用户名: 密码: 验证码:
水平螺旋微槽管壁面升膜传热传质机理及在海洋平台海水淡化中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当物体空间尺寸微细化后出现了空间微尺度效应,时间或空间微尺度化下出现了很多与常规尺度下的不同物理现象,探索这些物理现象的本质,如微尺度时空的传热传质、流体流动规律,发现这些规律的研究方法和测试技术,以及将该方面的研究成果应用在工程上,研制开发微尺度传热传质的新产品,都是迫切需要解决的科学技术问题,已成为国际传热研究前沿的研究热点。
     所谓水平螺旋微槽管壁面液体升膜是指当水平螺旋微槽管的底部表面与液面相切或微微浸入时,由润湿力、毛细力和温差驱动力等克服重力,驱动液体自下而上在管壁形成均匀连续的覆盖整个管表面的薄液膜。采用超景深三维显微镜系统可视化观察了水平螺旋微槽管壁面升膜形成及流动状态,在管壁内埋设0.5mm铠装热电偶定点测量水平螺旋微槽管壁面周向温度。在此基础上用不平衡热力学理论分析水平螺旋微槽管壁面升膜形成的影响因素,流动的驱动力及其耦合关系。在对升膜的速度分布和厚度分布进行数值模拟的基础上,得出正交曲线坐标系下水平螺旋微槽管壁面升膜蒸发换热的热量表达式。建立水平螺旋微槽管壁面升膜传热试验台,得出水平螺旋微槽管壁面升膜换热系数在周向上的分布,并对不同热流密度及强化措施进行分析比较。对水平螺旋微槽管壁面多组分流体升膜形成及传热进行分析,以乙醇水混合物和Nacl溶液为工质对不同浓度的多组分流体升膜传热进行比较,为工程应用提供理论支持。
     以单效水平螺旋微槽管壁面升膜海水淡化试验参数为依据设计更为高效紧凑的多效海水淡化装置与流程,并进行了数值分析计算。将水平螺旋微槽管壁面升膜多效海水淡化的各效换热温差及造水量与相同工况下竖管降膜海水淡化的相应参数进行比较,分析了水平螺旋微槽管壁面升膜海水淡化装置在海洋环境(海洋平台、舰船)中应用的适应性。
     通过以上研究发现水平螺旋微槽管壁面升膜形成受到毛细压力、润湿力、周向温差、汽泡等多种因素的综合作用,各项力对升膜的质量和热量传递之间存在耦合效应。水平螺旋微槽管壁面升膜不需要循环泵,且能够在螺旋微槽中实现欠热蒸发和过冷沸腾,通过实验得出其换热系数。对多组份流体在水平螺旋微槽管壁面升膜的形成和换热有了初步的分析,为适应于海洋环境条件下的海水淡化装置和流程设计提供了依据。对九效水平螺旋微槽管壁面升膜蒸发海水淡化进行参数计算,并与相同工况下的竖管降膜海水淡化进行比较,水平螺旋微槽管壁面升膜蒸发海水淡化其优势在于可以降低初始蒸发压力和蒸汽温度,有利于在海工设施上应用。通过对水平螺旋微槽管壁面升膜在倾斜角度时流动的数值模拟,水平螺旋微槽管壁面升膜蒸发海水淡化可以适应在摇摆的海洋环境中应用;并分析了不同海域海水参数(盐度、温度等)对水平螺旋微槽管壁面升膜海水淡化的影响,为其在海上的工程应用提供设计参考。
Space microscale effect appears when the object is under the micro-size space. In microscale time or microscale space, a lot of physical phenomena appear which are different from phenomena in the conventional scale. Investigating the nature of these physical phenomena, such as mechanism of heat and mass transfer and laws of fluid flow in microscale time and space, looking for the research methods and testing technology of these laws, and applying the results of research in engineering to develop new products of heat and mass transfer in microscale is an urgent scientific and technical issue which has become a research hotspot at the forefront of the international heat transfer.
