘉,邬钦崇,等,NPC电池高光电转化效率的原因探讨,太阳能学报,1996,6:220-5
    [63] Dai S Y, Wang K J, Optimum nanoporous TiO2film and its application to dye-sensitizedsolar cells,Chinese Physics Letters,2003,20:953-5
    [64] Mohammad K,Nazeeruddin P P,Thierry R,et al.Engineering of efficient panchromaticsensitized for nanocrystalline TiO2-based solar cells,Journal of the American ChemicalSociety,2001,123:1613-24
    [65] Gr tzel M,Sol-gel processed TiO2films for photovoltaic applications,Journal of Sol-GelScience and Technology,2001,22:7-13
    [66] Regan B O’,Gr tzel M,A low-cost,high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films,Nature,1991,353:737-40
    [67] Gr tzel M,Conversion of sunlight to electric power by nanocrystalline dye-sensitized solarcells,Journal of Photochemistry and Photobiology A:Chemistry,2004,164:3-14
    [68] Nazeeruddin M K,De Angelis F,Fantacci S,et al.Combined experimental and DFT-TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers,Journal of theAmerican Chemical Society,2005,127:16835-47
    [69] Ito S,Liska P,Comte P,et al.Control of Dark Current in Photoelectrochemieal (TiO-2/I-/I3)and dye-sensitizedsolareells[J].Chemieal Communications.2005,34:4351-4353
    [70] Chen R,Yang X,Tian H,et al. Effect of Tetrahydroquinoline Dyes Structure on thePerformance of Organic Dye-Sensitized Solar Cells[J].Chemistry of Materials.2007,19(16):4007-4015
    [71] Hara K,Miyamoto K,Abe Y,et al. Electron Transport in Coumarin-Dye-SensitizedNanocrystalline TiO2Electrodes[J].The Journal of Physical Chemistry B.2005,109(50):23776-23778
    [72] Hara K,Dan-oh Y,Kasada C,et al. Effect of Additives on the Photovoltaic Performance ofCoumarin-Dye-Sensitized Nanocrystalline TiO2Solar Cells[J]. Langmuir.2004,20(10):4205-4210
    [73] Jang S R,Lee C,Choi H,et al. Oligophenyleneviylene-Funetionalized Ru(Ⅱ)-bipyridineSensitizers for Efficient Dye-Sensitized Nanocrystalline TiO2Solar Cells[J].Chemistry ofMaterials.2006,l8(23):5604-5608
    [74] Klein C,Nazeeruddin M K,Liska P,et al. Engineering of a Novel Ruthenium Sensitizer andIts Application in Dye-Sensitized Solar Cells for Conversion of Sunlight intoElectricity[J].Inorganic Chemistry.2004,44(2):178-180
    [75] Nazeeruddin M K,De Angelis F,Fantacci S,et al.Combined experimental and DFT-TDDFTcomputational study of photoelectrochemical cell ruthenium sensitizers, Journal of theAmerican Chemical Society,2005,127:16835-16847
    [76] Wang P,Zakeeruddin S M,Humphry-Baker R,et al. A Binary Ionic Liquid Electrolyte toAchieve>7%Power Conversion Efficiencies in Dye-Sensitized Solar Cells[J]. Chemisty ofMaterials.2004,16(14):2694-2696
    [77] Wang P,Zakeeruddin S M,Comte P,et al. Gelation of Ionic Liquid-Based Electrolytes WithSilica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells[J].Journal of theAmerican Chemical Society.2003,125(5):1166-1167
    [78] Wang P,Zakeeruddin S M,Moser J-E,et al. A New Ionic Liquid Electrolyte Enhances theConversion Efficiency of Dye-Sensitized Solar Cells[J].The Journal of Physical ChemistryB.2003,107(48):13280-13285
    [79] Hagfeldt A,Gr tzel M. Light-Induced Redox Reactions in Nanocrystalline Systems[J]. Chem.Rev.,1995,95:49-68.
    [80] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers (X=Cl-, B-,I-,CN-,and SCN-) on nanocrystalline TiO2electrodes, Journal of the American ChemicalSociety,1993,115:6382-6390
    [81]田海宁.芳胺类光敏染料用于染料敏化太阳能电池的研究:[博士学位论文].大连:大连理工大学,2009.
    [82]杨述明.染料敏化纳米晶太阳能电池[硕士学位论文].郑州:郑州大学出版社,2007.
    [83] Ooyama Y,Harima Y. Molecular Designs and Syntheses of Organic Dyes for Dye-SensitizedSolar Cells[J].Eur.J.Org.Chem.,2009,2903-2934.
    [84]高建华,钱伟君,吴伟等.染料敏化太阳能电池TiO2薄膜的制备方法[J].理化检验(物理分册),2008,44(08):431-437.
    [85] Charoensirithavorn P,Ogomi Y,Sagawa T,et al.Improvement of Dye-Sensitized Solar CellThrough TiCl4-Treated TiO2Nanotube Arrays[J]. Journal of the Electrochemical Society,2010,157(3):B354-B356.
    [86] Roy P,Kim D,Paramasivam I,et al.Improved efficiency of TiO2nanotubes in dye sensitizedsolar cells by decoration with TiO2nanoparticles[J]. Electrochemistry Communications,2009,11(5):1001-1004.
    [87]张东社,刘尧,王维波等.纳晶多孔TiO2薄膜电极的化学处理[J].科学通报,2000,45(9):929-932.
    [88]李文欣,胡林华,戴松元.染料敏化太阳电池研究进[J].中国材料进展,2009,28(7-8):20-26.
    [89] Hao S C,Wu J H,Fan L Q,et al.The influence of acid treatment of TiO2porous film electrodeon photoelectric performance of dye-sensitized solar cell[J].Solar Energy,2004,76(6):745-750.
    [90] Park K H,Jin E M,Gu H B,et al.Effects of HNO3treatment of TiO2nanoparticles on thephotovoltaic properties of dye-sensitized solar cells[J]. Materials Letters,2009,63(26):2208-2211.
    [91] Balraju P,Kumar M,Roy M S,et al.Dye sensitized solar cells(DSSCs)based on modified ironphthalocyanine nanostructured TiO2electrode and PEDOT:PSS counter electrode[J].Synthetic Metals,2009,159(13):1325-1331.
    [92] Wang Z S,Li F Y,Huang C H.Photocurrent enhancement of hemicyanine dyes containingRSO3-group through treating TiO2films with hydrochloric acid[J]. Journal of PhysicalChemistry B,2001,105(38):9210-9217.
