用户名: 密码: 验证码:
玉米根系蛋白磷酸酶ZmPP2C2基因的分离、功能鉴定及转基因烟草对逆境胁迫的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非生物胁迫是影响植物生长发育和产量的重要环境因素,而其中又以干旱、低温和盐渍的影响最为严重。植物在长期的进化过程中形成了一套主动的防御机制,能够识别逆境信息并通过信号传递最终调节植物的生长发育,从而抵御不良环境的影响。大量研究表明,在逆境条件下植物体内积累渗透调节物质如脯氨酸、可溶性糖、甜菜碱等,同时,许多基因被诱导表达。植物体内存在复杂的信号传递途径,由蛋白激酶和蛋白磷酸酶催化的蛋白质可逆磷酸化过程是细胞信号转导的重要组成部分,是细胞内重要的调节机制,广泛参与植物的生长、发育、增殖、分化等。蛋白质的可逆磷酸化反应对于信号的快速、精确传递起着无可替代的作用。蛋白磷酸酶,通过逆转蛋白激酶的作用,调节可逆磷酸化过程。生物化学和分子遗传学研究表明,PP2C广泛参与逆境信号的传递过程,可能在许多信号转导途径中作为负调控因子,在调节由环境胁迫如冷害、干旱、损伤等激活的信号通路中起作用。但关于逆境信号传递途径的研究还很有限,PP2C参与逆境信号途径的具体机制尚不清楚。
     本研究从玉米根系中分离到PP2C类蛋白磷酸酶基因ZmPP2C2,并对该基因的表达特性和功能进行了分析。结果表明,该基因在根、茎、叶和种子中都有表达,在种子表达高;不同逆境胁迫及信号分子处理后ZmPP2C2的表达有所不同,ZmPP2C2在转录水平和翻译水平响应低温逆境;过量表达该基因可提高转基因烟草植株对干旱、低温和盐渍的抗性。主要结果如下:
     1.利用同源序列设计简并引物,通过RT-PCR的方法从玉米根系中克隆到PP2C类蛋白磷酸酶基因的中间片段,通过5’-RACE和3’-RACE分别克隆到5’和3’片段,拼接后设计特异引物扩增到全长cDNA。命名为ZmPP2C2 (GenBank注册号:AY830123)。该基因全长为1399 bp,ORF为855 bp,编码284个氨基酸,分子量约为30.9 kDa。同源序列比较发现,ZmPP2C2的序列与拟南芥、水稻、苜蓿、玉米的ZmPP2C类基因的序列同源性较高。结构同源性分析表明,ZmPP2C2有11个序列保守的结构域和6个保守的参与金属离子与磷酸基团相互作用的氨基酸。跨膜结构分析表明,ZmPP2C是一个亲水蛋白,存在一个明显的内向超螺旋结构和两个潜在的外向超螺旋。
     2、Southern杂交结果显示,ZmPP2C2在玉米基因组中以单拷贝形式存在。Northern杂交结果表明ZmPP2C2在根、茎、叶、种子中均有表达,在种子中表达量高。低温、PEG、NaCl、ABA均能诱导ZmPP2C2的表达,并且Ca2+在ABA诱导的ZmPP2C2表达过程中起负调控作用。ZmPP2C2在转录和翻译水平都表现出对低温逆境的响应,表达量随时间变化有所不同。
     3、将pBI121-ZmPP2C2-GFP融合蛋白在洋葱表皮细胞表达。在荧光显微镜下观察到细胞核内有GFP激发的绿色荧光,说明ZmPP2C2的基因产物定位于细胞核。系统进化树分析表明,ZmPP2C2蛋白与拟南芥、苜蓿中的PP2C蛋白高度同源。
     4、构建了原核表达载体pET-ZmPP2C2,并在大肠杆菌BL21中表达融合蛋白,诱导纯化后免疫小白鼠,制备抗体。Western杂交表明,转基因植株中ZmPP2C2基因已在蛋白水平过量表达。
     5、构建pBI-ZmPP2C2正义表达载体,利用农杆菌介导的叶盘法转化烟草。用PCR、Northern杂交及Western杂交的方法,对带卡那抗性的转基因烟草植株进一步检测,结果证明成功地获得了超表达ZmPP2C2基因的转基因烟草植株。
     6、在逆境胁迫(低温、高盐、干旱)处理条件下,过量表达ZmPP2C2基因的转基因烟草种子比野生型烟草种子萌发率高。
     7、盐渍、干旱处理过程中野生型和转基因烟草叶片的净光合速率(Pn)都呈下降趋势,但野生型的降低较明显。胁迫对两种类型烟草叶片的细胞间隙CO2浓度(Ci)和气孔导度(Gs)的影响无明显差异。盐胁迫下,转基因烟草Fv/Fm降幅较小,PSⅡ受伤害较轻。
