用户名: 密码: 验证码:
流体静压支承对超精密金刚石车床动态特性影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超精密加工技术在现代国防和高新技术中占有重要地位,超精密金刚石车床是实现超精密加工的重要设备。从加工的观点看,机床的作用是准确的控制刀具和工件之间的位置,机床加工时使刀具和工件之间按预定的轨迹运动,以获得所需要的工件表面。这需要超精密金刚石车床具有良好的动态性能。但是,由于机床各部分的连接刚度是有限的,机床加工时刀具刀尖和工件之间的振动是不可避免的。随着对加工精度的要求越来越高,机床本身的动态特性对加工精度的影响越来越突出。机床的结合面是影响机床动态特性的主要因素。相比普通机床,超精密机床的一大特点是大量采用流体静压支承,流体静压支承的油膜或气膜作为超精密机床的结合面,它们的性能是影响超精密机床动态特性的重要因素。因此,本文针对流体静压支承的性能及其对超精密金刚石车床动态特性的影响进行研究。
     首先,建立了考虑支撑面倾斜情况时液体静压导轨油腔流量公式和油膜厚度表达式,以此为基础建立了超精密金刚石车床液体静压导轨的有限元计算模型。根据该模型编制了计算程序,得到了导轨五自由度方向的刚度和角刚度,并对其影响因素进行了研究。在分析气体静压主轴和液体静压导轨异同的基础上建立了气体静压主轴的有限元模型,编制了计算程序,计算了主轴五自由度方向的刚度和角刚度,分析了其影响因素。
     分析了所设计的超精密机床的结构特征,依据拉格朗日方程建立了机床的动力学方程,并对建立机床动力学方程所需的参数进行了辨识。通过实验辨识了液体静压导轨和气体静压主轴各方向的刚度,验证了所建立的有限元模型的正确性。通过实验辨识了液体静压导轨和气体静压主轴各方向的阻尼。建立了直线电机直接驱动的液体静压导轨和分体式无框架力矩电机直接驱动的气体静压主轴的控制系统模型,仿真得到了控制系统的刚度。
     机床的动态特性用刀尖和工件之间的频率响应来表示。首先对机床进行了模态分析,求解得到了机床的固有频率和振型。然后通过刀尖和工件处的响应分析找出了对机床精度影响较大的固有频率和振型。研究了液体静压导轨和气体静压主轴的刚度、角刚度和阻尼等参数的变化对其机床动态特性的影响规律。为超精密机床的设计提供了理论依据。慢速刀具伺服加工和快速刀具伺服加工是超精密机床常用的独特加工工艺,因此,研究了慢速刀具伺服加工时液体静压导轨的运动特性,以及误差产生的原因和影响因素。建立了快速刀具伺服系统的动力学模型,分析了快刀加工时由于自身的高频振动引起的误差大小及其影响规律,为误差补偿提供了理论依据。
     最后,对超精密金刚石车床振动信号进行了测试,并开展了端面车削加工实验研究。通过机床振动信号的测试得出机床加工时刀尖与工件之间的振动频率,与理论计算得出的频率进行对比,验证了理论分析的正确性。对车削加工实验得到的表面进行功率谱密度分析,获得了工件表面形貌的空间频率成分,与机床振动相对照,揭示了机床振动频率与工件表面形貌空间频率之间的关系。采用功率谱密度与二维小波变换相结合的方法提取出车削加工表面上特定空间频率成分的三维表面形貌,计算得到了这些特定空间频率成分对原始表面形貌的影响程度。
Ultra-precision machining technology plays an important role in the modernnational defense system and high-tech field. Ultra-precision diamond lathe are keyequipments to achieve ultra-precision machining. Based on the viewpoint ofprocessing, the function of a machine tool is to accurately control the positionbetween the tool and workpiece. So an ultra-precision machine tool has to meet thefollowing requirements: high dynamic stiffness. However, due to the stiffnesses ofconnections between parts in the machine are limited, the vibration between tool tipand workpiece is inevitable in machining. Conection surfaces of an ultra-precisonmachine tool are the primary factors influencing dynamic performances of themachine. Contrast to general machine tools, the major feature of an ultra-precisionmachine tool is with hydrostatic supports. Performances of hydrostatic supports aredominating factors to affect the dynamic characteristics of an ultra-precisionmachine tool. This paper studies the performance of hydrostatic bearing and itsinfluence on ultra-precision diamond lathe dynamic characteristics.
