用户名: 密码: 验证码:
非轴对称载荷下电磁轨道炮炮管的力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁轨道炮是一种全新概念的武器,在国防军事、航空航天、交通运输、工业生产和科学研究等领域都具有不可估量的应用前景,世界军事科技强国都从战略高度予以重视并不断加大力度开展研究。然而,目前电磁轨道炮的组成过重,体积过大,其原因之一是构件的强度、刚度计算方面研究的内容比较浅显,距离实际应用的要求相差很远。过去20多年的许多电磁轨道炮虽然也进行了结构设计,考虑了材料的受力环境,但严格说对材料的力学行为研究很不够。目前,关于电磁炮力学问题的研究主要集中在电枢自身的受力分析以及电枢与轨道的相互作用方面,而关于炮管自身力学分析的研究则较为少见。
     电磁轨道炮圆柱形炮管实际是一个在两种非轴对称同步移动载荷作用下的有限长圆柱壳体。两种非轴对称同步移动载荷作用是指移动的非轴对称集中载荷,以及同步移动且作用范围随移动位置增加的均布载荷的共同作用。鉴于目前电磁炮炮管的实际构造尚未定型,为使研究成果能够适用于炮管的多种规格,将其简化为有限长圆柱薄壳或有限长圆柱厚壳,划分标准可以依据壳体厚度与中面半径的比值确定。本文针对电磁轨道炮圆柱形炮管在两种非轴对称同步移动载荷作用下的受力状态,以简支边界条件为例,首先开展了静力分析的理论研究,并以静力分析的研究成果为基础和对照基准,进行了动力响应的理论研究。
     将电磁轨道炮圆柱形炮管简化为两种非轴对称载荷作用下的有限长圆柱薄壳,给出其在静力载荷作用下的变形与应力的基本方程;在给定两端约束条件下,应用Galerkin法,求得应力与位移的解析解,并通过具体算例与ANSYS数值解进行对比分析,验证薄壳静力解析解的正确性。
     以非轴对称载荷作用下有限长圆柱薄壳的静力理论分析为基础,采用Dirac函数与Heaviside函数表示两种非轴对称同步移动载荷的作用,考虑壳体惯性力作用后建立动力学微分方程组。在给定边界条件及初始条件后,应用Galerkin法、Laplace变换及其逆变换,求得应力与位移的动态响应的解析解。通过具体算例与ANSYS数值解进行分析对比,验证薄壳动力响应解析解的可靠性。
     将电磁轨道炮圆柱形炮管简化为有限长圆柱厚壳,假定材质各向同性且为线弹性,非轴对称载荷为作用在壳体内表面的径向线载荷与集中载荷,径向剪切应变沿厚度方向二次分布,径向正应变沿厚度方向一次分布,采用Dirac函数与Heaviside函数描述非轴对称载荷,基于最小势能原理推导静力平衡微分方程,应用Galerkin法,求得应力与位移的静力解析解。通过具体算例与ANSYS数值解进行对比分析,验证厚壳静力解析解的正确性。
     以非轴对称有限长圆柱厚壳的静力理论分析为基础,采用Dirac函数与Heaviside函数表示两种非轴对称同步移动载荷的作用,考虑壳体惯性力作用后建立动力学微分方程组。在给定边界条件及初始条件后,应用Galerkin法和和Runge-Kutta-Fehlberg法,求得应力与位移的动态响应的解析解。通过具体算例与ANSYS数值解进行分析对比,验证厚壳动力响应解析解的可靠性。
     本文推导的两种非轴对称同步移动载荷作用下的有限长圆柱薄壳及厚壳的静力分析和动力响应,相对以往的研究成果将更加接近于工程实际,可作为电磁轨道炮炮管结构设计的基础,同时又可供研究圆柱壳体在非轴对称工况下的静力、动力分析时参考。
Railgun is an entirely new concept of weapons, which has an immeasurableapplication prospects in the defense and military, aerospace, transportation, industrialproduction and scientific research field. Worldwide military technological powerscontinue to strengthen their efforts to carry out the research from a strategic perspective.The current composition of the electromagnetic railgun is too heavy and bulky. One of thereasons is the components’ strength and stiffness calculations are relatively plain and veryfar away from the actual application requirements. Although many railguns constructedduring the past20years have their structural design and consideration of mechanicalenvironment, they have no enough study of mechanical behavior of materials. Currently,railgun's mechanical research is focused on armature's machanical characteristics andtrack's interaction, and barrel's mechanical research is rarely conducted.