     8、逆境胁迫(低温、高盐、干旱)下,两种类型烟草叶片的相对电导率、MDA的含量都呈上升趋势,膜透性增大,电解质外渗量增多,膜脂过氧化作用增强。但转基因烟草相对电导率和MDA含量较野生型烟草低,说明转基因烟草膜脂过氧化程度低于野生型烟草,膜伤害程度较轻。
     9、在低温胁迫下,两种类型烟草叶片的SOD、CAT活性都呈上升趋势,而POD活性呈先升高后降低的趋势;在高盐胁迫下,两种类型烟草叶片的SOD活性呈先升高后降低的趋势,而POD、CAT活性都呈上升趋势;在干旱胁迫下,野生型和转基因烟草叶片的SOD、POD、CAT活性都呈现先升高后降低的趋势;但在三种胁迫下转基因烟草SOD、POD、CAT活性始终高于野生型烟草。
     10、逆境胁迫(低温、高盐、干旱)下,转基因烟草相容性物质脯氨酸、可溶性糖和可溶性蛋白的积累明显高于野生型烟草。
Abiotic stresses such as low temperature, drought and high salt, influence plant growth, productivity and development. To cope with unpredictable environmental changes, plants evolve signal transduction mechanisms by which they receive stress signals and regulate their stress-tolerant reactions. Molecular and cellular responses to these stresses have been analyzed extensively at the biochemical level: various kinds of proteins and smaller molecules, including sugars, proline, and glycine betaine, accumulate, in addition, many genes are induced by stresses. These observations suggest the existence of several cellular signal transduction pathways between the perception of stress signals and gene expression. Yet the mechanisms underlying the perception and transduction of stress signals manifested in development of stress tolerance are just being revealed.
     Reversible protein phosphorylation, mediated by protein kinases and protein phosphatases, is the predominant regulatory mechanism in biology, modulating cellular processes such as signaling, division, growth and development. Protein phosphatases, by opposing the action of protein kinases, provide modulation and reversibility of the phosphoregulatory mechanism. Biochemical and molecular genetic studies have identified PP2Cs as regulators of stress. However, knowledge of the transduction pathways, especially in stress responses, is still incomplete. The involvement of PP2Cs in stresses acclimation is also far from clear.