     First, create the oil chamber flow formulas and film thickness expressions,consider hydrostatic guideway a support surface inclined, as a basis, establishfor theultra-precision diamond lathe hydrostatic guideway finite element model. Accordingto the model, developed a computer program calculated the stiffness and angularstiffness of five degrees of freedom direction of the slide, and its influencing factorswere studied. A finite element model of the spindle is established, on the basis ofanalysis similarities and differences of aerostatic spindle and hydrostatic guideway.An FEA program have been written to accurately calculate the stiffness and angularstiffness of the spindle in the direction of five degrees of freedom respectively, andits influencing factors were studied.
     One more accurate ultra-precision machine tool dynmics model has been found.Stiffnesses and dammpings of the hydrostatic rails and the aerostatic spindle areidentified by model experiments. Experimental results agrees well with thetheoretical calculation, proving the correctness of the finite element model. Acontrol system model has been built, which features the direct-driven linear motorand hydrostatic rails. Similarly, a control system, combing the brushless torquemotor and aeostatic bearings, is also established. Stiffnesses of control systems aresimulated respectively. Based on the results above, an ultra-precision diamond lathedynamic model has been achieved according to the Lagrange equation.
     Machine tool dynamic performace is featured by frequency response betweenthe tool nose and workpiece. Firstly, one mode analysis of the designed ultra- precision machine tool is done to obtain natural frequencies and mode shapes of themachine tool. Next, a response analysis is implemented to identify whichfrequency and mode shape have more impact on the machine accuracy. Influences ofthe stiffness, angular stiffness and damping of hydrostatic guideways on theultra-precision machine tool dynamic performance are investigated respectively.What’s more, the impacts of spindle stiffness, angular stiffness and damping on themachine tool dynamic characteristics are also investigated. All these work give clueson an ultra-precision machine tool design. At last, an mode experiment is done toverify the reliability of theoretical analysies. Slow tool servo technology and fasttool serveo technology are two common processes exploiting at an ultra-precisionmachine tool. So, in this paper, specialties of the slow slide servo maching areanalysed. Moreover, motion errors of hydrostatic guideway in the process of slowslide servo machining are reaserched. The reasons of motion errors and thoseinfluencing factors are studied respectively. A fast tool servo dynamics model hasbeen established. An analysis probes into the influence of high frequency vibrationon the machining accuracy in fast tool servo process, which uncovers the factorsdecrease the machining accuracy and provides a theoretical basis for the errorcompensation.
     Finally, the ultra-precision diamond lathe vibration signal are detected, andconducted face turning experimental study. Obtained the vibration frequencybetween the workpiece and tool tip through the vibration signal detection,comparing the theoretical calculated frequency and the theoretical analysis is correct.Power spectral density analysis of the experiment turning surface is conducted,obtained spatial frequency components of the surface topography, in contrast withthe machine vibration, reveal the relationship of vibration frequency of the machineand the spatial frequency of workpiece surface morphology. To extract thethree-dimensional surface topography of specific spatial frequency components onthe machining surface, make use of the method of combining power spectral densityand dimensional wavelet transform. calculated the degree of influence of thesespecific spatial frequency components for the original surface morphology,revealing the relationship between the machine vibration and the surfacemorphology.
引文
[1]袁巨龙,张飞虎,戴一帆等.超精密加工领域科学技术发展研究[J].机械工程学报.2010,46(15):161-177.