     The so-called rising liquid film means that, when the bottom surface of the horizontal tubes is tangent with the surface of the liquid or slightly submerged the liquid, the liquid will cover the surface of the tubes uniformly from the bottom to the top, which is droved by the wetting force and temperature gradient. VHX-500 3D microscope System has been used to observe the formation and flow state of the rising liquid film on the microscale fluted surface of a horizontal tube. The circumferential temperature of the surface has been measured by 0.5mm armored thermocouple laid in the wall of the tubes. Based on the results of measure, the influencing factors of the formation of the rising liquid film, the driving forces of the flow and the coupling effects of them has been analyzed by unbalanced thermodynamic theory. The expression of the quantity of heat of the rising liquid film on the microscale fluted surface of a horizontal tube under the orthogonal curvilinear coordinates has been achieved after the numerical simulation of the distribution of the velocity and the film thickness. The circumferential distribution of the heat transfer coefficient has been achieved by establishing heat transfer experiment table of rising liquid film on the microscale fluted surface of horizontal tubes. And compare and analyzed different heat flux and strengthen measures of the microscale fluted surface of horizontal tubes. Analyze the formation of the rising multi-component liquid film and heat transfer, and compare the rising film heat transfer of different concentrations of multi-component fluid with ethanol-water mixture and solution of Nacl as working fluid, which provide theoretical support for the project application.
     Design the more efficient and compact device of multi-effect desalination process and make the numerical analysis on the basis of the experimental parameters of the single-effect rising film desalination on the microscale fluted surface of horizontal tubes. Compare every-effect temperature difference of heat transter and the water output of the rising film desalination using the microscale fluted surface of horizontal tubes with the parameters of the falling liquid film desalination using vertical tubes under the same work conditions. Analyze the adaptability of the device of rising film desalination on the fluted surface of horizontal tubes in the marine environment (offshore platforms, ships, etc.).
     Through the study above, it has been found that the rising liquid film on the fluted surface of horizontal tubes is influenced by micro-capillary pressure, wetting force, circumferential temperature difference, bubbles, and other combined factors. The coupling effects of the forces referred appears in the process of mass and heat transfer of the rising liquid film. Circulating pump is not needed in the process of the liquid film rising on the fluted surface of horizontal tubes. Subcooled boiling can be realized in the fluted surface and the coefficient of heat transfer can be achieved through the experiment. The formation and heat transfer of multi-component fluid film rising on the fluted surface of horizontal tubes has been initially analyzed, which provides a basis for the design of the device and process of desalination using in the marine environment. Parameters of multi-effect of nine rising film desalination on the fluted surface of horizontal tubes has been calculated, which has been compared with the falling liquid film desalination on vertical tubes under the same work conditions. The advantage of rising film desalination on the fluted surface of horizontal tubes rests with it decreasing evaporation temperature and steam pressure, which is good for the application of maritime work. The rising liquid film on the fluted surface of a horizontal tube can adapt to the wobble marine environment, which has been approved by the simulation of flow under the oscillation situation. Besides, the effect of parameters (salinity, temperature, etc.) of different sea areas to the rising film desalination on the fluted surface of horizontal tubes has been analyzed.
引文
[1]崔海亭,彭培英.强化传热新技术及其应用.北京:化学工业出版社,2006.