    [93] Sharma S,Varghese O K,Mor G K,et al.Ethanol vapor processing of titania nanotube arrayfilms:enhanced crystallization and photoelectrochemical performance[J].Journal of MaterialsChemistry,2009,19(23):3895-3898.
    [94] Murayama M,Mori T.Evaluation of treatment effects for high-performance dye-sensitizedsolar cells using equivalent circuit analysis[J].Thin Solid Films,2006,509(1-2):123-126.
    [95] Ma T L,Akiyama M,Abe E,et al.High-efficiency dye-sensitized solar cell based on anitrogen-doped nanostructured titania electrode[J].Nano Letters,2005,5(12):2543-2547.
    [96] Tian H J,Hu L H,Zhang C N,et al.Retarded Charge Recombination in Dye-SensitizedNitrogen-Doped TiO2Solar Cells[J].Journal of Physical Chemistry C,2010,114(3):1627-1632.
    [97] Reyes-Gil K R,Reyes-Garcia E A,Raftery D.Photoelectrochemical analysis of anion-dopedTiO2colloidal and powder thin-film electrodes[J].Journal of the Electrochemical Society,2006,153(7):A1296-A1301.
    [98] Kang S H,Kim J Y,Kim Y K,et al.Effects of the incorporation of carbon powder intonanostructured TiO2film for dye-sensitized solar cell[J].Journal of Photochemistry andPhotobiology a-Chemistry,2007,186(2-3):234-241.
    [99] Kang S H,Kim J Y,Sung Y E.Role of surface state on the electron flow in modified TiO2filmincorporating carbon powder for a dye-sensitized solar cell[J]. Electrochimica Acta,2007,52(16):5242-5250.
    [100] Wang, K. P., Teng, H. Zinc-doping in TiO2films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.2009,11,9489.
    [101] Lu, X., Mou, X., Wu, J. et al. Ultraviolet Sensors: An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability.Adv.Funct. Mater.2010,20,509.
    [102] Iwamoto, S., Sazanami, Y., Inoue, M., et al. Fabrication of Dye-Sensitized Solar Cells withan Open-Circuit Photovoltage of1V.ChemSusChem2008,1,401.
    [103] Du1rr, M, Rosselli, S, Yasuda, A. Band-Gap Engineering of Metal Oxides for Dye-Sensitized Solar Cells.J. Phys. Chem. B2006,110,21899.
    [104] Alarcon H,Hedlund M,Johansson E M J,et al.Modification of nanostructured TiO2electrodes by electrochemical Al3+insertion:Effects on dye-sensitized solar cellperformance[J]. Journal of Physical Chemistry C,2007,111(35):13267-13274.
    [105] Kim C,Kim K S,Kim H Y,et al.Modification of a TiO2photoanode by using Cr-doped TiO2with an influence on the photovoltaic efficiency of a dye-sensitized solar cell[J].Journal ofMaterials Chemistry,2008,18(47):5809-5814.
    [106]杨术明,李福友,黄春辉.染料敏化稀土离子修饰二氧化钛纳米晶电极的光电化学性质[J].《中国科学》(B辑),2003,33(1):59-65.
    [107]李树全,林建明,吴季怀,等.Ho3+上转换发光在染料敏化太阳能电池中的应用[J].功能材料,2009,40(1):82-85.
    [108] Sawatsuk T,Chindaduang A,Sae-Kung C,et al.Dye-sensitized solar cells based on TiO2-MWCNTs composite electrodes:Performance improvement and their mechanisms[J].Diamond and Related Materials,2009,18(2-3):524-527.
    [109] Palomares, E., Clifford, J. N., Haque, S. A. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide BlockingLayers.J. Am. Chem. Soc.2003,125,475.
    [110]庞山,谢腾峰,张宇,等.TiO2/ZnO薄膜电极中光生电子的传输及其在太阳电池中的应用[J].高等学校化学学报,2007,28(11):2187-2189.
    [111]王育乔,孙岳明,代云茜,等.二氧化钛纳米管复合薄膜电极制备及其在染料敏化太阳能电池中的应用[J].东南大学学报:自然科学版,2008,38(1):162-165.
    [112] Kitiyanan A,Sakulkhaemaruethai S,Suzuki Y,et al.Structural and photovoltaic properties ofbinary TiO2-ZrO2oxides system prepared by sol-gel method[J]. Composites Science andTechnology,2006,66(10):1259-1265.
    [113] Chou C S,Yang R Y,Yeh C K,et al.Preparation of TiO2/Nano-metal composite particles andtheir applications in dye-sensitized solar cells[J].Powder Technology,2009,194(1-2):95-105.
    [114] Gong D,Grimes C A,Varghese O K,et al.Titanium oxide nanotube arrays prepared byanodic oxidation[J].Journal of Materials Research,2001,16(12):3331-3334.
    [115] Shankar K,Mor G K,Prakasam H E,et al.Highly-ordered TiO2nanotube arrays up to220mum in length:use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology,2007,18(6):11.
    [116] Allam N K,Grimes C A.Formation of vertically oriented TiO2nanotube arrays using afluoride free HCl aqueous electrolyte[J].Journal of Physical Chemistry C,2007,111(35):13028-13032.
    [117] Varghese O K,Paulose M,Grimes C A.Long vertically aligned titania nanotubes ontransparent conducting oxide for highly efficient solar cells[J]. Nature Nanotechnology,2009,4(9):592-597.
    [118] Shankar K,Basham J I,Allam N K,et al.Recent Advances in the Use of TiO2Nanotube andNanowire Arrays for Oxidative Photoelectrochemistry[J].Journal of Physical ChemistryC,2009,113(16):6327-6359.
    [119] Shankar K,Bandara J,Paulose M,et al.Highly efficient solar cells using TiO2nanotubearrays sensitized with a donor-antenna dye[J].Nano Letters,2008,8(6):1654-1659.
    [120] Paulose M,Shankar K,Varghese O K,et al.Application of highly-ordered TiO2nanotube-arrays in heterojunction dye-sensitized solar cells[J].Journal of Physics D-Applied Physics,2006,39(12):2498-2503.
    [121] Paulose M,Shankar K,Varghese O K,et al.Backside illuminated dye-sensitized solar cellsbased on titania nanotube array electrodes[J].Nanotechnology,2006,17(5):1446-1448.
    [122] Ong K G,Varghese O K,Mor G K,et al.Application of finite-difference time domain todye-sensitized solar cells:The effect of nanotube-array negative electrode dimensions onlight absorption[J].Solar Energy Materials and Solar Cells,2007,91(4):250-257.