     In this study, we isolated a PP2C gene (ZmPP2C2) from Zea mays roots and characterized its expression patterns in different tissues and in response to abiotic stresses and signal substances. We show that ZmPP2C2 was basically expressed in the roots, stems, leaves and seeds, especially in seeds. Moreover, we found that ZmPP2C2 exhibited different responses to diverse abiotic stresses and signal substances, and revealed a quick and transient response to low temperature. Then, to study the contribution of PP2Cs to stress signaling we generated 35S::ZmPP2C2 transgenic tobacco. The transgenic plants showed enhanced tolerance to cold, drought and salt than wild type tobacco. The main results are as follows:
     1. In Southern blot analysis, hybridization of the ZmPP2C2 probe with genomic DNA of Zea mays reveals that the ZmPP2C2 gene is present in the Zea mays genome as a single copy. Northern blot analysis revealed that this clone was expressed in roots, stems , leaves and seeds, and the transcript were relatively more abundant in seeds than in other organs. Two degenerate primers were designed to amplify specific DNA fragment using cDNA prepared from Zea mays according to the homologous sequences from other plants. The middle fragment of interested cDNA was obtained by RT-PCR. The 5’and 3’fragment of the cDNA was isolated by 5’and 3’RACE. The clone, which named ZmPP2C2 (Acession Numeber:AY830123), contains 1399 bp nucleotides with an open reading frame (ORF) of 855 bp comprising 284 amino acid residues with the predicted molecular mass of 30.9 kDa. The deduced amino acid sequence showed high identities with PP2C from Arabidopsis, Oryza sativa, Medicago and Zea mays. Amino acid sequence alignment revealed that six of the seven residues that are putatively involved in the coordination of the phosphate and metal ions were present in the sequence, and the eleven conserved motifs presented in all Ser/Thr PP2Cs were found in the catalytic domain. Software analysis showed that ZmPP2C2 protein was a hydrophilic protein, which contained one typical superhelix from outside to inside and two potential superhelixes from inside to outside.
     2. ABA and low temperature significantly increased the transcript levels of ZmPP2C, and Ca2+ acts as a negative regulator in ABA-induced ZmPP2C2 transcription. Besides, ZmPP2C2 response to low temperature at both transcription and translation level.
     3. The pBI121- ZmPP2C2-GFP fusion protein is clearly targeted to the nucleus in a transient transfection assay. Construction of a dendrogram based on the homologous full-length amino acid sequences revealed the close imilarity between ZmPP2C2 and the PP2C from Arabidopsis and Medicago.
     4. A recombinant of prokaryotic expression vector pET- ZmPP2C2 was constructed and expressed in E.Coli. BL21. The strong induced fusion protein were purified and used to immunize white mice to obtain antiserum. Western hybridization revealed the presence of the strong positive protein signals corresponding to ZmPP2C2 in transgenic tobacco.
     5. The full-length ZmPP2C2 cDNA was subcloned into the expression vector pBI121 downstream of the 35S-CaMV promoter to form sense constructs. The constructs were first introduced into Agrobacterium tumefaciens LBA4404 by the freezing transformation method and verified by PCR , Northern blot and Western blot. It was indicated that the ZmPP2C2 gene had been recombined into tobacco genome and transgenic tobacco plants were obtained.
     6. Expression of the ZmPP2C2 gene attenuated the delay in germination at low temperature, salt, and drought stress, and improved the germination rate in transgenic tobacco.
     7. Under salt and drought stress, Pn in both wild type tobacco and transgenic tobacco decreased, but Pn decreased less in transgenic tobacco compared with wild type tobacco. There was no obvious difference between wild-type and transgenic plants about the change of Ci and Gs. However, the level of Fv/Fm in transgenic tobacco decreased less compared with wild type tobacco under salt stress. It indicated that PSⅡof transgenic tobacco plants suffered less injury compared with wild type tobacco.
     8. Under environmental stress (low temperature, salt and drought), the relative electrical conductivity and MDA content in both wild type and transgenic tobacco plants increased, which resulted in the increase of membrane permeability and electrolyte leakage, and the structure and function of cell membrane was damaged . However the degree of increase in transgenic tobacco plants was lower than that in wild-type tobacco plants, which indicated that the extent of the membrance lipid perioxidation in transgenic tobacco was lighter than that in wild type tobacco. It is favorable to maintain the function of cell membrane.
     9. Under cold stress , the activities of SOD and CAT increased in both wild types and transgenic tobacco plants, while the activitie of POD increased first and then decreased in both wild types and transgenic tobacco plants. However ,Under salt stress , the activitie of SOD increased first and then decreased in both wild types and transgenic tobacco plants, and the activities of POD and CAT increased in both wild types and transgenic tobacco plants. Interestedly, the activities of SOD , POD and CAT increased first and then decreased in both wild types and transgenic tobacco plants. Furthermore, in all stresses the transgenic tobacco plants always sustained higher activities of both SOD, POD and CAT.