    [2]林宗虎.强化传热及其工程应用.北京:机械工业出版社,1987
    [3]徐国想,邓先和,张亚君等.强化传热技术及其在硫酸转化系统中的应用进展.化工进展,2001,18(11):23~27
    [4]崔海亭,姚仲鹏,王瑞君.强化型管壳式换热器的研究现状与发展.化工机械,1999,26(3):168~170
    [5]周明霞.国内外换热器技术进展.压力容器,1995,(1):19~23
    [6]张平亮.新型高效换热器的技术进展及其应用.压力容器,1997,(2):146~152
    [7]姚仲鹏,王新国.车辆冷却传热.北京:北京理工大学出版社,2001
    [8]钱颂文,朱冬生,李庆领等.管式换热器强化传热技术.北京:化学工业出版社,2003
    [9] J. G. Witter. Ind and Eng. Chem. Process Design and Dev. 1971, Vol.10: 18-30
    [10] M. H. Mehta. Advances in Enhanced Heat Transfer. New York: ASME, 1979. 11-22
    [11] P. J. Marto. Advances in Enhanced Heat Transfer. New York: ASME, 1979. 1-10
    [12] F. Notaro. U. S. Patent, 4151294, May, 1973
    [13]张军.螺旋槽纹管管内流动和换热的数值模拟:[学位论文].北京:北京理工大学,1996
    [14] Cui H T, Yuan X G, Yao Z P. Experimental investigation of heat transfer and pressure drop characteristics of w-type spirally fluted tubes. Experimental Heat Transfer ,2003, 16(3):159~169
    [15]Bergles A E. Some perspectives on enhanced heat transfer second generation heat transfer technology. ASME Journal of Heat Transfer, 1988,110(11):1082~1096
    [16]Bergles A E. Heat Transfer Enhancement—The Enhancement and Accommodation of High Heat Fluxes. ASME Journal of Heat Transfer,1997,119(2):8~19
    [17]崔海亭.高效异形强化管的研究及发展方向.石油机械,1999,27(7):48~50
    [18] W. Nusselt. The condition of Stream on Cooling Surface. Chem. Engineering Funds, 1982,1(2): 6~19.
    [19] Ansberg J. W., Vliet G. C.. Absorption of vapors into liquid films flowing overcooled horizontal tubes. Proceedings of the ASME/JSME Joint Thermal Engineering Conference. Honolulu, HI:1987. 533~541 ,
    [20] J. K. Min, D. H. Choi. Analysis of the absorption process on a horizontal tube using Navier-Stokes equations with surface-tension effects. International Journal of Heat and Mass Transfer, 1999,42: 4567~4578,
    [21]Gregorig R. Hautkondensation a feigewellten oberflachen bei beruksichtigung der oberflachenspannungen. Zeitchriftfur angewandte Mathematic and Physic,5: 36~49
    [22]Webb R L. A generalized procedure for the design and optimization of fluted gregorig condensing surface. ASME Journal of Heat Transfer, 1979, 101: 335~339,
    [23] Mori,Y., Hijikata ,K., Huasawa, S. &Nakayama, W.. Optimized performance of condensation with outside condensing surface.18th Annual Heat Transfer Conf.. San Diego: 1979. 6~8.
    [24] Gokce H., Ozgln C. A hydrodynamic model developed for the condensate flowing over a sinusoidal fluted tube. International Journal of Heat and Mass Transfer, 1977, 20.137~144,
    [25] Panchal C B, France D M, Bell K J. Experimental investigation of single phase, condensation, and flow boiling heat transfer for a spirally fluted tube. Heat Transfer Engineering, 1992, 13(1)
    [26] Honda,H. and Fujii,T.. Semi-empirical equation for condensation heat transfer on vertical fluted tube. Winter Annual Meeting of the ASME. New Orleans, LA: 1984.9~14.
    [27] Webb,R.L.. A generalized procedure for the design and optimization of fluted Gregorig condensing surface. Heat Transfer. 1979,.1: 101~335,
    [28] Sideman, S., Levin ,A., Moalem-Maron, D.. Film flow and heat transfer on a vertically grooved surface. Proc. Of 7th Int. Heat Transfer Conf.. New York: 1982. 153.