    [123] Grimes C A.Synthesis and application of highly ordered arrays of TiO2nanotubes[J].Journal of Materials Chemistry,2007,17(15):1451-1457.
    [124] Fabregat-Santiago F,Barea E M,Bisquert J,et al.High carrier density and capacitance inTiO2nanotube arrays induced by electrochemical doping[J]. Journal of The AmericanChemical Society,2008,130(34):11312-11316.
    [125] Allam N K,Shankar K,Grimes C A.A General Method for the Anodic Formation ofCrystalline Metal Oxide Nanotube Arrays without the Use of Thermal Annealing[J].Advanced Materials,2008,20(20):3942-3946.
    [126] Allam N K,Grimes C A.Effect of cathode material on the morphology andphotoelectrochemical properties of vertically oriented TiO2nanotube arrays[J]. SolarEnergy Materials and Solar Cells,2008,92(11):1468-1475.
    [127] Jiu J T,Wang F M,Isoda S,et al.Highly efficient dye-sensitized solar cells based on singlecrystalline TiO2nanorod film[J].Chemistry Letters,2005,34(11):1506-1507.
    [128] Jiu J T,Isoda S,Wang F M,et al.Dye-sensitized solar cells based on a single-crystalline TiO2nanorod film[J].Journal of Physical Chemistry B,2006,110(5):2087-2092.
    [129] Adachi M,Murata Y,Okada I,et al.Formation of titania nanotubes and applications fordye-sensitized solar cells[J].Journal of the Electrochemical Society,2003,150(8):G488-G493.
    [130] Adachi M,Murata Y,Takao J,et al.Highly efficient dye-sensitized solar cells with a titaniathin-film electrode composed of a network structure of single-crystal-like TiO2nanowiresmade by the"oriented attachment" mechanism [J].Journal of The American ChemicalSociety,2004,126(45):14943-14949.
    [131]王育乔,孙岳明,代云茜,等.二氧化钛纳米管复合薄膜电极制备及其在染料敏化太阳能电池中的应用[J].东南大学学报:自然科学版,2008,38(1):162-165.
    [132] Feng X J,Shankar K,Varghese O K,et al.Vertically Aligned Single Crystal TiO2NanowireArrays Grown Directly on Transparent Conducting Oxide Coated Glass:Synthesis Detailsand Applications[J].Nano Letters,2008,8(11):3781-3786.
    [133] Wang W L,Lin H,Li J B,et al.Formation of titania nanoarrays by hydrothermal reaction andtheir application in photovoltaic cells[J].Journal of the American Ceramic Society,2008,91(2):628-631.
    [134] Yang L,Lin Y,Jia J G,et al.Light harvesting enhancement for dye-sensitized solar cells bynovel anode containing cauliflower-like TiO2spheres[J].Journal of Power Sources,2008,182(1):370-376.
    [135] Kang S H,Lim J W,Kim H S,et al.Photo and Electrochemical Characteristics Dependent onthe Phase Ratio of Nanocolumnar Structured TiO2Films by RF Magnetron SputteringTechnique[J].Chemistry of Materials,2009,21(13):2777-2788.
    [136] Kang S H,Kang M S,Kim H S,et al.Columnar rutile TiO2based dye-sensitized solar cells byradio-frequency magnetron sputtering[J].Journal of Power Sources,2008,184(1):331-335.
    [137] Kang S H,Kim H S,Kim J Y,et al.An investigation on electron behavior employingvertically-aligned TiO2nanotube electrodes for dye-sensitized solar cells[J].Nanotechnology,2009,20(35):6.
    [138] Kang S H,Lim J W,Kim H S,et al.Photo and Electrochemical Characteristics Dependent onthe Phase Ratio of Nanocolumnar Structured TiO2Films by RF Magnetron SputteringTechnique[J].Chemistry of Materials,2009,21(13):2777-2788.
    [139] Gao X P,Zhu H Y,Pan G L,et al.Preparation and electrochemical characterization of anatasenanorods for lithium-inserting electrode material[J]. Journal of Physical Chemistry B,2004,108(9):2868-2872.
    [140] Chen P,Brillet J,Bala H,et al.Solid-state dye-sensitized solar cells using TiO2nanotubearrays on FTO glass[J].Journal of Materials Chemistry,2009,19(30):5325-5328.
    [141] de Tacconi N R,Chanmanee W,Rajeshwar K,et al.Photoelectrochemical Behavior ofPolychelate Porphyrin Chromophores and Titanium Dioxide Nanotube Arrays forDye-Sensitized Solar Cells[J].Journal of Physical Chemistry C,2009,113(7):2996-3006.
    [142] Zhang X T,Liu H W,Taguchi T,et al.Slow interfacial charge recombination in solid-statedye-sensitized solar cell using Al2O3-coated nanoporous TiO2films[J].Solar EnergyMaterials and Solar Cells,2004,81(2):197-203.
    [143] Menzies D B,Dai Q,Bourgeois L,et al.Modification of mesoporous TiO2electrodes bysurface treatment with titanium(IV),indium(III)and zirconium (IV)oxide precursors:preparation, characterization and photovoltaic performance in dye-sensitizednanocrystalline solar cells[J].Nanotechnology,2007,18(12):1-11.
    [144] Kim S S,Yum J H,Sung Y E.Improved performance of a dye-sensitized solar cell using aTiO2/ZnO/Eosin Y electrode[J].Solar Energy Materials and Solar Cells,2003,79(4):495-505.
    [145] Diamant Y,Chen S G,Melamed O,et al.Core-shell nanoporous electrode for dye sensitizedsolar cells:the effect of the SrTiO3shell on the electronic properties of the TiO2core[J].Journal of Physical Chemistry B,2003,107(9):1977-1981.
    [146] Wu S J,Han H W,Tai Q D,et al.Improvement in dye-sensitized solar cells employing TiO2electrodes coated with Al2O3by reactive direct current magnetron sputtering[J]. Journal ofPower Sources,2008,182(1):119-123.
    [147] Zhang X T,Sutanto I,Taguchi T,et al.Al2O3-coated nanoporous TiO2electrode for solid-statedye-sensitized solar cell[J].Solar Energy Materials and Solar Cells,2003,80(3):315-326.
    [148]周卫,付宏刚,潘凯,等.电泳沉积法制备介孔TiO2/单壁碳纳米管薄膜[J].高等学校化学学报,2009,30(10):2036-2039.
    [149] Seabold J A,Shankar K,Wilke R H T,et al.Photoelectrochemical Properties ofHeterojunction CdTe/TiO2Electrodes Constructed Using Highly Ordered TiO2NanotubeArrays[J].Chemistry of Materials,2008,20(16):5266-5273.