     10. Under environmental stress (low temperature, salt and drought), the transgenic tobacco plants accumulated more proline , soluble sugars and soluble protein compared with wild type tobacco plants.
引文
曹家树,缪颖,生物多样性进化原理与保护对策,生物多样性,1997,5(3):220-223
    陈华新,李卫军,安沙舟等,钙对NaCl胁迫下杂交酸模(Rum exK21)幼苗叶片抑制的减轻作用,植物生理与分子生物学学报, 2003, 29(5):449-454
    郝治安,吕有年,植物耐盐机制研究,河南农业科学,2004,11:30-33
    李合生,孙群,赵世杰等,植物生理生化实验原理和技术,北京,高等教育出版社,2000,260页
    李琳,焦新之,应用蛋白染色剂考马斯蓝G-250测定蛋白质的方法,植物生理学通讯,1980,16(6):52-55
    栾升,高等植物中蛋白磷酸酶与信号传递途径,植物学报,1998,40:883-889
    马丽清,韩振海,周二峰,等,盐胁迫对珠美海棠和山定子膜保护酶系统的影响,果树学报,2006,23(4):495-499
    山仑,作物高产高效生理学研究进展,北京:科学出版社,1996,258-268
    沈义国,陈受宜,植物盐胁迫应答的分子机制,遗传,2001,23 (4):365-369
    孙大业,郭颜林,马力耕,崔素娟,细胞信号转导,北京:科学出版社,2001
    孙方行,孙明高,魏海霞等,NaCl胁迫对紫藤幼苗膜过氧化及保护酶活性的影响,河北农业大学学报,2006,29(1):16-19
    王忠华,李旭晨,夏英武,作物抗旱的作用机制及其基因工程改良研究进展,生物技术通报,2002,(1):16-19
    翁锦同,洪月云,植物热带转录因子在非生物逆境中的作用,分子植物育种,2006,4(1):88-94
    吴能表,吴峻岩,朱利泉,王小佳,低温对甘蓝逆境生理指标和蛋白质磷酸化的影响,园艺学报,2003,30(5):530-534,
    武维华,赵云云,植物细胞G蛋白研究进展,植物学报,1995,38:406-413
    许大全,吴姝,田间条件下盆栽大豆叶片光合作用的光抑制,全国植物光合作用和代谢贮藏会议论文汇编,中国植物生理学会,1995
    杨洪强贾文锁张大鹏,水分胁迫下湖北海棠根系脂氧合酶活性与ABA积累的关系,植物学报2000,42(3):244-248
    赵福庚,何龙飞,罗庆云,植物逆境生理生态学,北京:化学工业出版社,2004
    赵世杰主编,植物生理学实验指导,北京:中国农业出版社,1998,10
    朱广廉,植物生理学实验,北京:北京大学出版社,1990,22-26
    朱世东,茄果类幼苗低温伤害与膜脂过氧化作用,安徽农学院学报,1991,18(2):141-146
    邹琦,植物生理生化实验指导,北京:中国农业出版社,1995,68-97
    Abebe T.,Guenzi A. C.,Martin B.,Cushman J. C. Tolerance of mannitol-accumulating wheat to water stress and salinity. Plant Physiol,2003,131:1748-1755
    Alessi D. R., Cuenda A., Cohen P., Dudley D. T., Saltiel A. R. PD098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem,1995,17: 27489-27494
    Allan A. C.,Fluhr R. Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell,1997, 9:1559-1572
    Allen R. D. Dissection of oxidase stress tolerance using transgenic plants. Plant physiol., 1995,107:1049-1054
    Alscher R.G. A.,Donahue L. D.,Cramer C. L. Reactive oxygen species and antioxidants;relationships in green cells. Phyiologia Plantarum,1997,100:224-233
    An G. Y.,Song C. P.,Zhong X., Jing Y. C., Yang D. M., Huang M. J., Wu C. H., Zhou P. A. Effect of H2O2 on stomatal movement and K+ channel on plasma membrane in Vicia faba guard cell. Acta Phytophysiol Sin,2000,26:458-463
    Apel K.,Hirt H. Reactive oxygen species:metabolism,oxidative stress,and signal transduction. Annu. Rev. Plant Biol.,2004,55:373-399
    Awotunde O.S.,Sugajska E.,Zolnierowicz S. Muszynska G. Characterisation of two protein phosphatase 2A holoenzymes from maize seedings. Biochim Biophys Acta,2000, 1480:65-76
    Baudouin E.,Meskiene I.,Hirt H. Short communication:unsaturated fatty acids inhibit MP2C,a protein phosphatase 2C involved in the wound-induced MAP kinase pathway regulation. The Plant Journal,1999,20:343-348