    [29] R. E. Johnson and A. T. Conlisk. Laminar-film condensation/evaporation on a vertically fluted surface. Fluid Mech, 1987,184: 245~266
    [30]帅志明.凝汽器采用螺旋槽铜管强化换热的实验研究.中国电机工程学报, 1993, 13(1): 17~23
    [31]Withers J G. Tube-side heat transfer and presser drop for tubes having helical internal ridging with turbulent / transitional flow of single-phase fluid. Part 1.Single-Helix Ridging. Heat Transfer Engineering,1980,2 (1):48~58
    [32]Withers J G. Tube-side heat transfer and presser drop for tubes having helical internal ridging with turbulent / transitional flow of single-phase fluid. Part 2. Multiple-Helix Ridging.Heat Transfer Engineering, 1980,2 (1):43~50
    [33]Garimella S, Ceistensen R N . Heat Transfer and Pressure Drop Characteristics of Spirallty Fluid Annuli: PartⅠ-Hydrodynamics. Journal of Heat Transfer,1995,117 (2):54~60
    [34]Garimella S, Ceistensen R N. Heat Transfer and Pressure Drop Characteristics of Spirallty Fluted Annuli: PartⅡ- Heat Transfer. Journal of Heat Transfer,1995,117 (2):61~68
    [35]Garimella S. Performance Evaluation of Spirallty Fluid Annuli: Geometry and Flow Regime Effects. Heat Transfer Engineering,1997, 18 (1): 34~46
    [36]Panchal C B, France D M, Bell K J. Experimental investigation of Single-Phase, Condensation and Flow Boiling Heat Transfer for a Spirally Fluted Tube. Heat Transfer Engineering,1992, 13 (1): 42~52
    [37]Ewing M E, Arnold J A, Ceistensen R N. Experimental investigation of spirallty fluted annuli: Geometry and flow Regime Effects. Heat Transfer Engineering,1997, 18 (2): 34~46
    [38]Sethumadhavan R , Rao M R. Turbulent Flow Friction and Heat Transfer Characteristics of Single-and Multisory Spirally Enhanced Tube. Journal of Heat Transfer,1986,108 (5):55~61
    [39]Srinivasan V, Ceistensen R. Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of Flow Through Spirally Fluted Tubes. Experimental Thermal and Fluid Science,1992, (5) : 820~827
    [40]Moffat R J. Describing the uncertainties in experimental results. Exp Thermal Fluid Sci,1988, (5) : 3~17
    [41]Zimparov V D, Vulchanov N L, Delov L B. Heat Transfer and friction characteristics of spirally corrugated tubes for power plant condensers. 1. Experimental invesigation and performance evaluatin. International Journal of Heat and Mass Transfer, 1991, 34 (5): 2187~2197
    [42]Acearya S, Dutta S. Periodically Developed Flow and Heat Transfer in A Ribbed Duct. Journal of Heat Mass Transfer, 1993, 36 (8): 2069~2082
    [43]吉富英明,大场一马,有马芳雄.螺纹管的传热及压力损失.火力原子力发电,1976,27(2):171~1982
    [44]Newson I H , Hodgson T K. Scale of enhanced heat exchanger tubes Heat Transfer, 1973, 89 (3) :85~89
    [45]Zimparov V. Enhancement of heat transfer by a combination of a single-start spirally corrugated tubes with a twisted tape. Expeimental Thermal and Fluid Science, 2002, (25): 535~546
    [46]Zimparov V. Enhancement of heat transfer by a combination of a three-start spirally corrugated tubes with a twisted tape. Journal of Heat and Mass Transfer, 2001, (44): 551~574
    [47]Chen X D, Nguang S K, Bergles A E. Charaterization of the effect of corrugation angles on hydrodynamic and heat transfer performance of Four-start spiral tubes. Journal of Heat Transfer, 2001, 123 (12): 1149~1158
    [48]华南工学院化工热过程教研室.轧槽管传热与流体阻力的研究.化学工程,1980,(6):1~8
    [49]李向明,叶国兴,邓颂九.高效换热元件——螺旋槽管的研究及应用.化工学报,1982,33(4):359~367
    [50]叶国兴,邓颂九.螺旋槽管管壳式换热器的传热与阻力研究.化学工程,1991,(1):12~14
    [51]朱冬生,肖建国,谭盈科.轧槽管抗污垢性能的试验研究.石油化工设备,1996,25 (1): 8~11
    [52]陆应声,陈慕玲,潘宁忠等.强化传热元件与高效换热器研究进展.化工进展,1998,(1): 16~18
    [53]肖岷,章燕谋.水平螺旋槽管外冷凝换热的理论分析和实验研究.热能动力工程,1992, 7(5): 233~243.
    [54]刘明灿,章燕谋.水平螺旋管外部膜状凝结换热强化的实验研究.化工机械,1992, 19( 4): 198~201.