    [150] Liu Z Y,Pan K,Liu M,et al.Al2O3-coated SnO2/TiO2composite electrode for thedye-sensitized solar cell[J].Electrochimica Acta,2005,50(13):2583-2589.
    [151] Kang S H,Kim J Y,Kim Y,et al.Surface modification of stretched TiO2nanotubes forsolid-state dye-sensitized solar cells[J].Journal of Physical Chemistry C,2007,111(26):9614-9623.
    [152] Kuang S Y,Yang L X,Luo S L,et al.Fabrication,characterization and photoelectrochemicalproperties of Fe2O3modified TiO2nanotube arrays[J]. Applied Surface Science,2009,255(16):7385-7388.
    [153] O’Regan, B., Gr tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature.1991,353,737.
    [154] Gr tzel, M. J. Dye-sensitized solar cells.Photochem. Photobiol. C-Photochem. Rev.2003,4,145.
    [155] Peng, B., Jungmann, G., Jager, C, et al. Systematic investigation of the role of compactTiO2layer in solid state dye-sensitized TiO2solar cells. Coord. Chem. Rev.2004,248,1479.
    [156] Nazeeruddin, M. K., Gratzel, M. Engineering of Efficient Panchromatic Sensitizers forNanocrystalline TiO2-Based Solar Cells. J. Am. Chem. Soc.2001,123,1613.
    [157] Wang, P., Zakeeruddin, S. M., Gratzel, M. Enhance the Performance of Dye-SensitizedSolar Cells by Co-grafting Amphiphilic Sensitizer and Hexadecylmalonic Acid onTiO2Nanocrystals. J. Phys. Chem. B.2003,107,14336
    [158] Gr tzel, M. Photoelectrochemical cells. Nature.,2001,414,338
    [159] Min-Hye K., Young-Uk K. Semiconductor CdO as a Blocking Layer Material on DSSCElectrode: Mechanism and Application. J. Phys. Chem. C.2009,113,17176
    [160] Zaban, A., Zhang, J. Internal Reference Electrode in Dye Sensitized Solar Cells for Three-Electrode Electrochemical Characterizations.J. Phys. Chem. B.2003,107,6022
    [161] Hagfeldt, A.; Gr tzel, M. Molecular Photovoltaics. Acc. Chem. Res.2000,33,269
    [162] Gr tzel, M. Applied physics:Solar cells to dye for.Nature.2003,421,586
    [163] Gr tzel, M. Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells.Inorg. Chem.2005,44,6841
    [164] Kopidakis, N., Benkstein, K. D., Lagemaat, J.,et al. Effect of Electron-Electron Interactionon Transport in Dye-Sensitized Nanocrystalline TiO2. J. J. Phys.Chem. B.2003,107,11307
    [165] Bach, U., Lupo, D., Comte, P., et al. Solid-state dye-sensitized mesoporous TiO2solar cellswith high photon-to-electron conversion efficiencies. Nature.1998,395,583
    [166] Srinivas,K.; Yesudas, K. A Combined Experimental and Computational Investigation ofAnthracene Based Sensitizers for DSSC: Comparison of Cyanoacrylic and Malonic AcidElectron Withdrawing Groups Binding onto the TiO2Anatase (101) Surface. J. Phys. Chem.C.2009,113,20117
    [167] Dong Shi, Yiming Cao, New Organic Sensitizer for Stable Dye-Sensitized Solar Cells withSolvent-Free Ionic Liquid Electrolytes.J. Phys. Chem. C.2008,112,17478
    [168] Gebeyehu, D.; Brabec, C. J.; Sariciftci, N. S.,et al. Hybrid solar cells based ondye-sensitized nanoporous TiO2electrodes and conjugated polymers as hole transportmaterials.Synthetic Metals.2001,126,279
    [169] Lagemaat, J.; Park, N. G.; Frank, A. J. Influence of Electrical Potential Distribution, ChargeTransport, and Recombination on the Photopotential and Photocurrent ConversionEfficiency of Dye-Sensitized Nanocrystalline TiO2Solar Cells: A Study by ElectricalImpedance and Optical Modulation Techniques.J. Phys. Chem. B.2000,104,2044
    [170] Hagfeldt, A., Gr tzel, M. Light-Induced Redox Reactions in Nanocrystalline Systems.Chem. Rev.1995,95,49
    [171]陈亦琳,李旦振,吴清萍,付贤智,王绪绪,苯在Pt/SO2-4/TiO2上的光催化降解.高等学校化学学报.2006,27,340
    [172] Cao, Y., Yang, W., Chen, Y.,et al. Effect of chemisorbed surface species on thephotocatalytic activity of TiO2nanoparticulate films. Appl. Surf. Sci.2004,236,223
    [173]翟晓辉,赵俊岩,巢晖,曹亚安, Rup2p表面敏化TiO2基复合薄膜光致电荷转移的研究.物理化学学报.2010,26,1617
    [174]朱伟玲,刘学文,王惠,于会娟,黎爱珍,巢辉,郑康成,计亮年.钌(Ⅱ)配合物与DNA相互作用的瞬态发光特性.发光学报,2007,28,510
    [175] Li, D., Haneda, H., Hishita, S., Ohashi, N. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification.Chem. Mater.2005,17,2596
    [176] Serpone, N., Lawless, D., Khairutdinov, R. Size Effects on the Photophysical Properties ofColloidal Anatase TiO2Particles: Size Quantization versus Direct Transitions in ThisIndirect Semiconductor? J. Phys.Chem.1995,99,16646
    [177] Lei, Y., Zhang, L. D., Meng, G. W., et al. Preparation and photoluminescence of highlyordered TiO2nanowire arrays. Appl. Phys.Lett.2001,78,1125
    [178] Li J., Peat R., Peter L. M., Surface recombination at semiconductor electrodes: Part I.Transient and steady-state photocurrents.J. Electroanal. Chem.1984,165,29
    [179] Huang, S. Y., Schlichtho¨rl, G., Nozik, A. J., et al. Charge Recombination inDye-Sensitized Nanocrystalline TiO2Solar Cells.J. J. Phys. Chem. B.1997,101,2576.
    [180] O’Regan, B., Gr tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature.1991,353,737.
    [181] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers(X=Cl-, B-, I-,CN-,and SCN-) on nanocrystalline TiO2electrodes, J. Am. Chem. Soc.1993,115,6382-6390
    [182] Gr tzel, M. J. Dye-sensitized solar cells.Photochem. Photobiol. C-Photochem. Rev.2003,4,145.