    [2] Gan S, Lim H, Rahman M, et al. A fine tool servo system for global positionerror compensation for a miniature ultra-precision lathe[J]. InternationalJournal of Machine Tools&Manufacture,2007,47(7-8):1302-1310.
    [3] Li L, Yi A Y. Design and fabrication of a freeform microlens array for acompact large-field-of-view compound-eye camera[J]. Applied Optics,2012,51(12):1843-1852.
    [4] Carbone G, Pierro E, Gorb S N. Origin of the superior adhesive performanceof mushroom-shaped microstructured surfaces[J]. Soft Matter,2011,7(12):5545-5552.
    [5]李荣彬,张志辉,杜雪等.自由曲面光学的超精密加工技术及其应用[J].红外与激光工程,2010,39(1):110-115.
    [6] Filiz S, Conley CM, Wasserman MB, et al. An experimental investigation ofmicro-machinability of copper101using tungsten carbide micro-endmills[J].Int J Mach Tools Manuf,2007,47(7-8):1088-1100.
    [7] Park, C H, Song, C K. Ultra Precision Machine Tools for Machining the LargeSurface Micro Feature[J]. Journal of the Korean Society for PrecisionEngineering,2005,22(5):7-15.
    [8] Kong L B, Cheung C F, To Suet. Design, fabrication and characterization ofthree-dimensional patterned microstructured surfaces with self-cleaningproperties from hydrophilic materials[J]. Proceedings of the Institution ofMechanical Engineers. Part B. Journal of Engineering Manufacture,2012,226(9):1536-1549.
    [9] Huo D, Cheng K. A dynamics-driven approach to the design of precisionmachine tools for micro-manufacturing and its implementation perspectives[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture,2008,222(1):1-13.
    [10]赵宏林,丁庆新,曾鸣,等.机床结合部特性的理论解析及应用[J].机械工程学报,2008,44(12):208-215.
    [11] Wang H, To S, Chan C Y, et al. A theoretical and experimental investigation ofthe tool tip vibration and its influence upon surface generation in single pointdiamond turning[J]. International Journal of Machine Tools and Manufacture,2010,50(3):241-252.
    [12] Zaeh M, Siedl D. A new method for simulation of machining performance byintegrating finite element and multi-body simulation for machine tools[J].Ann CIRP,2007,56(1):383-386.
    [13] Maj R, Modica F, Bianchi G. Machine tools mechatronic analysis[J].Proceedings of the Institution of Mechanical Engineers, Part B: Journal ofEngineering Manufacture,2006,220(3):345-353.
    [14]李勇,张向阳,谢晓丹.大口径光学镜面超精密加工机床的研制[J].纳米技术与精密工程,2010,8(5):428-432.
    [15]吴明根.超精密加工机床设计.航空航天工业部第三十三研究所.1995:10-17.
    [16] Donaldson R R, Patterson S R. Design and Construction of a Large VerticalAxis Diamond Turning Machine.Lawrence Livermore National LaboratoryReport.1983.
    [17] Moore Nanotechnology Systems, LLC. Machines[EB/OL].[2013-03-20].http://www.nanotechsys.com/machines/.
    [18] AMETEK Precitech Inc., Precitech product line[EB/OL].[2013-03-20].http://www.precitech.com/.
    [19]李圣怡,戴一帆.精密和超精密机床设计理论与方法[M].长沙:国防科技大学出版社.2008:116-120.
    [20] Fanuc Corporation, Super nano machine exploring nano field: FanucRobonano α-0iB[EB/OL].[2013-03-20]. http://www.fanuc.co.jp/en/product/robonano/.
    [21]董吉洪.精密和超精密加工机床的现状及发展对策[J].光机电信息,2010,27(10):1-9.
    [22]杨辉.超精密加工设备的发展与展望[J].航空精密制造技术,2008(24):42-46.
    [23]李圣怡,戴一帆.精密和超精密机床精度建模技术[M].长沙:国防科技大学出版社.2007:81-82.