    [55]帅志明,陈滢,张红星,冯海仙.凝结换热下螺旋槽管特性及其节能.能源研究与利用,1994,(1): 17~20.
    [56]吴慧英,帅志明,周强泰.凝结换热器采用螺旋槽管的强化传热研究.化工学报, 1997,48(5): 626~630.
    [57]顾红芳,孙丹,章燕谋.水平螺旋管外V型槽强化冷凝传热的理论研究.西安大学学报,1999,33(7): 57~61.
    [58]顾红芳,孙丹,章燕谋.水平螺旋管外V型槽强化冷凝传热的理论研究.西安大学学报,1999, 33(7): 57~61.
    [59]崔海亭,姚仲鹏,杨英俊.单头“W”形螺旋槽管传热与流体力学特性研究.热能动力工程,2001, 16(2):151~164,
    [60]程俊国,冯骏,靳明聪等.螺旋管的传热及流阻性能.重庆大学学报,1980,(3):81~94
    [61]张华,周强泰.螺旋槽管强化管内换热试验研究.发电设备,2003,(4):24~27
    [62]黄渭堂,阎昌琪,孙中宁等.钛螺旋槽管传热及流动阻力的实验研究.核动力工程,2001,22(5):456~459
    [63]杨冬,陈听宽,罗毓珊.螺旋槽管中单相湍流摩擦系数与传热系数的统计关联式.西安交通大学学报,1999,33(9):66~70
    [64]Yang D, LiH X, Chen T K. Pressure drop ,heat transfer and performance of single-phase turbulent flow in spirally corrugated tubes. Experimental Thermal and Fluid Science,2001,24: 131~138
    [65]崔海亭,姚仲鹏,赵欣.螺旋槽纹管研究及应用.石油化工设备,2001,30(2):34~36
    [66]崔海亭.高效异型强化管的研究现状及发展方向.石油机械,1999,27(7):48~50
    [67]姚仲鹏,杨英俊,王化生.旋流管式机油冷却器的研究,内燃机工程,1994,(1):30~33
    [68]王补宣,张金涛,彭晓峰.薄液膜表面蒸发对降液膜传热和传质的影响.中国科学(E辑),2000:PP.216-221
    [69]王金亮.毛细管内蒸发传热机理的分析.化工学报,1999, 50(4): 435~442
    [70]彭晓峰,王补宣.毛细表面张力引起的液体流动在润湿.自然科学进展——国家重点实验室通讯,1996, 6(4)
    [71]张金涛,王补宣,彭晓峰.内凹气液界面毛细压力在界面蒸发中的作用.中国科学E辑,2002, 32(1): PP.37~42。
    [72]Mohamed A S. Operational Problems in the Solar Desalination Plant and Its Remedies. Desalination, 1993,93: 615~624
    [73]Hammond R P, Eissenbreg D M. Large-scale Sea-water Distillation for Southern California. Desalination, 1992, 87: 69~83
    [74]Ophir A. Low Temperature, Multi-effect Distillation for Cogeneration Yielding System. Desalination, 1991, 84: 85~101
    [75]Al-Shammiri M, Safar M. Multi-effect Distillation Plants: State of the Art. Desalination, 1999,126: 45~59.
    [76] Slesareko V N. Seawater Desalination in Thin Film Plants. Desalination,1994, 96: 173~181
    [77]Victor Dvornikov. Seawater Multi-effect Distillation Energized by a Combustion Turbine. Desalination, 2000, 127:261~269
    [78]张小艳,郑宏飞,王强,张联英,田怀璋.横管降膜蒸发闭式循环太阳能海水淡化装置的实验.西安交通大学学报,2002,36(2): 194~198
    [79]马学虎,安家明,朱晓波,陈嘉宾,邓新禄.表面处理水平管外海水降膜蒸发传热的初步实验研究.水处理技术,2003, 30(1): 22~25
    [80]沈胜强,张全,刘晓华.低温多效蒸发海水淡化装置的计算分析.节能,2005,(6): 10~14
    [81]许莉,王世昌,王宇新,凌毅.水平管外液膜流动状态及其对传热的影响.化工学报,2002,53(6): 555~559
    [82]周景锋,原郭丰,张鹤飞.蒸发式冷凝器应用于海水淡化系统的试验.工业用水与废水,2005, 36(2):29~32
    [83]王世昌.海水淡化工程.北京:化学工业出版社,2003. 46~53.
