用户名: 密码: 验证码:
微网控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和技术的快速发展,以及各国对环境污染和气候问题的关注,目前我国的电网和发电系统也正需要进行一系列的改革。国内外的研究表明,分布式电源技术是解决这个问题的有效手段之一。分布式电源主要有微型燃气轮机、太阳能光伏、燃料电池以及风能发电等微型电源。大部分的分布式电源需要通过逆变器接入电网。分布式发电技术的运用,可以降低CO2的排放,减少环境污染,降低发电成本和改变越来越庞大的电网规模。但是分布式电源的直接并网会给电网带来很多其他的问题。解决这些问题的最有效的办法之一就是把分布式电源和相应的负荷组成微网。在微网内部,分布式电源直接向当地负荷供电,减轻了集中供电线路的负担。当电网有较大的波动或者电能质量问题时,微网脱离电网进入孤岛模式运行,而不会对整个电网造成损害,且孤岛微网能够继续给内部负荷提供高质量的电能。
     在并网模式下,电网给微网提供电压和频率参照,大部分分布式电源运行在PQ模式下,输出恒定的功率,大小由微网控制中心指定。但在孤岛模式下,必须有一个或者多个分布式电源工作在FV模式下,给微网提供频率和电压参照,其他电源继续工作在PQ模式。本文对PQ和FV控制模式进行了详细的分析,并通过PSCAD/EMTDC进行了仿真研究。建立了燃料电池仿真模型,对输出电压和逆变控制进行了详细分析。
     由于目前我国电网结构和管理的特点,本文的研究设定微网不能向电网输出电能。在并网模式下,所有的分布式电源只向内部负荷供电,所需电能的缺额由电网提供。从电网的角度来看,微网就像一个电网的可控负荷。这样,微网的接入不需要对目前的电网结构和管理系统进行很大的变动和改革。
     本文对并网和孤岛之间的过渡进行了研究。通过对PSCAD/EMTDC的仿真研究,对过渡过程的电压和频率波动进行了详细分析,提出了微网安全可靠并网的条件。本文的研究还表明,通过对分布式电源和储能装置的有效控制,微网能够在并网和孤岛的过渡过程中保持稳定运行,而且能在分布式电源启动和负荷增减的情况下继续提供高质量的电能。
     微网的长期可靠运行,除了分布式电源的控制以外,微网的整体管理十分重要。针对我国电网研究的特点,提出了模块化的微网管理系统方案。对微网的控制和管理系统进行了分析说明。
Economic, technology and environmental incentives are changing the face of electricity generation and transmission in our country. Distributed generation is one of the best choices to solve this problem. Distributed generation encompasses a wide range of prime mover technologies, such as gas turbines, microturbines, photovoltaic, fuel cells and wind-power. Most distributed generation has an inverter to interface with the electrical grid system. These technologies have lower emissions and have the potential to have lower cost, thus negating traditional economies of scale.
     But indiscriminate application of individual distributed generators can cause as many problems as it may solve. A better way to realize the emerging potential of distributed generation is to take a system approach which views generation and associated loads as a subsystem or a Microgrid. This approach allows for local control of distributed generation thereby reducing or eliminating the need for central dispatch. During disturbances, the generation and corresponding loads can separate from the distributed system to isolate the microgrid’s load from the disturbance (and thereby maintaining high level of service) without harming the transmission gird’s integrity. Intentional islanding of generations and loads has the potential to provide a higher local reliability than that provided by the power system as a whole.
     In grid connected mode, the electrical system provide the voltage and frequency reference for the microgrid. So all micrsources can operate in PQ control model by injecting into the MG with constant power according to the orders of microgrid control center. But in islanded mode, the MG must has a microsource operated in FV control model which provides voltage and frequency reference for the whole MG. And other microsources can be working in PQ model. This paper analyses the PQ and FV control, and simulate these control with PSCAD/EMTDC. Especially the SOFC model is established by PSCAD/EMTDC.
     Because the condition of our country’s electrical system, it is supposed that the MG does not export power to the electrical system. In grid connected, all the microsources provide power to the loads within the MG. The lack power of the MG is supported by the electrical grid. So the MG just likes a ordinary load. From a grid perspective, the microgrid concept is attractive because it recognizes the reality that the nation’s electrical system is extensive, old and will change only very slowly. The microgrid concept enables high penetration of DG without requiring re-design or re-engineering of the grid system itself.
     The process between islanded and grid connected is analyzed. Base on the voltage and frequency studies during the process, MG grid connected control is analyzed carefully. Using the PSCAD/EMTDC, the transient of connection is simulated and studied. The conditions required on MG connection reliability are raised.
     The studies show that an appropriate control strategy for the power electronically interfaced DG unit can ensure stability of the microgrid, even during process between islanded and grid connected modes. It also shows that using good control strategies and storage devices, the microgrid can operate stably and autonomously.