     Railgun's cylindrical barrel is actually a length-limited cylindrical shell loaded bynon-axisymmetric loads, which consist of a moving concentrated load and a uniformlydistributed load with synchronously increasing its range of action. The barrel can be alength-limited cylindrical thin shell or thick shell, according to its actual structure. Basedon mechanical state of the cylindrical barrel of railguns, the static characteristcs anddynamic response of a length-limited cylindrical shell under non-axisymmetric loads areresearched through mechanical and mathematical tools in this paper.
     Railgun’s cylindrical barrel is simplified as a length-limited thin cylindrical shellunder non-axisymmetric line load and concentrated loads. Based on fundamentalequations of the above problem, load function and displacement function are presented,and displacement and stress analytic solutions are obtained by Galerkin Method in thispaper. The analytical solutions are verified by comparing them with ANSYS numericalsolutions of an example problem.
     Dynamic response of a length-limited cylindrical thin shell under non-axisymmetricloads is researched. Dynamic differential equations with symmetrical forms are derived,and the two moving loads are expressed by the Dirac function and the Heaviside function. Based on the assumed displacement functions, the analytical dynamic solutions to thedisplacement and stress of the cylindrical shell are obtained by means of the Galerkinmethod and Laplace transformation. The algorithm is verified through the comparativeanalysis of the analytical solutions and the ANSYS numerical solutions for a specificexample.
     Railgun’s cylindrical barrel is simplified as a length-limited thick cylindrical shellunder non-axisymmetric line load and concentrated loads. Based on the assumption ofradial shear strains with quadratic distribution and radial normal strains with lineardistribution through the radial coordinate, displacement expressions containing theunknowns are established. The equilibrium differential equations containing7unkownsare derived according to the minimum potential energy principle. After the selection ofdouble triangle functions and application of the Galerkin Method, analytical solutions ofstress and displacement of thick shells are obtained. This method is verified by acomparative analysis of the analytical solutions with ANSYS numerical results.
     Dynamic response of a length-limited cylindrical thick shell under non-axisymmetricloads is researched. Based on the assumption of radial shear strains with quadraticdistribution and radial normal strains with linear distribution through the radial coordinate,displacement expressions satisfying boundary conditions are established. After applicationof the Galerkin Method and the Modified Runge–Kutta–Fehlberg Mehtod, dynamicresponse of thick shells is obtained. This method is verified by a comparative analysis ofthe theoretical solutions with ANSYS numerical results from an example.
     The static characteristics and dynamic responses of the length-limited thin shell andthe thick shell under non-axisymmetric uniform load and concentrated loads are derived inthis paper. They can serve as the foundation of railgun barrel's structural design, and as areference for static and dynamic analysis of cylindrical shells under non-axisymmetricloads.
引文
[1]王莹,马富学.新概念武器原理[M].北京:兵器工业出版社,1997:1-6.
    [2]王莹.论电磁发射开启电磁武器时代[J].电气技术,2010, S1:1-4.
    [3]李如年,王敬,王海.新概念动能武器—电磁炮[J].中国电子科学研究院学报,2011,6(2):125-129.
    [4] Wang Ying, Marshall R.A. Physics of electric launch [J]. Science Press,2004:11-19.
    [5] Aksoy S, Balikci A, Zabar Z, et al. Numerical investigation of the effect of a longitudinallylayered armature on coilgun performance [J]. Plasma Science,2011,39(1):5-8.
    [6] Duan Xiongying, Liao Minfu, Zou Jiyan, et al. Simulation and measurement on velocity offlat-plate projectiles in a three-stage reconnection electromagnetic launcher [C]. Pulsed PowerConference,2011:1503-1507.