    [24]李圣怡,戴一帆.精密和超精密机床控制技术[M].长沙:国防科技大学出版社.2008:46-48.
    [25]王云飞.气体润滑理论与气体轴承设计[M].北京:机械工业出版社,1999:2-3.
    [26]钟洪,张冠坤.液体静压动静压轴承设计使用手册[M].北京:电子工业出版社,2007:23-24.
    [27] Barp M, Vischer D. Achieving a world record in ultra high speed wirebonding through novel technology[C].SEMI Technology Symposium:International Electronics Manufacturing Technology (IEMT) Symposium,SEMT/IEEE IEMT, San Jose, CA, USA,2002,342-347.
    [28] Sharma S C, Phalle V M, Jain S C. Performance analysis of a multirecesscapillary compensated conical hydrostatic journal bearing[J]. TribologyInternational,2011,(44):617-626.
    [29] Chen D J, Fan J W, Zhang F H. Dynamic and static characteristics of ahydrostatic spindle for machine tools[J]. Journal of Manufacturing Systems,2010,(11):1-8.
    [30] Frank P, Wardle C, Bond C, et al. Dynamic characteristics of a direct-driveair-bearing slide system with squeeze film damping[J]. Int J Adv ManufTechnol,2010,47:911-918.
    [31]丁振乾.我国机床液体静压技术的发展历史及现况[J].精密制造与自动化,2003,(3):19-21.
    [32]李列. XK2125床身工作台导轨副采用恒流供油式静压导轨的探讨[J].机床与液压,2006,(10):64-66.
    [33] Dhar A, Agarwal A K, Saxena V. Measurement of dynamic lubricating oil filmthickness between piston ring and liner in a motored engine[J]. Sensors andActuators, A: Physical,2009,149(1):7-15.
    [34] Zhang Y Q, Xu X Q, Yang X D, et al. Analysis on influence of oil filmthickness on temperature field of heavy hydrostatic bearing in variableviscosity condition[C].2011international conference on chemical engineeringand advanced materials, Changsha,2010:1181-1185.
    [35] Park C H, Yoon J O, Joo H H, et al. Development of an Ultra PrecisionHydrostatic Guideway Driven by a Coreless Linear Motor[J]. InternationalJournal of Precision Engineering and Manufacturing,2005,6(2):55-60.
    [36] Wang X,Yamaguchi A. Characteristics of hydrostatic bearing/seal parts forwater hydraulic pumps and motors[J]. Part1:Experiment and theory[J].Tribology International,2002(35):425-433.
    [37]赵建华,高殿荣.油膜厚度对闭式液体静压导轨性能的影响[J].中国机械工程,2013,24(11):1421-1424.
    [38] Kim M,Jang G,Kima H. Stability analysis of a disk-spindle system supportedby coupled journal and thrust bearings considering five degrees of freedom[J].Tribology International,2010(43):1479-1490.
    [39] Shao J P, Dai C X, Zhang Y Q, et al. The effect of oil cavity depth ontemperature field in heavy hydrostatic thrust bearing[J]. Journal ofHydrodynamics,2011,23(5):676―680.
    [40] Ting L L, Mayer J E. The effects of temperature and inertia in hydrostaticthrust bearing[J]. ASME J. of Lub. Tech.1971,93(2):307–312.
    [41] Robert E J, Manning N D. Sensitivity Studies for the Shallow-pocketGeometry of a Hydrostatic Thrust Bearing[C]. The2003ASME InternationalMechanical Engineering Congress,2003,10:231-238.
    [42] Jain S C, Bharma D K, Sharma S C. Influences of recess shape on theperformance of a capillary compensated circular thrust pad hydrostaticbearing [J]. Tribology International,2002,35(6):347-356.
    [43] Kirat S, Robert E J, Harish P C. Numerical Investigations of Various SurfeceRoughness Parameters on the Performance of Profiled Hydrostatic ThrustBearing[C]. World Tribo logy Congress III (WTC2005),Washington, D.C.USA,2005:10-12.