     Management is very important for the working of MG safely. So a modular management system is put forward and some operation is analyzed carefully.
引文
[1]杨敏英.德国加快发展可再生能源产业[J].中国能源,2009.31(2):23-26.
    [2]胡蓉萍.没有共识的共识: CMD该动一动了[EB/OL].经济观察报, http://www.eeo.com.cn/eeo/jjgcb/2009/12/21/158457.shtml,2009.12.21.
    [3]钱科学,袁岳等.分布式发电的环境效益分析[J].中国电机工程学报,2008,28(29):11-15.
    [4] Lasster RH, Paiqi Paolo. MicroGrids: A conceptual solution[J]. 2004 IEEE 35th Annual Power Electronics Specialists Conference, PESC04:4285-4290.
    [5]王成山,肖朝霞,王守相.微网综合控制与分析[J].电力系统自动化,2008,32(7):98-103.
    [6]盛鹍,孔力,齐智平等.新型电网-微电网(MicroGrid)研究综述[J].继电器,2007,35(12):75-82.
    [7] Piagi, Paolo, Lasseter, Robert H. Autonomous control of microgrids[J]. IEEE Power Engineering Society General Meeting, PES,2006.
    [8] Su Youli, ZhLali, Litifu, Ken Nagasaka. Efficiency of Micro Grid with Storage Battery in Reliability, Economy and Environment Assessments[J]. International Journal of Electrical and Power Engineering ,2009,3(3):154-162.
    [9]福布斯.分布式能源系统成为解决能源问题的金钥匙[EB/OL].中国能源网, http://www.china5e.com/show.php?contentid=67300, 2008.08.07.
    [10]国海,苏建徽,张国荣.微电网技术研究现状.四川电力技术,2009.04,32(2):1-6.
    [11]中国科学技术部.中长期科学和技术发展规划[R].http://www.most.gov.cn/kjgh/, 2006-2020.
    [12] European Commission. Strategic Research Agenda for Europe’s Electricity Networks of the Future [EB/OL]. http:://www.sm.Algrids.eu/documents/sra/sra_finalversion.pdf, 2007-05-01.
    [13]胡其颖.我国如何借鉴德国风电产业的成功经验[J].中国科技成果.2006(2):23-25.
    [14]鲁宗相,蒋锦华.解读美国“Grid 2030”电网远景设想[J].中国电力企业管理, 2004(5):38-41.
    [15]国际新能源网.电源发展的战略选择:新能源与分布式电源[N] . http://www.in-en.com/newenergy/html/newenergy-1458145838406670.html, 2009-07-16.
    [16] Funabashi Toshihisa, Yokoyama Rhuchi. Microgrid field test experiences in Japan [J]. IEEE Power Eng Soc Gen Meet 2006:1-2.
    [17]姚润苹.国外可再生能源:日本:太阳能发电前景广阔[N].新华网. http://news.xinhuanet.com/world/2004-08/25/content_1880030.htm.
    [18] PSCAD USER’S GUIDE, Manitoba HVDC Research Centre Inc. 2005.
    [19] Robert H.Lasseter. Microgrids and Distributed Generation. Journal of Energy Engineering, American Society of civil Engineers,2007,133(3):144-149.
    [20]梁有伟,胡志坚,陈允平.分布式发电及其在电力系统中的应用研究综述[J].电网技术,2003,27(12).71-75.
    [21]杨威.恒速与变速风力发电系统比较研究[D].河海大学,2007.
    [22]赵军,李新国等.太阳能发电技术及其在我国的应用前景[J],太阳能技术,2005:36-37.
    [23]河合基伸.三洋电机开发出电单元转换效率达到23%的太阳能电池[EB/OL].日本技术在线,http://china.nikkeibp.com.cn/news/econ/46173-20090525.html , 2009.05.26.
    [24]张伯泉,杨宜民.风力和太阳能光伏发电现状及发展趋势[J].中国电力,2006,39(6):65-69.
    [25]董玉峰,王万录.美国光伏发电与百万屋顶计划.太阳能. 1999.01.
    [26]郭烈锦,赵亮.基于可再生能源的分布式多目标功能系统[J].西安交通大学学报,2002,36(5):446-451.
    [27]清水直茂.松下与丹麦电力公司共同启动智能电网实证实验[EB/OL].日本技术在线,http://china.nikkeibp.com.cn/news/econ/49008-20091126.html 2009.11.27.
    [28]李杨,魏敦崧,潘卫国.燃料电池发展现状与应用前景[J].能源技术,2001,22(4):158-161.
    [29]王振.质子交换膜燃料电池系统特性仿真研究[D].山东大学,2007.
    [30] Nagasmitha Akkinapragada, Badrul H.Chowdhury. SOFC-based Fuel Cells for Load Following Stationary Applications. Annu. North Am. Power Symp., NAPS Proc.,2005,553-560.
    [31] J.Padulles,G.W.Ault,and J.R.McDonald. An integrated SOFC plant dynamic model for power system simulation.J.Power Sources.2000.495-500.