    Bertauche N., Leung J.,Giraudat J. Protein phosphatase activity of abscisic acid insensitive 1 (AB I1 ) protein from A rabidopsis thaliana. Eur J Biochem, 1996, 241:193 - 200
    Bertauche N.,Leung J.,Giraudat J. Protein phosphatase activity of abscisic acid insensitive 1(ABI1) protein from Arabidopsis thaliana. Eur J Biochem,1996,241:193-200
    Blumwald E. Sodium transport and salt tolerance in plants. Curr. Opin. Cell Biol,2000,12:431–434.
    Bogre L.,Ligterink W.,Meskiene I.,Barker P. J. ,Heberle-Bors E., Huskisson N. S., Hirt H. Wounding induces the rapid and transient activation of a specific MAP kinase pathway. Plant Cell,1997,9:75-83
    Bork P.,Brown N. P., Hegyi H.,Schultz J. The protein phosphatase 2C (PP2C) superfamily: detection of bacterial homologues. Protein Sci,1996,5:1421-1425
    Broz A. K.,Thelen J. J., Muszynski M. G.,Miernyk J. A.,Randall D. D. ZMPP2, a novel type-2C protein phosphatase from maize. J Exp Bot,2001,52:1739-1740
    Burnett E. C.,Desikan R.,Moser R. C, Neill S. J. ABA activation of an MBP kinase in Pisum sativum epidermal peels correlates with stomatal responses to ABA. J Exp Bot,2000, 51:197-205
    Bush D. S. Calcium regulation in plant cells and its role in signaling. Annu Rev Plant Physiol,1995,46:95-122
    Carrasco J.L.,Ancillo G.,Mayda E.,Vera P. A novel transcription factor involved in plant defense endowed with protein phosphatase activity. EMBO J,2003,22:3376-3384
    Chen M. X.,McPartlin A. E.,Brown L.,Chen Y. H.,Barker H. M.,Cohen P. T. A novel human protein serine/threonine phosphatase,which possesses four tetratricopeptide repeat motifs and localizes to the nucleus. Embo J,1994,13:4278-4290
    Cherel I.,Michard E.,Platet N.,Mouline K.,Alcon C.,Sentenac H.,Thibaud J. B . Physical and functional interaction of the Arabidopsis K(+) channel AKT2 and phosphatase AtPP2CA. Plant Cell,2002,14:1133-1146
    Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem,1989,58:453-508
    Cohen P.,Cohen P. T. Protein phosphatases come of age. J Biol Chem,1989,264: 21435-21438
    Cohen P.T. Novel protein serine/threonine phosphatases:variety is the spice of life. Trends Biochem Sci,1997,22:245-251
    Corton J. M., Gillespie J. G.. Hardie D.G. Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol,1994,4:315-324
    Czubryt M. P.,Austria J. A.,Pierce G. N. Hydrogen peroxide inhibition of nuclear protein import is mediated by the mitogen-activated protein kinase,ERK2. J Cell Biol,2000, 148:7-15
    Dai S.X.,Chen S.L. Research review on root ion channels of plants . Journal of Beijing Forestry University ,2005,03(27):98-103
    Das A.K,Helps N.R.,Cohen P. T. W.,Barford D. Crystal structure of the protein serine/threonine phosphatase 2C at 2.0 ? resolution. EMBO J,1996,15:6798-6809