    [44] Bakker O J,Ostayen R A J. Recess Depth Optimization for Rotating, Annular,and Circular Recess Hydrostatic Thrust Bearings[J]. Journal of Tribotogy,2010,132(l):011103.1-011103.7.
    [45]张刚强.大型立式超精密车床液体静压推力轴承设计及性能研究[D].长沙:中南大学,2012:16-22.
    [46]张艳芹.基于Fluent的静压轴承流场及温度场研究[D].哈尔滨:哈尔滨理工大学,2007:35-46.
    [47]孟心斋,杨建玺.液体静压支承动态性能新表达式探索与实验验证[J].中国工程科学,2003,(3):62-66.
    [48]岳广杰.液体静压转台油腔流动特性和承载力的研究[D].北京:北京工业大学,2012:37-48.
    [49]卢华阳.液体静压导轨支承油膜的有限元分析[J].机床与液压,2007,(10):46-49.
    [50]王勇勤,刘志芳,严兴春.毛细管节流静压油膜轴承动态特性分析[J].重庆大学学报,2011,(3):25-31.
    [51]朱希玲.数值模拟在静压轴承系统中的应用[J].润滑与密封,2006,175(3):136-150.
    [52]朱希玲.基于ANSYS的静压轴承油腔结构优化设计[J].轴承,2009,(7):12-15.
    [53] Willis R R. On the Pressure Produced on a Flat Plate When Opposed to aStream of Air Issuing from an Orifice in a surface Plane. Tran. CambridgePhilos. Soc.1828,(3):121.
    [54] Eleshaky M E. CFD investigation of pressure depressions in aerostaticcircular thrust bearings[J]. Tribology International,2009,42:1108-1117.
    [55] Abele E, Altintas Y, Brecher C. Machine tool spindle units[J]. CIRP Annals-Manufacturing Technology,2010,59(2):781-802.
    [56] Leuven K U. On the modelling of the dynamic characteristics of aerostaticbearing films: From stability analysis to active compensation[J]. PrecisionEngineering,2009,33:117-126.
    [57] Yemelyanov A V, Ayemelyanov I. Physical models, theory and fundament-alimprovement to self-acting spiral-grooved gas bearings and viscoseals[J].Proc. Instn Mech. Engrs, Part J: J. Engineering Tribology,1999,213:263-273.
    [58]温诗铸,黄平.摩擦学原理[M].北京:清华大学出版社,2002:50-93.
    [59]刘暾,刘育华,陈世杰.静压气体润滑[M].哈尔滨:哈尔滨工业大学出版社,1990:30-31.
    [60] Kawai T, Ebihara K, Takeuchi Y. Improvement of machining accuracy of5-axis control ultraprecision machining by means of laminarization andmirror surface finishing[J]. CIRP Annals-Manufacturing Technology,2005,54(1):329-332.
    [61]陈东菊,张飞虎,付鹏强.空气静压导轨气膜波动的辨识[J].机械工程学报,2010,46(21):187-193.
    [62] Chen X D, Yu X Z, He X M, et al. Dynamic characteristic analysis ofprecision long stroke linear motor with air-bearing in optical lithography[J].Chinese Journal of Mechanical Engineering,2008,21(2):17-22.
    [63] Al-Bender F. On the modelling of the dynamic characteristics of aerostaticbearing films: From stability analysis to active compensation[J]. PrecisionEngineering,2009,33:117-126.
    [64] Al-Bender F, Van Brussel H.Amethod of’separation of variables’ for thesolution of laminar boundary-layer equations of narrow-channel flows[J].ASME J Tribol1992,114(6):623-629.
    [65] Guido B, Federico C, Terenziano R, et al. Comparison between grooved andplane aerostatic thrust bearings: static performance[J]. Meccanica,2011,46(7):547-555.
    [66] Almas E A M,De Silva F A P. Finite difference automatically generated non-uniform grids in the numerical solution of the Reynolds’compressible onedimensional squeeze-film equation[J]. Proc. Instn Mech. Engrs, Part J: J.Engineering Tribology,2003,217:243-249.