    [183] Dloczik, L., Ileperuma, O., Lauermann, I. et al. Dynamic Response of Dye-SensitizedNanocrystalline Solar Cells: Characterization by Intensity-Modulated PhotocurrentSpectroscopy.J. Phys. Chem. B1997,101,10281.
    [184] Snaith, H. J., Schmidt-Mende, L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells.Adv. Mater.2007,19,3187.
    [185] Ito, S., Zakeeruddin, S. M and Gr tzel, M. High-Efficiency Organic-Dye-Sensitized SolarCells Controlled by Nanocrystalline-TiO2Electrode ThicknessAdv. Mater.2006,18,1202.
    [186] Adachi, M., Murata, Y., Takao, J. Highly Efficient Dye-Sensitized Solar Cells with aTitania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2Nanowires Made by the “Oriented Attachment” Mechanism.J. Am. Chem. Soc.2004,126,14943.
    [187] Palomares, E., Clifford, J. N., Haque, S. A. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide BlockingLayers.J. Am. Chem. Soc.2003,125,475.
    [188] Chiba, Y., Islam, A., Watanabe, Y. et al. Dye-Sensitized Solar Cells with ConversionEfficiency of11.1%.J. Appl. Phys.2006,45, L638.
    [189] Gao, F., Wang, Y., Gr tzel, M. et al. Enhance the Optical Absorptivity of NanocrystallineTiO2Film with High Molar Extinction Coefficient Ruthenium Sensitizers for HighPerformance Dye-Sensitized Solar Cells.J. Am. Chem. Soc.2008,130,10720.
    [190] Yu, Q., Wang, Y., Wang, P. et al. High-Efficiency Dye-Sensitized Solar Cells: TheInfluence of Lithium Ions on Exciton Dissociation, Charge Recombination, and SurfaceStates.ACS Nano2010,4,6032.
    [191] Wang, K. P., Teng, H. Zinc-doping in TiO2films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.2009,11,9489.
    [192] Lu, X., Mou, X., Wu, J. et al. Ultraviolet Sensors: An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability.Adv.Funct. Mater.2010,20,509.
    [193] Imahori, H., Hayashi, S., Umeyama, T. et al. Comparison of Electrode Structures andPhotovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2and Nb, Ge, Zr-Added TiO2Composite Electrodes.Langmuir2006,22,11405.
    [194] Okuya, M., Nakade, K., Kaneko, S. Porous TiO2thin films synthesized by a spray pyrolysisdeposition (SPD) technique and their application to dye-sensitized solar cells. Sol. EnergyMater. Sol. Cells2002,70,425.
    [195] Ko, K. H., Lee, Y. C., Jung, Y. J. Enhanced efficiency of dye-sensitized TiO2solar cells(DSSC) by doping of metal ions.J. Colloid Interface Sci.2005,283,482.
    [196] Chandiran, A. K., Sauvage, F., Casas-Cabanas, M.,et al. Doping a TiO2Photoanode withNb5+to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized SolarCells. J. Phys. Chem. C2010,114,15849.
    [197] Iwamoto, S., Sazanami, Y., Inoue, M., et al. Fabrication of Dye-Sensitized Solar Cells withan Open-Circuit Photovoltage of1V.ChemSusChem2008,1,401.
    [198] Jing, L. Q., Sun, X. J., Xin, B. F.,et al. The preparation and characterization of La dopedTiO2nanoparticles and their photocatalytic activity. J. Solid State Chem.2004,177,3375.
    [199] Ma, T., Akiyama, M., Abe, E.,et al. High-Efficiency Dye-Sensitized Solar Cell Based on aNitrogen-Doped Nanostructured Titania Electrode. Nano Lett.2005,5,2543.
    [200] Tian, H., Hu, L., Li, W., et al. A facile synthesis of anatase N,B codoped TiO2anodes forimproved-performance dye-sensitized solar cells.J. Mater. Chem.2011,21,7074.
    [201] Wang E J., Yang W S., Cao Y A. Unique Surface Chemical Species on Indium Doped TiO2and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C2009,113,20912.
    [202] Du1rr, M, Rosselli, S, Yasuda, A. Band-Gap Engineering of Metal Oxides forDye-Sensitized Solar Cells.J. Phys. Chem. B2006,110,21899.
    [203] Lee, J.-C., Kim, T. G., Lee, W.,et al. Growth of CdS Nanorod-Coated TiO2Nanowires onConductive Glass for Photovoltaic Applications. Crystal. Growth. Design2009,9,4519.
    [204]翟晓辉,赵俊岩,巢晖,曹亚安, Rup2p表面敏化TiO2基复合薄膜光致电荷转移的研究.物理化学学报.2010,26,1617
    [205]董江舟,赵峻岩,巢晖,曹亚安,表面敏化TiO2基复合薄膜的能带结构与光致电荷转移的研究.化学学报.2011,69(23):2781.
    [206] Gao, B., Ma, Y., Cao, Y.,et al. Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. J. Phys. Chem. B2006,110,14391.
    [207] Surolia, P. K., Tayade, R. J., Jasra, R. V. Effect of Anions on the Photocatalytic Activity ofFe(III) Salts Impregnated TiO2. Ind. Eng. Chem. Res.2007,46,6196.
    [208] Cao, Y., Yang, W., Zhang, W. et al. Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition New.J.Chem.2004,28,218.
    [209] Okushita, H., Shimidzu, T. Bull. Selective and Active Transport of In3+through N-Nitroso-N-p-octadecylphenylhydroxylamine Ammonium Salt Impregnated Membrane. Chem. Soc.Jpn.1990,63,920.
    [210] Reddya, B. M., Chowdhury, B., Smirniotis, P. G. An XPS study of La2O3and In2O3influence on the physicochemical properties of MoO3/TiO2catalysts. Applied Catalysis A2001,219,53.
    [211] Mousty-Desbuquoit C., Riga J., Verbist J.J. Solid state effects in the electronic structure ofTiCl4studied by XPS. J. Chem. Phys.1983,79,26.
    [212] Freeland, B.H., Habeeb, J.J., Tuck, D.G. Coordination compounds of indium. Part XXXIII.X-Ray photoelectron spectroscopy of neutral and anionic indium halide species. Can. J.Chem.1977,55,1528.
    [213] Zhu, J., Zheng, W., He, B. et al. Characterization of Fe–TiO2photocatalysts synthesized byhydrothermal method and their photocatalytic reactivity for photodegradation of XRG dyediluted in water.J. Mol. Catal. A2004,216,35.