    [32]刘风君.现代逆变技术及应用[M],北京:电子工业出版社,2006.
    [33]李爱文,张承慧.现代逆变技术及其应用[M],北京:科学出版社,2000.
    [34]王键,王亚慧.带LC滤波器的PWM逆变器建模研究[J].北京建筑工程学报,2007,23(1):52-55.
    [35]俞杨威,金天均,谢文涛等.基于PWM逆变器的LC滤波器[J].机电工程, 2007,24(5):50-52.
    [36] S.Chakraborty, C.Pink,J.Price and B.Kroposiki. Development of Standardized Power Electronic Components,Sub-systems and Systems for increased modularity and Scalability[M].National Renewalbe Energy Laboratory,20007.12.
    [37]贺敬.适用与微电网的逆边电源并联组网控制技术的研究[D].合肥工业大学,2009.
    [38]摆世彬.微型电网控制技术的研究[D].天津大学,2008.06.
    [39] Shiki.Akira, Yokoyama.Akihiko. Autonomous decentralized control of supply and demand by inverter based distributed generations in isolated microgrid[J].IEEJ Trans. Power Energy,2007,127(1):95-103.
    [40] A.Madureira, C.Moreira and J.Pecas Lopes. Secondary Load-Frequency Control for MicroGrids in Islanded Operation[J]. Proc IEEE Power Eng Soc Trans Distrib Conf, 2001.
    [41] Stefano Barsali, Massimo Ceraolo, Paolo Pelacchi. Control techniques of Dispersed Generators to improve the continuity of elextricity supply[J]. Proc IEEE Power Eng Soc Trans Distrib Conf, 2002, (2):789-794.
    [42] Fang Z. Peng, Yun Wei Li,Leon M. Tolbert. Control and Protection of Power Electronics Interfaced Distributed Generation Systems in a Customer-Driven Microgrid[J]. IEEE Power Energy Soc,Gen. Meet., PES, 2009.
    [43] S. Tara Kalyani, G. Tulasiram Das. Simulation of D-Q control system for a unified power flow controller[J]. 2006-2007 Asian research publishing network. 2007.12,2(6):10-19.
    [44] Dr.-Ing. Alfred Engler. Applicability of droops in low voltage grids. International Journal of Distributed Energy Resources, 2005.
    [45] K. De Brabandere, B. Bolsens, J. Van den Keybus. A Voltage and Frequency Droop Control Method for Parallel Inverter[J]. PESC Rec IEEE Annu Power Electron Spec Conf,2004(4)2501-2507.
    [46] J.A pecas Lopes, C.L.Moreira, A.G.Madureira. Defining Control Strategies for MicroGrids Islanded Operation. IEEE Transactions on Power Systems,2006,21(2):916-924.
    [47] S.Conti, A.M.Greco, N.Messina. Generators Control Systems in Intentionally Islanded MV Microgrids[J]. SPEEDAM - Int. Symp. Power Electron., Electr. Drives, Autom. Motion, 2008, 399-405.
    [48] Rovert H.Laster. CERTS Microgrid[J]. International Conference on System of Systems Engineering, 2007.
    [49] Paolo Piagi, Robert H.Lasseter. Autonomous Control of Microgrids[J]. IEEE PES Meeting, Montreal, June 2006.
    [50]苏伟.中国风电的并网之痛[EB/OL].国际新能源网2009.07. www.in-en.com/newemergy/html/newenergy-182359392887.html.
    [51] P.Piagi, R. H. Lasseter. Distributed Energy Resources Integration Industrial Application of Microgrids[J]. Power System Engineering Research Center, 2001. http: certs.lbl.gov/pdf/Industry_Microgrid_6.pdf.
    [52] Hassan Nikhajoei, Robert H. Lasseter. Microgrid Fault Protection Based on Symmetrical and differential Current Components[J]. Wisconsin Power Electronics Research Center, 2007.
    [53] Son Kwang M, Lee,Kyebyung1, Lee Dong-Chun, et al. Grid interfacing storage system for implementing microgrid[J]. Transmission and Distribution Conference and Exposition: Asia and Pacific, T and D Asia 2009.
    [54]王建,李兴源,邱晓燕.含有分布式发电装置的电力系统研究综述[J].电力系统自动化,2005,29(24):90-97.
    [55] Nikos Hatziargyriou, Antonis Tsikalakis, John Vlachogiannis. Microgrids Large Scale Integration of Micro-Generation to Low Voltage Grids[R]. NTUA, 2004.01.
    [56] Faisal A. Mohamed. Microgrid Modelling and Online Management[R]. Helsinki University of Technology Control Engineering.2008.01.
    [57] Antonis G. Tsikalakis, Nikos D. Hatziargyriou. Centralized Control for Optimizing Microgrids Operation[J]. IEEE Transactions on Energy Conversion, March 2008,23(1):241-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700