    [67] Yoshimoto S, Kohno K. Static and dynamic characteristics of aerostaticcircular porous thrust bearings(effect of the shape of the air supply area)[J]. J.Tribol,2001,123:501-508.
    [68] Yoshimoto S, Tozuka H, Dambara S. Static characteristics of aerostatic porousjournal bearings with a surface-restricted layer[J]. Proc. Instn Mech. Engrs,Part J: J. Engineering Tribology,2003,217:125-132.
    [69] Yoshimoto S. An aerostatic thrust bearing with a stiffness of1N nm-1[J].Nanotechnology,1996,7:52-57.
    [70] Miyatake M, Yoshimoto S. Numerical investigation of static and dynamiccharacteristics of aerostatic thust bearings with small feed hole[J]. TribologyInternational,2010,43(8):1353-1359.
    [71] Watanabe K, Natsume J, Hashizume K, et al. Theoretical analysis of bearingperformance of microgrooved bearing[J]. JSAE Rev.,2000,21:29-33.
    [72] Chen M F, Lin Y T. Static behavior and dynamic stability analysis of groovedrectangular aerostatic thrust bearings by modified resistance networkmethod[J]. Tribology International,2002,35:329-338.
    [73] Stou K J, Barrans S M. The design of aerostatic bearings for application tonanometer resolution manufacturing machine systems[J]. TribologyInternational,2000,33,803-809.
    [74] Nakamura T, Yoshimoto S. Static tilt characteristics of aerostatic rectangulardouble-pad thrust bearings with double row admissions[J]. TribologyInternational,1997,30(8),605-611.
    [75] Nakamura T, Yoshimoto S. Dynamic tilt characteristics of aerostaticrectangular double-pad thrust bearings with compound restrictors[J].Tribology International,1999,32,731–738.
    [76] Van J, Wesselingh J, Ostayen R A J, et al. Planar wafer transport andpositioning on an air film using a viscous traction principle[J] TribologyInternational,2009,42(9):1542-1549.
    [77] Chen X D, He X M. The effect of the recess shape on performance analysis ofthe gas-lubricated bearing in optical lithography[J]. Tribology international.2006,39(11):1336-1441.
    [78] He X M, Chen X D. The dynamic analysis of the gas lubricated stage inoptical lithography[J], International Journal of Advanced ManufacturingTechnology.2007,32(9-10):978-984.
    [79]陈学东,何学明,叶燚玺.超精密气浮定位工作台技术[M].武汉:华中科技大学出版社,2008:41-65.
    [80]姚美红,张恒峰.基于CFX的气体静压轴承数值研究[J].中国机械工程,2012,23(22):2681-2684.
    [81]侯予,赵祥雄,陈双涛,等.小孔节流静压止推气体轴承静特性的数值分析[J].润滑与密封,2008,33(9):1-3.
    [82]于贺春,马文琦,王祖温,等.基于FLUENT的径向静压气体轴承的静态特性研究[J].润滑与密封,2009,34(12):77-81.
    [83] Li Y T, Ding H. Design Analysis and Experimental Study of Aerostatic LinearGuideways Used in a High Acceleration and High Precision xy Stage[J]. Proc.IMechE, Part J: J. Engineering Tribology,2007,221(J1):1-9.
    [84] Li Y T, Ding H. Influences of the geometrical parameters of aerostatic thrustbearing with pocketed orifice-type restrictor on its performance[J]. TribologyInternational,2007,(40):1120-1126.
    [85]侯珍秀,乔江东.摆角铣头气体静压轴承的工程设计与数值模拟[J].哈尔滨工业大学学报,2011,43(1):68-73.
    [86] Chen Y S, Chiu C C, Cheng Y D. Influences of operational conditions andgeometric parameters on the stiffness of aerostatic journal bearings[J].Precision Engineering,2010,(34):722-734.