    [7]王莹,肖峰.电炮原理[M].北京:国防工业出版社,1995:5-26,319-332.
    [8]陶青青,吕庆敖,杨勇.电磁轨道发射器的应用优势及技术难题[J].装备环境工程,2010,7(5):169-172.
    [9]王群,耿云玲.电磁炮及其特点和军事应用前景[J].国防科技,2011,(2):1-7.
    [10] Sung V, Odendaal W.G. Application based general scaling in railguns [C]. Pulsed PowerConference,2011:943-949.
    [11] Kaye R, Turman B, Aubuchon M, et al. Induction coilgun for EM mortar [C]. Pulsed PowerConference,2007,2:1810-1813.
    [12] Lv Qing-ao, Li Zhiyuan, Lei Bin, et al. Review on the Technology Characteristics and theMilitary Application of Railgun [C].14th Symposium on Electromagnetic Launch TechnologyProceedings,2008:330-333.
    [13] Han Jun, Pan Yuan, He Junjia. Study of Employing Railguns in Close-in Weapon Systems [J].IEEE Transactions on Magnetics,2009,45(1):641-645.
    [14] Bolonkin Alexander, Krinker Mark. Railgun Space Launcher [J]. Journal of AerospaceEngineering,2010,23(4):293-299.
    [15]范长增,王文魁.发展中的电磁轨道炮[J].燕山大学学报,2007,31(5):377-386.
    [16] Alv Egeland. Brikeland’s Electromagnetic Gun: A Historical Review [J]. IEEE Transact ions onMagnetic,1989,17(2):73-82.
    [17]李立毅,李小鹏.电磁发射的历史及发展趋势[J].微电机.2004,37(1):41-44.
    [18] R. Mcnab. Early Electric Gun Research [J]. IEEE Transactions on Magnetic.1999,35(1):250-261.
    [19]张龙霞,李碧清,霍敏.国外电磁炮发展概述[J].飞航导弹,2011,(10):23-27.
    [20] CCTV.美军新型尖端武器研发获突破[DB/OL]. http://news.cntv.cn/world/20120229/127.html,2012.
    [21]王慧锦,曹延杰,王成学.美国海军电磁导轨炮发展综述[J].舰船科学技术,2010,32(2):138-143.
    [22] D. C. Hang, M. A. Firth. UK Electric Gun National Overview [J]. IEEE Transactions onMagnetics,2001,37(1):33-36.
    [23] J. Jung. Overview of ETC Program in Korea [J]. IEEE Transactions on Mangnetics,2001,37(1):39-41.
    [24] R. Alimi. Research at Soreq NRC, Israel [J]. IEEE Transactions on Mangnetics,2001,37(1):11-15.
    [25] Y. Wang, Z. Ren. EML technology research in China [J]. IEEE Transactions on Mangnetics,1999,35(1):44-46.
    [26]古刚,向阳,张建革.国际电磁发射技术研究现状[J].舰船科学技术,2007,29(S1):156-158.
    [27]王德,苏鑫鑫.电磁轨道炮及其关键技术的现状与发展[J].飞航导弹,2010,(7):75-80.
    [28]周媛,李敏堂,王菁华.美国电磁轨道发射技术现状及特点分析[J].火力与指挥控制,2010,35(9):1-4.
    [29] Sitzman A, Surls D, Mallick J. Design, Construction, and Testing of an Inductive Pulsed-PowerSupply for a Small Railgun [J]. IEEE Transactions on Magnetics,2007,43(1):270-274.
    [30] Mcnab I R, Beach F C. Naval Railgun [J]. IEEE Transactions on Magnetics,2007,43(1):463-468.
    [31]陶孟仙,吕庆敖,任兆杏.固体电枢轨道炮的新概念研究[J].火炮发射与控制学报,1998,(3):56-60.
    [32]冯霈,雷彬,李治源.电容器参数对电磁炮最佳发射初始位置的影响[J].兵工自动化,2007,36(3): L04.