    [214] Liang, C., Li, F.; Liu, C., Lu, J.; Wang, X. The enhancement of adsorption andphotocatalytic activity of rare earth ions doped TiO2for the degradation of Orange. DyesPigm.2008,76,477.
    [215] Li, D., Haneda, H.; Hishita, S., Ohashi, N. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification. Chem. Mater.2005,17,2596.
    [216] Serpone, N., Lawless, D., Khairutdinov, R. Subnanosecond Relaxation Dynamics in TiO2Colloidal Sols (Particle Sizes Rp=1.0-13.4nm). Relevance to HeterogeneousPhotocatalysis. J. Phys. Chem.1995,99,16655.
    [217] Yu, J. C., Ho, W., Yu, J. et al. Effects of Trifluoroacetic Acid Modification on the SurfaceMicrostructures and Photocatalytic Activity of Mesoporous TiO2Thin Films. Langmuir.2003,19,3889.
    [218] Saraf, L. V., Patil, S. I., Ogale, S. B. et al. Synthesis of Nanophase TiO2by Ion BeamSputtering and Cold Condensation Technique. Int. J. Mod. Phys. B1998,12,2635.
    [219] Matar, F., Ghaddar, T. H., O’Regan, B. A new ruthenium polypyridyl dye, TG6, whoseperformance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye tobeat’ for17years. J. Mater. Chem.2008,18,4246.
    [220] O’Regan, B., Gr tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature.1991,353,737.
    [221] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers(X=Cl-, B-, I-,CN-,and SCN-) on nanocrystalline TiO2electrodes, J. Am. Chem. Soc.1993,115,6382-6390
    [222] Gr tzel, M. J. Dye-sensitized solar cells.Photochem. Photobiol. C-Photochem. Rev.2003,4,145.
    [223] Dloczik, L., Ileperuma, O., Lauermann, I. et al. Dynamic Response of Dye-SensitizedNanocrystalline Solar Cells: Characterization by Intensity-Modulated PhotocurrentSpectroscopy.J. Phys. Chem. B1997,101,10281.
    [224] Snaith, H. J., Schmidt-Mende, L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells.Adv. Mater.2007,19,3187.
    [225] Ito, S., Zakeeruddin, S. M and Gr tzel, M. High-Efficiency Organic-Dye-Sensitized SolarCells Controlled by Nanocrystalline-TiO2Electrode ThicknessAdv. Mater.2006,18,1202.
    [226] Adachi, M., Murata, Y., Takao, J. Highly Efficient Dye-Sensitized Solar Cells with aTitania Thin-Film Electrode Composed of a Network Structure of Single-Crystal-like TiO2Nanowires Made by the “Oriented Attachment” Mechanism.J. Am. Chem. Soc.2004,126,14943.
    [227] Palomares, E., Clifford, J. N., Haque, S. A. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide BlockingLayers.J. Am. Chem. Soc.2003,125,475.
    [228] Chiba, Y., Islam, A., Watanabe, Y. et al. Dye-Sensitized Solar Cells with ConversionEfficiency of11.1%.J. Appl. Phys.2006,45, L638.
    [229] Gao, F., Wang, Y., Gr tzel, M. et al. Enhance the Optical Absorptivity of NanocrystallineTiO2Film with High Molar Extinction Coefficient Ruthenium Sensitizers for HighPerformance Dye-Sensitized Solar Cells.J. Am. Chem. Soc.2008,130,10720.
    [230] Yu, Q., Wang, Y., Wang, P. et al. High-Efficiency Dye-Sensitized Solar Cells: TheInfluence of Lithium Ions on Exciton Dissociation, Charge Recombination, and SurfaceStates.ACS Nano2010,4,6032.
    [231] Wang, K. P., Teng, H. Zinc-doping in TiO2films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.2009,11,9489.
    [232] Lu, X., Mou, X., Wu, J. et al. Ultraviolet Sensors: An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability.Adv.Funct. Mater.2010,20,509.
    [233] Imahori, H., Hayashi, S., Umeyama, T. et al. Comparison of Electrode Structures andPhotovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2and Nb, Ge,Zr-Added TiO2Composite Electrodes.Langmuir2006,22,11405.
    [234] Okuya, M., Nakade, K., Kaneko, S. Porous TiO2thin films synthesized by a spray pyrolysisdeposition (SPD) technique and their application to dye-sensitized solar cells. Sol. EnergyMater. Sol. Cells2002,70,425.
    [235] Ko, K. H., Lee, Y. C., Jung, Y. J. Enhanced efficiency of dye-sensitized TiO2solar cells(DSSC) by doping of metal ions.J. Colloid Interface Sci.2005,283,482.
    [236] Chandiran, A. K., Sauvage, F., Casas-Cabanas, M.,et al. Doping a TiO2Photoanode withNb5+to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized SolarCells. J. Phys. Chem. C2010,114,15849.
    [237] Iwamoto, S., Sazanami, Y., Inoue, M., et al. Fabrication of Dye-Sensitized Solar Cells withan Open-Circuit Photovoltage of1V.ChemSusChem2008,1,401.
    [238] Jing, L. Q., Sun, X. J., Xin, B. F.,et al. The preparation and characterization of La dopedTiO2nanoparticles and their photocatalytic activity. J. Solid State Chem.2004,177,3375.
    [239] Ma, T., Akiyama, M., Abe, E.,et al. High-Efficiency Dye-Sensitized Solar Cell Based on aNitrogen-Doped Nanostructured Titania Electrode. Nano Lett.2005,5,2543.
    [240] Tian, H., Hu, L., Li, W., et al. A facile synthesis of anatase N,B codoped TiO2anodes forimproved-performance dye-sensitized solar cells.J. Mater. Chem.2011,21,7074.
    [241] Wang E J., Yang W S., Cao Y A. Unique Surface Chemical Species on Indium Doped TiO2and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C2009,113,20912.
    [242] Du1rr, M, Rosselli, S, Yasuda, A. Band-Gap Engineering of Metal Oxides forDye-Sensitized Solar Cells.J. Phys. Chem. B2006,110,21899.
    [243] Lee, J.-C., Kim, T. G., Lee, W.,et al. Growth of CdS Nanorod-Coated TiO2Nanowires onConductive Glass for Photovoltaic Applications. Crystal. Growth. Design2009,9,4519.