    Davies W. J., Zhang J. Root signals and the regulation of growth and development of plant in drying soil. Annu Rev Plant Physiol Plant Mol Biol, 1991,42:55-76
    Diamant S.,Eliahu N.,Rosenthal D.,etal. Chemical chaperones regulate molecular chaperones in vitro and in cells under combined salt and heat stresses. J Biol Chem., 2001,276:39586-39591
    Dong F. C.,Wang P. T., Song C. P.,etal. The role of hydrogen peroxide in salicylic acid-induced stomatal closure in Vicia faba guard cells. Acta Phytophysiol Sin,2001, 27:296-302
    Dong L.,Ermolova N. V.,Chollet R. Partical purification and biochemical characterization of a heteromeric protein phosphatase 2A holoenzyme from maize leaves that dephosphorylates C4 phosophoenolpyruvate. Planta,2001,213(3):379-389
    Juan D.U.,Zhu Z., LI W.C. Over-expression of Exotic Superoxide Dismutase Gene MnSOD and Increase in Stress Resistance in Maize. Journal of Plant Physiol and Molecular Biology,2006,01:57-63
    Dudley D. T.,Pang L.,Decker S. J.,Bridges A. J., Saltiel A. R. A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA,1995,92:7686-7689
    Fjeld C. C., Denu J. M. Kinetic analysis of human serine / threonine protein phosphatase 2Cα. J Biol Chem,1999,274:20336 -20343
    Finkelstein R. R.,Wang M. L.,Lynch T. J.,Rao S,Goodman H. M. The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA2 domain protein. Plant cell, 1998,10:1043-1054
    Francois J. M.,Thompson-Jaeger S.,Skroch J.,Zellenka U.,Spevak W.,Tatchell K. GAC1 may encode a regulatory subunit for protein phosphatase type1 in Saccharomyces cerevisivae. EMBO J,1992,11:87-96
    Gaits F,Shiozaki K.,Russell P. Protein phosphatase 2C acts independently of stress-activated kinase cascade to regulate the stress response in fission yeast. J Biol Chem, 1997,272: 17873-17879
    Garg A. K.,Kim J. K,Owens T .G.,Ranwala A. P.,Choi Y. D.,Kochian L. V.,Wu R. J. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stress. Proc Natl Acad Sci USA,2002,99(25):15898-15903
    Gatz C. Chemical control of gene expression. Annu Rev Plant Physiol Plant Mol Biol, 1997,48:89-108.
    Gaulton G. N.,Pratt J. C. Glycosylated phosphatidylinositol molecules as second messenger. Semin Immunol,1994,6:97-104
    Gilchrist J. S. C.,Czubryt M. P.,Pieerce G. N. Calcium and calcium-binding proteins in the nucleus. Mol. Cell Biochem,1994,135:79-88
    Gilmour S. J,Zarka D. G.,Stockinger E. J.,salazar M. P., Houghton J. M.,Thomashow M. E. Low temperature Regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. The Plant Journal, 1998,16(4):433-442
    Gong M.,Chen B.,Li Z.G.,Guo LH. Heat-shock-induced crossa daptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. Plant Physiol., 2001,158:1125-1130.