    [33]陈庆国,王永红,魏新劳,张海燕.电容驱动型轨道电磁炮电磁过程的计算机仿真[J].电工技术学报,2006,21(4):68-71.
    [34] Liu Y Q, Li J, Chen D, et al. Numerical Simulation of Current Density Distributions in GradedLaminated Armatures [J]. IEEE Transactions on Magnetics,2007,43(1):163-166.
    [35] V. Thiagarajan. Analysis of the Effects of Induced Fields from Sliding Electrical Contacts [J].IEEE Transaction on Magnetics.2005,41(1):241-245.
    [36] Liebfried Oliver, Schneider Markus, Balevicius Saulius. Current Distribution and ContactMechanisms in Static Railgun Experiments with Brush Armatures [J]. IEEE Transactions onPlasma Science,2011,39(1):431-436.
    [37] Avril C, Perreux D, Thiebaud F, Reck B, et al. Development of Advanced ThermoplasticComposite Projectiles for High-velocity Shots with The PEGASUS Railgun [J]. IEEETransactions on Plasma Science,2011,39(12):3391-3395.
    [38] Vanicek H, Satapathy S. Thermal Characteristics of a Laboratory Electromagnetic Launcher.[J].IEEE Transactions on Magnetics,2005,41(1):251-255.
    [39] Shvetsov Gennady A, Stankevich Sergey V. Three-dimensional Numerical Simulation of theJoule Heating of Various Shapes of Armatures in Railguns [J]. IEEE Transactions on PlasmaScience,2011,39(1):456-460.
    [40]李强,范长增,贾元智,等.电磁轨道炮导轨和电枢中的焦耳热分析[J].弹道学报,2006,18(4):38-44.
    [41]杨玉东,王建新.电磁炮发射原理数值建模与分析[J].火炮发射与控制学报,2008,4(3):9-13.
    [42] Wang Zhenchun, Li Huiguang, Zhan Zaiji. Simulation and Analysis of An Augmented RailgunLaunching Process [J]. Journal of Harbin Institute of Technology,2012,19(2):53-58.
    [43] Yuan Weiqun, Yan Ping. Comparison of Railguns through Numerical Simulations [C].14thSymposium on Electromagnetic Launch Technology Proceedings,2008:79-81.
    [44]刘传谱,袁伟群,严萍,等.重复推进滑动电接触的试验研究[J].强激光与粒子束,2010,22(4):923-926.
    [45]徐伟东,袁伟群,陈允,等.电磁轨道发射器连续发射的滑动电接触[J].强激光与粒子束,2012,24(3):668-672.
    [46] Persad C. Railgun Tribology-Chemical Reactions between Contacts [J]. IEEE Transactions onMagnetics,2007,43(1):391-396.
    [47]张祎,杨春霞,李贞晓,等.电磁轨道炮C型固体电枢组合装填方式下接触特性的分析[J].火炮发射与控制学报,2011,4:1-4.
    [48] Anthony J. Johnson, Francis C. Moon. Elastic Waves and Solid Armature Contact Pressure inElectromagnetic Launchers [J]. IEEE Transactions on Magnetics,2006,42(3):422-429.
    [49] Satapathy S, Persad C. Thermal Stress in EML Rail-Conductor Overlays [J]. IEEE Transactionson Magnetics,2001,37(1):269-274.
    [50]田振国,白象忠,杨阳.电磁轨道发射状态下导轨侧面的局部接触应力分析[J].固体力学学报,2011,32(1):74-81.
    [51] Zielinski A, Watt T, Motes D. Disrupting Armature Ejecta and its Effects on Rail Damage inSolid-armature Railguns [J]. IEEE Transactions on Plasma Science,2011,39(3):941-946.
    [52] Singer Irwin L, Veracka Michael J, Boyer Craig N, et al. Wear Behavior of Lubricant-conditionedCopper Rails and Armatures in a Railgun [J]. IEEE Transactions on Plasma Science,2011,39(1):138-143.