    [244]翟晓辉,赵俊岩,巢晖,曹亚安, Rup2p表面敏化TiO2基复合薄膜光致电荷转移的研究.物理化学学报.2010,26,1617
    [245]董江舟,赵峻岩,巢晖,曹亚安,表面敏化TiO2基复合薄膜的能带结构与光致电荷转移的研究.化学学报.2011,69(23):2781.
    [246] Gao, B., Ma, Y., Cao, Y.,et al. Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. J. Phys. Chem. B2006,110,14391.
    [247] Surolia, P. K., Tayade, R. J., Jasra, R. V. Effect of Anions on the Photocatalytic Activity ofFe(III) Salts Impregnated TiO2. Ind. Eng. Chem. Res.2007,46,6196.
    [248] Cao, Y., Yang, W., Zhang, W. et al. Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition New.J.Chem.2004,28,218.
    [249] Y. L. Xu, The Basics of Semiconducting Oxides and Compounds, Press of Xi’an ElectronicScience and Technology University, Xi’an,1991.
    [250] Li, D., Haneda, H.; Hishita, S., Ohashi, N. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification. Chem. Mater.2005,17,2596.
    [251] Serpone, N., Lawless, D., Khairutdinov, R. Subnanosecond Relaxation Dynamics in TiO2Colloidal Sols (Particle Sizes Rp=1.0-13.4nm). Relevance to HeterogeneousPhotocatalysis. J. Phys. Chem.1995,99,16655.
    [252] Yu, J. C., Ho, W., Yu, J. et al. Effects of Trifluoroacetic Acid Modification on the SurfaceMicrostructures and Photocatalytic Activity of Mesoporous TiO2Thin Films. Langmuir.2003,19,3889.
    [253] Saraf, L. V., Patil, S. I., Ogale, S. B. et al. Synthesis of Nanophase TiO2by Ion BeamSputtering and Cold Condensation Technique. Int. J. Mod. Phys. B1998,12,2635.
    [254] Matar, F., Ghaddar, T. H., O’Regan, B. A new ruthenium polypyridyl dye, TG6, whoseperformance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye tobeat’ for17years. J. Mater. Chem.2008,18,4246.
    [255] O’Regan, B., Gr tzel, M. A low-cost, high-efficiency solar cell based on dye-sensitizedcolloidal TiO2films. Nature.1991,353,737.
    [256] Nazeemuddin M K,Kay A,Rodicio I,et al.Conversion of light to electricity by cis-X2Bis(2,2'-bipyridyldicarboxylate)rutheniyum(II)charge-transfer sensitizers(X=Cl-, B-, I-, CN-,and SCN-) on nanocrystalline TiO2electrodes, J. Am. Chem. Soc.1993,115,6382-6390
    [257] Gr tzel, M. J. Dye-sensitized solar cells.Photochem. Photobiol. C-Photochem. Rev.2003,4,145.
    [258] Dloczik, L., Ileperuma, O., Lauermann, I. et al. Dynamic Response of Dye-SensitizedNanocrystalline Solar Cells: Characterization by Intensity-Modulated PhotocurrentSpectroscopy.J. Phys. Chem. B1997,101,10281.
    [259] Snaith, H. J., Schmidt-Mende, L. Advances in Liquid-Electrolyte and Solid-State Dye-Sensitized Solar Cells.Adv. Mater.2007,19,3187.
    [260] Ito, S., Zakeeruddin, S. M and Gr tzel, M. High-Efficiency Organic-Dye-Sensitized SolarCells Controlled by Nanocrystalline-TiO2Electrode ThicknessAdv. Mater.2006,18,1202.
    [261] Adachi, M., Murata, Y., Takao, J. Highly Efficient Dye-Sensitized Solar Cells with aTitania Thin-Film Electrode Composed of Network Structure of Single-Crystal-like TiO2Nanowire Made by the “Oriented Attachment” Mechanism.J. Am. Chem. Soc.2004,126,14943.
    [262] Palomares, E., Clifford, J. N., Haque, S. A. Control of Charge Recombination Dynamics inDye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide BlockingLayers.J. Am. Chem. Soc.2003,125,475.
    [263] Chiba, Y., Islam, A., Watanabe, Y. et al. Dye-Sensitized Solar Cells with ConversionEfficiency of11.1%.J. Appl. Phys.2006,45, L638.
    [264] Gao, F., Wang, Y., Gr tzel, M. et al. Enhance the Optical Absorptivity of NanocrystallineTiO2Film with High Molar Extinction Coefficient Ruthenium Sensitizers for HighPerformance Dye-Sensitized Solar Cells.J. Am. Chem. Soc.2008,130,10720.
    [265] Yu, Q., Wang, Y., Wang, P. et al. High-Efficiency Dye-Sensitized Solar Cells: TheInfluence of Lithium Ions on Exciton Dissociation, Charge Recombination, and SurfaceStates.ACS Nano2010,4,6032.
    [266] Wang, K. P., Teng, H. Zinc-doping in TiO2films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination. Phys. Chem. Chem. Phys.2009,11,9489.
    [267] Lu, X., Mou, X., Wu, J. et al. Ultraviolet Sensors: An Efficient Way to Assemble ZnSNanobelts as Ultraviolet-Light Sensors with Enhanced Photocurrent and Stability.Adv.Funct. Mater.2010,20,509.
    [268] Imahori, H., Hayashi, S., Umeyama, T. et al. Comparison of Electrode Structures andPhotovoltaic Properties of Porphyrin-Sensitized Solar Cells with TiO2and Nb, Ge,Zr-Added TiO2Composite Electrodes.Langmuir2006,22,11405.
    [269] Okuya, M., Nakade, K., Kaneko, S. Porous TiO2thin films synthesized by a spray pyrolysisdeposition (SPD) technique and their application to dye-sensitized solar cells. Sol. EnergyMater. Sol. Cells2002,70,425.
    [270] Ko, K. H., Lee, Y. C., Jung, Y. J. Enhanced efficiency of dye-sensitized TiO2solar cells(DSSC) by doping of metal ions.J. Colloid Interface Sci.2005,283,482.
    [271] Chandiran, A. K., Sauvage, F., Casas-Cabanas, M.,et al. Doping a TiO2Photoanode withNb5+to Enhance Transparency and Charge Collection Efficiency in Dye-Sensitized SolarCells. J. Phys. Chem. C2010,114,15849.
    [272] Iwamoto, S., Sazanami, Y., Inoue, M., et al. Fabrication of Dye-Sensitized Solar Cells withan Open-Circuit Photovoltage of1V.ChemSusChem2008,1,401.