    [87] Frew D A, Scheffer C. Numerical modelling of a high-speed rigid rotor in asingle-aerostatic bearing using modified Euler equations of motion[J].Mechanical Systems and Signal Processing,2008,22(1):133-154.
    [88] Gertzos K P,Nikolakopoulos P G,Papadopoulos CA. CFD analysis of journalbearing hydrodynamic lubrication by Bingham lubricant[J]. TribologyInternational,2008,(41):1190-1204.
    [89] Zhang G P, Huang Y M, Shi W H et al. Predicting dynamic behaviors of awhole machine tool structure based on computer-aided engineering[J].International Journal of Maehine Tools&Manufaeture,2003,(43):699-706.
    [90] ZatarainE, Lejardi, Egana F. Modular Synthesis of Machine Tools[J]. Annalsof the CIRP.1998,47(1):333-336.
    [91] Schmitz T L, Davies M A, Medicus K. Improving High-speed MachiningMaterial Removal Rates by Rapid Dynamic Analysis[J]. Annals of theCIRP.2001,50(1):263-268.
    [92] Schmitz T L. Predicting High-speed Machining Dynamics by SubstructureAnalysis[J]. Annals of the CIRP,2000,49(1):303-308.
    [93]廖伯瑜,廖永宜.机床结构的建模与研究[J].昆明工学院学报.1988,(10):47-62.
    [94]张宇,廖伯瑜.机床结合部参数的有效识别方法[J].昆明理工大学学报.1998,(2):8-13.
    [95]张兴朝.基于有限元分析的模块化数控机床结构动态设计研究[D].天津:天津大学学位论文,2001:26-30.
    [96]赵宏林,张文河,盛伯浩,等.机床整机综合特性的预测[J].制造技术与机床,1998,47(3):12-14.
    [97]张广鹏,史文浩,黄玉美,等.机床整机动态特性的预测解析建模方法[J].上海交通大学学报,2001,35(12):1834-1837.
    [98]周德廉,陈新,孙庆鸿.高精度内圆磨床整机动力学建模及优化设计[J].东南大学学报.2001,31(2):35-38.
    [99]伍建国,陈新,毛海军,等.内圆磨床床身设计参数的灵敏度分析及动态设计[J].南京航空航天大学学报,2002,34(6):544-547.
    [100] Beads C F. Damping in structural joints[J], The Shock and Vibration Digest,1982(6):563-570.
    [101] Weck M, Teipel K. Dynamisches Verhalten Spanender Werkzeugmaschinen[J],Springer Verlag, Berlin,1977:49-52.
    [102] Lin Y,Chen W. A method of identifying interface characteristic for machinetools design[J]. Journal of Sound and vibration,2002,255(3):481-487.
    [103] Szwengier G, Godunski T. Identification of Physical Parameters in contactjoints models of machines supporting systems[J]. Advances in EngineeringSoftware,2000(31):149-155.
    [104] Padmanbhan K K. Prediction ofDamping inMachine Joints[J]. InternationalJournal Machine Tools Manufacture,1992,(3):305-314.
    [105]李奎.基于结合面参数的高档数控机床动态特性分析与优化[D].南京:南京理工大学,2010:19-21.
    [106]张华.机床滚动导轨结合面动态特性参数识别试验研究[D].南京:南京理工大学,2010:10-18.
    [107]顾思闽.机床固定结合面动态特性参数实验研究[D].南京:南京理工大学,2010:41-48.
    [108]王维友.机床滑动导轨结合面动态特性参数识别试验研究[D].南京:南京理工大学,2010:8-11.
    [109]张广鹏,史文浩,黄玉美.机床导轨结合部的动态特性解析方法及其应用[J].机械工程学报,2002,38(10):114-117.
    [110]刘阳,李景奎,朱春霞,等.直线滚动导轨结合面参数对数控机床动态特性的影响[J].东北大学学报(自然科学版),2006,27(12):1369-1372.