    [53]雷彬,朱仁贵,张倩,等.电磁轨道发射器刨削产生特征与研究现状[J].兵器材料科学与工程,2011,34(3):76-81.
    [54]李鹤,雷彬,李治源,等.电磁轨道炮轨道表面刨削产生分析[J].火炮发射与控制学报,2012,(1):43-46.
    [55]金龙文,雷彬,张倩.冲击载荷下轨道炮刨削形成机理及仿真分析[J].火炮发射与控制学报,2012,(2):13-16.
    [56] J. P. Barber, D. P. Bauer, K. Jamison, etc. A Survey of Armature Transition Mechanisms [J]. IEEETransactions on Magnetics,2003,39(1):49-51.
    [57] J. P. Barber, Ian R. McNab. Magnetic Blow-Off in Armature Transition [J]. IEEE Transactions onMagnetics,2003,39(1):42-46.
    [58]张祎,杨春霞,栗保明.电磁轨道炮C型固体电枢坡膛段的装填方式研究[J].高压物理学报,2012,26(1):48-54.
    [59] Gerald L, Ferrentino, Willem J. Kolkert. On the Design of An Integrated Metal Armature andSabot for Railguns[J].IEEE Transactions on Magnetics,1986,22(6):1470–1474.
    [60] Sataphthy S, Watt T, Persad C. Effect of Geometry Change on Armature Behavior [J]. IEEETransactions on Magnetics,2007,43(1):408-412.
    [61]肖铮,陈立学,夏胜国.电磁发射用一体化C形电枢的结构设计[J].高电压技术,2010,36(7):1809-1814.
    [62]杨栋,沈志,刘振祥,等.螺旋线圈电磁发射器径向受力仿真与电枢设计[J].电工电能新技术,2011,30(3):47-50.
    [63] McNab I.R, Crawford M.T, Satapathy S.S, et al. IAT armature development [J]. Plasma Science,2011,39(1):442-451.
    [64]白春艳.不同结构形式的电枢在电磁轨道发射状态下的应力分析[D].燕山大学硕士学位论文,2010:4-6.
    [65]白春艳,张益男,陈铁宁,等.不同结构形状电枢在电磁轨道发射状态下的应力分析[J].火炮发射与控制学报,2011,(1):49-53.
    [66] Xia Shengguo, He Junjia, Chen Lixue, et al. Studies on interference fit between armature andrails in railguns [J]. Plasma Science,2011,39(1):186-191.
    [67] Keshtkar Asghar, Maleki Toraj, Kalantarnia Ali, et al. Determination of Optimum RailsDimensions in Railgun by Lagrange's Equations [C].14th Symposium on ElectromagneticLaunch Technology Proceedings,2008:559-562.
    [68] Satapathy S, Persad C. Thermal Stresses in an Actively Cooled Two-piece Rail Structure.[J].IEEE Transactions on Magnetics,2003,1(1):468-471.
    [69]刘文,李敏,白象忠,等.电磁炮发射轨道受指数函数磁压力的变形计算[J].哈尔滨工业大学学报,2010,42(8):1336-1440.
    [70] Liu Wen, Li Min, Bai Xiangzhang, et al. Deformation Calculating of Electromagnetic Launcher’sRail Subjected to Logarithmic Magnetic Pressure. Modern Applied Science,2010,4(8):127-133.
    [71] Zdzis aw Gosiewski, Piotr K oskowski. Static model of a rail launcher[J]. Solid State Phenomena2009,147-149:456-461.
    [72]张益男.电磁发射轨道的内力及变形分析[D].燕山大学硕士学位论文,2010:1-7.
    [73]田振国,杨阳,白象忠.电磁轨道发射过程中电枢与导轨的力学特性[J].机械强度,2012,34(2):234-238.
    [74]张益男,陈铁宁,白春艳,等.电磁轨道发射状态下轨道的横向变形与内力分析[J].四川兵工学报,2010,31(11):9-13.