    Gonzalez-Garcia M. P.,Rodriguez D.,Nicolas C.,Rodriguez P.L.,Nicolas G.,Lorenzo O. Negative regulation of abscisic acid signaling by the Fagus sylvatica FsPP2C1 plays a role in seed dormancy regulation and promotion of seed germination. Plant Physiol, 133:135-144
    Govind C. K.,Hasegawa A.,Koyama K., Gupta S. K. Delineation of a conserved B cell epitope on bonnet monkey (Macaca radiata) and human zona pellucida glycoprotein-B by monoc2003lonal antibodies demonstrating inhibition of sperm-egg binding. BiolReprod,2000,62:67-75
    Gosti F.,Beaudoin N.,Serizet C.,Webb A. A.,Vartanian N,Giraudat J. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell,199911: 1897-1910
    Grant J. J.,Yun B. W.,Loake G .J. Oxidative burst and cognate redox signaling reported by luciferase imaging: identification of a signal network that functions independently of ethylene,SA and Me-JA but is dependent on MAPKK activity. The Plant Journal,2000,24: 569-582
    Guo Y.,Xiong L.,Song C. P.,Gong D., Halfter U., Zhu J. K. A calcium sensor and its interacting protein kinase are global regulators of abscisic acid signaling in Arabidopsis. Dev Cell,2002,3: 233-244
    Hamilton E W.,Heckathorn S.A. Mitochondrial adaptations to NaCl. ComplexⅠis protected by antioxidants and small heat shock proteins,whereas complexⅡis protected by proline and betaine. Plant Physiol,2001,126:1266-1274
    Handa, S., Handa, A.K., Hasegawa, P.M., and Bressan, R.A. Proline accumulation and the adaptation of cultured plant cells to water stress.Plant Physiol, 1986, 80: 938-945
    Harden T. K.,Boyer J. L.,Nicholas R. A. P2-Purinergic receptor:subtype-associated signaling responses and structure. Annu. Rev. Pharmacol.Toxical.,1995,35:541-579
    Hasegawa P .A.,Bressan R. A.,Zhu J. K.,Bohnert H. J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol,2000,51:463-499
    Haslekas, C., Grini, P.E., Nordgard, S.H., Thorstensen, T., Viken, M.K., Nygaard, V., and Aalen, R.B. ABI3 mediates expression of the peroxiredoxin antioxidant AtPER1 gene and induction by oxidative stress. Plant Mol. Biol 2003, 53: 313-326
    Hellmann H.,Funck D.,Estelle M. Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol,2000,123:779-789
    Hepler P.K. Calcium, a central regulator of plant growth and development. Plant Cell, 2005, 17: 2142-2155
    Hetherington A.M., Brownlee C. The generation of Ca2+ signals in plants. Annu Rev PlantBiol, 2004, 55: 401-427
    Himmelbach, A., Hoffmann, T., Leube, M., Hohener, B., and Grill, E. Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. The EMBO journal, 2002, 21, 3029-3038
    Hollung, K., Espelund, M., Schou, K., and Jakobsen, K.S. Developmental, stress and ABA modulation of mRNA levels for bZip transcription factors and Vp1 in barley embryos and embryo-derived suspension cultures. Plant Mol. Biol, 1997, 35, 561-571
    Hong S. W.,Jon J. H.,Kwak J. M.,Nam H. G. Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid,dehydration,high salt and cold treatments in Arabidopsis thaliana. Plant Physiol,1997,113:1203-1212
    Hong Z. L.,Lakkineni K., Zhang Z. M.,Verma D. P. S. Removal of feedback inhibition of △1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol,2000,122:1129-1136
    Hooley R.,Chun N.H.,Hetherington A.M. Plant hormone perception and action: a role for G-protein signal transduction molecular basis of signal transduction in plant, Biological science,1998,353:1425-1430
    Hubbard M.J.,Cohen P. On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci,1993,18:172-177
    Hunter, T. Protein-tyrosine phosphatases: the other side of the coin. Cell, 1989, 58: 1013-1016
    Inoue T, Higuchi M, Hashimoto Y, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Kakimoto T. Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 2001, 409:1060-1063.