    [84]王世昌.化工百科全书第六卷海水淡化.北京:化学工业出版社,1994. 665~697.
    [85]胡松涛,廉乐明,李力能.昂萨格倒易关系的几个例证.哈尔滨建筑大学学报,1996,29(2):79~85
    [86]曾丹苓.工程非平衡热动力学。北京:科学出版社,1971
    [87]汤传义.水的表面张力与温度的关系.安庆师范学院学报(自然科学版),2000,6(1): 73-74
    [88]朱王步瑶,赵振国.界面化学基础.北京:化学工业出版社。1996
    [89]吴双应,曾丹苓.汽液相变换热过程唯象系数的计算.热能动力工程,2004,19(6):593-596
    [90]SMIDT V D I.水和水蒸气热力学性质图表[M].西安热工研究所译.北京:水利电力出版社,1974
    [91]施明恒,甘永平,马重芳.沸腾与凝结[M].北京:高等教育出版社,1995
    [92]林瑞泰.沸腾换热[M].北京:科学出版社,1988
    [93]欧阳光中.简明数学分析.上海:复旦大学出版社.1998.
    [94]徐长发,李红.偏微分方程数值解法.第二版.武汉:华中理工大学出版社,2000.
    [95]郑丹星.流体与过程热力学.北京:化学工业出版社,2005,68~86
    [96]Jung D S, et al. Int J Heat Mass Transfer, 1989,32:131.
    [97]Shock R A W. Int J Heat Mass Transfer,1977,20:701.
    [98]屠美,沈东.二元混合物沸腾换热机理探讨及计算.化学工程, 22(2),1994:41~62.
    [99]王补宣,胡杭英,彭晓峰.微槽内二元混合液体的流动沸腾.工程热物理学报, 18(1),1997:65~68.
    [100]王永福(清华),周荣琪,段占庭.二元混合物降膜蒸发的数值模拟.化工学报, 53(9),2002:946~950.
    [101]马虎根,蔡祖恢,李美玲.非共沸混合物微翅管内强化对流蒸发换热计算.工程热物理学报,25(3),2004:466~468.
    [102]孙仁义,孙茜.不挥发溶质对混合溶剂沸点及蒸气压的影响.化工学报, 53(9),2002:884~891
    [103]孙仁义.盐对多组分液体混合物沸点的影响.河南大学学报(自然科学版),32(1),2002:26~29
    [104]Grosand. Maurica Gay-Lussac-Scientist and Bougeois. Cambridge University Press, 1978:66
    [105]王维德.表面张力对传质过程的影响.化学工程,32(2),2004: 14~18
    [106]Guang X Chen,Karl T Chuan g. Prediction of point efficiency for sieve trays in distilation.Ind Eng Chem Res,32,1993:701~708
    [107]吴正国,夏立,尹为民.现代信号处理.武汉:武汉大学出版社,2003.
    [108]AL-Juwayhel F,EL-Dessouky H,Ettouney H.Analysis of single-effect evaporatordesalination systems combined with vapor compression heat pumps.Desalination,114,1997:253~275
    [109]Darwish M A,EL-Dessouky H.The heat recovery thermal vapour-compression desalination system.Applied Thermal Engineering,18,1996:523~537
    [110]EbDessouky H T,EL-ettouney H M.Multiple-effect evaporation system:thermal analysis.Desalination,1999,125:259~276
    [111]AI-Ansari A,Ettouney H ,EL-De ssouky H.Water-zeolite adsorption heat pump combined with single effect evaporation desalination process.Renewable Energy,(24),2001:91~111
    [112]EbDessouky H.Multistage flash desalination combined with thermal vapor compression.Chemical Engineering Processing,(39),2000:343~356
    [113]胡文瑞.微重力科学和应用.物理,18,1989,: 11
    [114]胡文瑞.微重力科学进展.物理,24,1995:453

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700