    [75] Xu Lizhong, Geng Yanbo. Dynamics of Rails for Electromagnetic Railguns [J]. InternationalJournal of Applied Electromagnetics and Mechanics,2012,38(1):47-64.
    [76]陈铁宁.电枢运动引起的电磁轨道动响应分析[D].燕山大学硕士学位论文,2010:1-10.
    [77]陈铁宁,白春艳,张益男,等.电枢运动引起电磁发射轨道的动态响应[J].动力学与控制学报,2010,8(4):360-364.
    [78]田振国,白象忠,杨阳.电磁轨道发射状态下导轨的动态响应[J].振动与冲击,2012,31(2):10-14.
    [79]张立功,刘文.电磁发射轨道受指数形态压力的瞬态响应[J].河南科技大学学报(自然科学版),2011,32(6):29-34.
    [80] Shi Lei, Liu Wen, Zhou Chunyan, et al. A Mathematic Model for Dynamic Transient Response ofElectromagnetic Rail on Elastic Foundation. Modern Applied Science.2009,3(10):60-67.
    [81] Zhou Chunyan, Liu Wen, Shi Lei, et al. The Mathematical Model and Analytical Solution ofElectromagnetic Rail in the Loading Condition. Journal of Mathematics Research,2010,2(2):45-51.
    [82] Gildutis P, Kacianauskas R, Schneider M, Stupak E, Stonkus R. Deformation Analysis of RailgunCross-Section [J]. Mechanika,2012,18(3):259-265.
    [83] Tumonis Liudas, Schneider Markus, Kacianauskas Rimantas, et al. Structural Mechanics ofRailguns in the Case of Discrete Supports [C].14th Symposium on Electromagnetic LaunchTechnology Proceedings,2008:360-365.
    [84]姜红军,高俊山,邱瑞生.电磁发射装置的结构优化及抛体受力分析[J].自动化技术与应用,2004,23(1):59-65.
    [85] Geng Yanbo, Xu Lizhong. Analysis of Projectile Motion in Bore and Transfer Efficiency forElectromagnetic Railgun [C]. ICIE2010Proceedings,2010,156-160.
    [86]刘郑国,田福庆.电磁轨道发射装置结构动力学特性分析[J].船舶力学,2010,14(10):1158-1164.
    [87] Zielinski Alexander E, Delguercio Miguel A. Analytical Study of the Injection of a MovingProjectile into a Railgun. IEEE Transactions on Plasma Science,2011,39(1):235-240.
    [88] Tumonis L, Schneider M, Kacianauskas R, et al. Comparison of Dynamic Behaviour of EMA-3Railgun under Differently Induced Loadings [J]. Mechanika,2009,78(4):31-37.
    [89] Clifford Paul D, Maier II William B. Experimental Observations and Analysis of Armatures andRails in a Small Railgun [C].14th Symposium on Electromagnetic Launch TechnologyProceedings,2008:170-175.
    [90]刘文.电磁发射装置发射组件的力学特性研究及解析计算[D].燕山大学博士学位论文,2011:1-10.
    [91]刘文,王磊磊,白象忠.电磁炮发射炮管内表面受三次函数分布压力之解析解[J].燕山大学学报,2012,36(1):66-72.
    [92]巨兰,张碧雄.电磁轨道炮的炮体结构设计[J].舰船科学技术,2011,33(7):94-98.
    [93]吕彦,任泽宁,钱学梅,等.电磁轨道炮身管结构的研究概况[J].兵器材料科学与工程,2012,35(1):93-97.
    [94]王刚华,谢龙,王强.电磁轨道炮电磁力学分析[J].火炮发射与控制学报,2011,(1):69-76.
    [95] Jerome T Tzeng. Structural Mechanics for Electromagnetic Railguns [J]. IEEE Transactions onMagnetics,2005,41(1):246-250.
    [96] Jerome T Tzeng. Dynamic Response of Electromagnetic Railgun Due to Projectile Movement [J].IEEE Transactions on Magnetics,2003,39(1):472-475.
    [97]李浩.大载荷下电磁轨道炮身管的结构参数分析[D].南京理工大学硕士学位论文,2011:1-7.