    [111] Cheung C F and Lee W B. Characterisation of nanosurface generation insingle-point diamond turning[J]. International Journal of Machine Tools&Manufacture.2001,41:851-875.
    [112] Luo X, Cheng K and Ward R. The effects of machining process variables andtooling characterizations on the surface generation[J]. International Journal ofAdvanced Manufacturing Technology.2005,25:1089-1097.
    [113] Kim D S, Chang I C and Kim S W. Microscopic topographical analysis of toolvibration effects on diamond turned optical surfaces[J]. Precision Engineering.2002,26:168-174.
    [114]许乔顾元元,柴林.大口径光学元件波前功率谱密度检测[J].光学学报,2001,21(3):344-347.
    [115] Liu Y H, Teng L, Li D Q, et al. Application of Power Spectral Density toSpecify Optical Super-Smooth Surfaces[C]. Proc.of SPIE.2006,6150:311-315.
    [116]于光,李鹏,赵清亮.超精密加工表面特性的功率谱密度表征与分析[J].哈尔滨工业大学学报,2010,42(1):29-32.
    [117]李丽伟,董申,程凯.表面微观形貌定量表征中几种新方法的应用[J].中国机械工程.2002,13(19):1702-1705.
    [118] Yuan L, Xu R X, Li X P, et al. Wavelet analysis of the surface morphologicofnanocrystalline TiO2thin films[J]. Surface Science.2005,579:37-76.
    [119]王炳成,褚祥志,任朝辉,等.磨损表面形貌分析中的小波变换和分形方法[J].组合机床与自动化加工技术,2005,(1):69-71.
    [120] Zahouani H, Mezghani S, Vargiolu R, et al. Identification ofmanufacturingsignature by2D wavelet decomposition[J]. Wear.2008,264:480-485.
    [121] Chen M, Pang Q, Wang J, et al. Analysis of3D microtopography inmachinedKDP crystal surfaces based on fractal and wavelet methods[J]. InternationalJournal of Machine Tools&Manufacture.2008,48(7-8):905-913.
    [122]曾文涵.双树复小波表面分析模型及加工过程形貌辨识方法研究[D].武汉:华中科技大学,2005.
    [123]李海燕,刘国栋,刘炳国.双密度小波中线的表面粗糙度分离技术[J].哈尔滨工程大学学报,2009,30(4):401-405.
    [124]杨红平,傅卫平,王雯.小波系数表征机械加工表面分形特征的计算方法[J].仪器仪表学报,2010,31(7):1454-1459.
    [125]杨智,戴一帆,王贵林.小波在基于功率谱密度特征曲线评价中的应用[J].激光技术.2007,31(6):627-629.
    [126]李德葆,陆秋海.工程振动试验分析[M].北京:清华大学出版社,2004:126-127.
    [127] Lee W J, Kim S. Joint Stiffness Identification of an UltraPrecision Machinefor Machining Large Surface Micro-Features[J]. International Journal ofPrecision Engineering and Manufacturing,2009,10(5):115-121.
    [128]王红旭,魏巍.直接驱动技术的发展及其应用前景[J].制造技术与机床,2008,(6):150-154.
    [129]唐振宇.直线电动机进给驱动技术在数控机床上的应用[J].机床与液压,2009,27(3):62-63.
    [130]王秀和.永磁电机[M].北京:中国电力出版社,2007:58-59.
    [131]姚延风,刘强,吴文镜.基于刚柔机电耦合的机床直线电机进给系统动态性能仿真研究[J].振动与冲击,2011,30(1):191-196.
    [132] Huo D, Cheng K, Wardle F. Design of a five-axis ultra-precision micro-milling machine-UltraMill. Part2-integrated dynamic modelling, designoptimisation and analysis[J]. The International Journal of AdvancedManufacturing Technology,2010,47(9-12):879-890.
    [133]孙大鹏.基于PSD方法的KDP晶体超光滑表面表征技术研究[D].哈尔滨:哈尔滨工业大学,2008:9-10.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700