    [273] Jing, L. Q., Sun, X. J., Xin, B. F.,et al. The preparation and characterization of La dopedTiO2nanoparticles and their photocatalytic activity. J. Solid State Chem.2004,177,3375.
    [274] Ma, T., Akiyama, M., Abe, E.,et al. High-Efficiency Dye-Sensitized Solar Cell Based on aNitrogen-Doped Nanostructured Titania Electrode. Nano Lett.2005,5,2543.
    [275] Tian, H., Hu, L., Li, W., et al. A facile synthesis of anatase N,B codoped TiO2anodes forimproved-performance dye-sensitized solar cells.J. Mater. Chem.2011,21,7074.
    [276] Wang E J., Yang W S., Cao Y A. Unique Surface Chemical Species on Indium Doped TiO2and Their Effect on the Visible Light Photocatalytic Activity. J. Phys. Chem. C2009,113,20912.
    [277] Du1rr, M, Rosselli, S, Yasuda, A. Band-Gap Engineering of Metal Oxides forDye-Sensitized Solar Cells.J. Phys. Chem. B2006,110,21899.
    [278] Lee, J.-C., Kim, T. G., Lee, W.,et al. Growth of CdS Nanorod-Coated TiO2Nanowires onConductive Glass for Photovoltaic Applications. Crystal. Growth. Design2009,9,4519.
    [279]翟晓辉,赵俊岩,巢晖,曹亚安, Rup2p表面敏化TiO2基复合薄膜光致电荷转移的研究.物理化学学报.2010,26,1617
    [280]董江舟,赵峻岩,巢晖,曹亚安,表面敏化TiO2基复合薄膜的能带结构与光致电荷转移的研究.化学学报.2011,69(23):2781.
    [281] Cao, Y., Yang, W., Zhang, W. et al. Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition New.J.Chem.2004,28,218.
    [282] Yu, J. C., Yu, J., Ho, W., et al. Effects of F-Doping on the Photocatalytic Activity andMicrostructures of Nanocrystalline TiO2Powders. Chem. Mater.2002,14,3808.
    [283] Luo, H., Takata, T., Lee, Y., et al. Photocatalytic Activity Enhancing for Titanium Dioxideby Co-doping with Bromine and Chlorine. Chem.Mater.2004,16,846.
    [284] Lettmann, C., Hildenbrand, K., Kisch, H., et al. Visible light photodegradation of4-chlorophenol with a coke-containing titanium dioxide photocatalyst. Appl. Catal., B:EnViron.2001,32,215.
    [285] Sakthivel, S., Kisch, H. Daylight Photocatalysis by Carbon-Modified Titanium Dioxide.Angew. Chem., Int. Ed.2003,42,4908.
    [286] Ohno, T., Akiyoshi, M., Umebayashi, T., et al. Preparation of S-doped TiO2photocatalystsand their photocatalytic activities under visible light.Appl. Catal., A: Gen.2004,265,115.
    [287] Li, D., Haneda, H., Hishita, S., et al. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification. Chem. Mater.2005,17,2596.
    [288] Moon, S. C., Mametsuka, H., Soichi, T., et al. Photocatalytic production of hydrogen fromwater using TiO2and B/TiO2. Catal. Today2000,58,125.
    [289] Jung, K. Y., Park, S. B., Ihm, S.-K. Local structure and photocatalytic activity of B2O3-SiO2/TiO2ternary mixed oxides prepared by sol-gel method. Appl. Catal., B: EnViron.2004,51,239.
    [290] Jin, Z.-L., Lu, G.-X. Efficient Photocatalytic Hydrogen Evolution over Ptx-/TiO2-yByCatalysts in a Ternary System of K+, Mg2+/B24O-7/H2O.Energy Fuels2005,19,1126.
    [291] Gao, B., Ma, Y., Cao, Y.,et al. Great Enhancement of Photocatalytic Activity of Nitrogen-Doped Titania by Coupling with Tungsten Oxide. J. Phys. Chem. B2006,110,14391.
    [292] Surolia, P. K., Tayade, R. J., Jasra, R. V. Effect of Anions on the Photocatalytic Activity ofFe(III) Salts Impregnated TiO2. Ind. Eng. Chem. Res.2007,46,6196.
    [293] Cao, Y., Yang, W., Zhang, W. et al. Improved photocatalytic activity of Sn4+doped TiO2nanoparticulate films prepared by plasma-enhanced chemical vapor deposition New.J.Chem.2004,28,218.
    [294] Y. L. Xu, The Basics of Semiconducting Oxides and Compounds, Press of Xi’an ElectronicScience and Technology University, Xi’an,1991.
    [295] Chen, D. M., Yang, D, Wang,Q. Effects of Boron Doping on Photocatalytic Activity andMicrostructure of Titanium Dioxide Nanoparticles. Ind. Eng. Chem. Res.2006,45,4110-4116
    [296] Zhao, W., Ma, W. H., Chen, C. C. et al. Efficient Degradation of Toxic Organic Pollutantswith Ni2O3/TiO2-xBx under Visible Irradiation. J.Am. Chem. Soc.2004,126,4782.
    [297] Yuan J.X., Wang E.J., Chen Y.M. Doping mode, band structure and photocatalyticmechanism of B-N-Codoped TiO2. Appl.Surf.Sci.,2011,257:7355-7342
    [298] Li, D., Haneda, H.; Hishita, S., Ohashi, N. Visible-Light-Driven N F Codoped TiO2Photocatalysts.2. Optical Characterization, Photocatalysis, and Potential Application to AirPurification. Chem. Mater.2005,17,2596.
    [299] Serpone, N., Lawless, D., Khairutdinov, R. Subnanosecond Relaxation Dynamics in TiO2Colloidal Sols (Particle Sizes Rp=1.0-13.4nm). Relevance to HeterogeneousPhotocatalysis. J. Phys. Chem.1995,99,16655.
    [300] Yu, J. C., Ho, W., Yu, J. et al. Effects of Trifluoroacetic Acid Modification on the SurfaceMicrostructures and Photocatalytic Activity of Mesoporous TiO2Thin Films. Langmuir.2003,19,3889.
    [301] Saraf, L. V., Patil, S. I., Ogale, S. B. et al. Synthesis of Nanophase TiO2by Ion BeamSputtering and Cold Condensation Technique. Int. J. Mod. Phys. B1998,12,2635.
    [302] Matar, F., Ghaddar, T. H., O’Regan, B. A new ruthenium polypyridyl dye, TG6, whoseperformance in dye-sensitized solar cells is surprisingly close to that of N719, the ‘dye tobeat’ for17years. J. Mater. Chem.2008,18,4246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700