    [98]吴宇.电磁炮身管的参数化研究和动态响应分析[D].南京理工大学硕士学位论文,2009:1-8.
    [99]黄波.电磁轨道炮弹丸挤进过程及多物理耦合场分析[D].南京理工大学硕士学位论文,2012:1-7.
    [100] Love A. E. H. A Treatise on the Mathematical Theory of Elasticity [M]. Cambridge: CambridgeUniversity,1934:242-260.
    [101]吴连元,许昌.圆柱壳体在移动集中荷载作用下的弯曲解[J].上海交通大学学报,1989,23(5):45-54.
    [102]符拉索夫.壳体的一般理论[M].薛振东,朱世靖译.北京:人民教育出版社,1960:219-222.
    [103] Reissner E. Stress Strain Relations in the Theory of Thin Elastic Shells [J]. J. Math. Phys,1952,31:109-119.
    [104] Naghdi P. On the Theory of Thin Elastic Shells [J]. Quart. Appl. Math,1957,14:369-380.
    [105] Hildebrand F.B., Reissner E., Thomas G. B. Notes on the Foundations of the Theory of SmallDisplacements of Orthotropic Shells [R]. Washington, D.C.: National Advisory Committee forAeronautics,1949:12-19.
    [106]何福保,王飞跃.横观各向同性中厚度圆柱形壳体的十阶微分方程式及其分解[J].应用力学学报,1984,1(2):33-42.
    [107]房营光,潘纪浩,陈维新.厚壳理论及其在圆柱壳中的应用[J].应用数学与力学,1992,13(11):1009-1019.
    [108]张志军,熊敦士.厚壁圆柱壳的弹性静力分析[J].计算结构力学及其应用,1992,9(4):411-421.
    [109]刘助柏,单锐,刘文,等.厚壁筒受任意二次函数分布压力之解及圆筒无限长时的极限[J].中国科学,2004,34(3):298-304.
    [110] Yiannopoulos A. Ch. A Simplified Solution for Stresses in Thick-wall Cylinders for VariousLoading Conditions [J]. Computers&Structures.1996,60(4):571-578.
    [111] Yiannopoulos A. Ch. A general formulation of stress distribution in cylinders subjected tonon-uniform external pressure [J]. Journal of Elasticity.1999,56(3):181-198.
    [112]徐芝纶.弹性力学(下)[M].北京:高等教育出版社,1990:216-294.
    [113]施瓦兹.广义函数论[M].北京:高等教育出版社,2010:1-6.
    [114] Zienkiewicz O. C., Taylor R. L. The finite element method for solid and structural mechanics [M].Beijing: World Publishing Corporation,2009:17-45.
    [115] Richard L. Burden, J. Douglas Faires. Numerical analysis [M]. Belmont: Thomson Corporation,2005:273-290.
    [116]曾绍标,熊洪允,毛云英.应用数学基础(下)[M].第三版.天津:天津大学出版社,1994:186-198.
    [117] Douglas B Meade, Michael May, Cheung C-K, et al. Getting started with maple [M]. Hoboken:John Wiley&Sons Inc,2009:34-38.
    [118] William P Fox. Mathematical modeling with maple [M]. Boston: Cengage Learning,2011:285-429.
    [119] Inna Shingareva, Carlos Lizárraga-Celaya. Maple and mathematica: a problem solving approachfor mathematics [M]. Wurzburg,2009:207-244.
    [120] Kent Lawrence. ANSYS workbench tutorial release13[M]. Mission: SDC Publications,2011:1-34.
    [121] Logan D L. A first course in the finite element method [M]. Boston: Cengage Learning,2012:572-598.
    [122] Jack Zecher, Fereydoon Dadkhah. ANSYS Workbench Tutorial with Multimedia CD Release12
    [M]. Mission: SDC Publications,2009:1-7.
    [123]党沙沙,许洋,张红松,等. ANSYS12.0多物理耦合场有限元分析从入门到精通[M].北京:机械工业出版社,2010:25-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700