    Iwasaki, T., Yamaguchi-Shinozaki, K., and Shinozaki, K. Identification of a cis-regulatory region of a gene in Arabidopsis thaliana whose induction by dehydration is mediated by abscisic acid and requires protein synthesis. Mol Gen Genet, 1995, 247:391-398
    Jang I. C.,Oh S. J.,Seo J. S.,Choi W. B.,Song S. I.,Kim C. H.,Kim Y. S.,Seo H. S., Choi Y. D.,Nahm B. H.,Kim J. K. Expression of a bifunctional fusion of the Escherichiacoli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol,2003,131(2):516-524
    Jemong S.,Trotochaud A. E.,Clark S. E. The Arobidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like protein, Plant Cell,1999,11:1925-1933
    Jonak C.,Kiegerl S.,Ligterink W.,Barker P. J.,Huskisson N. S.,Hirt H. Stress signaling in plants:a mitogen-activated protein kinase pathway is activated by cold and drought. Proc Natl Acad Sci USA,1996,93:11274-11279
    Jung, C., Seo, J.S., Han, S.W., Koo, Y.J., Kim, C.H., Song, S.I., Nahm, B.H., Choi, Y.D., and Cheong, J.J. Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis.Plant Physiol, 2008, 146:623-635
    Kasuga M.,Liu Q., Miur A. S, etal. Improving Plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol,1999,17:287-291
    Kerk, D., Bulgrien, J., Smith, D.W., Barsam, B., Veretnik, S., and Gribskov, M. The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis.Plant Physiol, 2002, 129: 908-925
    Khedr A. H.,Abbas M. A.,Wahid A. A.,Quick W. P,Abogadallah G. M. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L.to salt-stress. J Exp Bot 2003,54:2553-2562
    Klumpp S.,Selke D.,Hermesmeier J. Protein phosphatase type 2C active at physiological Mg2+:stimulation by unsaturated fatty acids. FEBS Lett,1998,437:229-232
    Kerk D.,Bulgrien J.,Smith D. W.,Barsam B.,Veretnik S.,Gribskov M..The complement of Protein PhosPhatase eatalytic subunits eneoded in the genome of Arabidopsis.Plant Physiol,2002,129:908-925
    Khan W. A.,Blobe G. C.,Hannun Y. A. Aeachidonic acid and free fatty acids as second messengers and the role of protein kinase C. Cellular Signaling,1995,7:171-184
    Klumpp S.,Selke D.,Hermesmeier J. Protein phosphatase type 2C active at physiologicalMg2 +:stimulation by unsaturated fatty acids. FEBS Lett,1998,437:229– 232
    Kovtun Y.,Chiu W. L,Tena G.,Sheen J. Functional analysis of oxidative stress-activated mitogen-activated protein kinases cascade in plants. Proc Natl Acad Sci USA,2000, 97:2940-2945
    Kuhn J. M,Boisson-Dernier A.,Dizon M. B,Maktabi M. H,Schroeder J. I. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis,and effects of abh1 on AtPP2CA mRNA. Plant Physiol,2006,140: 127-139
    Lally D.,Ingmire P.,Tong H. Y.,He Z. H. Antisense expression ofa cell wall-associated protein kinase,WAK4,inhibits cell elongation and altersmorphology. Plant Cell, 2001, 13:1317-1331
    Lam H. M,Chiu J.,Hsieh MH, Meisel L., Oliveira I. C., Shin M., Coruzzi G. Glutamate-receptor genes in plants. Nature,1998, 396:125-126
    Lee K.,Esselman W. J. cAMP potentiates H2O2-induced ERK1/2 phosphorylation without the requirement for MEK1/2 phosphorylation. Cellular Signaling,2001,13:645-652
    Leroy C., Lee S. E, VazeM. B., Ochsenbien F., Guerois R., Haber J.E., Marsolier-Kergoat M.C. PP2C phosphatase ptc2 and ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol Cell,2003,11:827 - 835
    Leube M.P,Grill E.,Amrhein N. ABI1 of Arabidopsis is a protein serine/threonine phosphatase highly regulated by the proton and magnesium ion concentration. FEBS Lett,1998,424:100-104
    Leung J.,Merlot S.,Giraudat J. The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell,1997,9:759-771
    Leung J.,Giraudat J. Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol. Biol,1998,49:199-222
    Li J.,Smith G. P,Walker J. C. Kinase interaction domain of kinase-associated protein phosphatase,a phosphoprotein-binding domain. Proc Natl Acad Sci USA,1999,96: 7821-7826
    Li J.,Assmann S. M. An abscisic acid-activated and calcium-independent protein kinase from guard cells of Fava Bean. Plant Cell,1996,8:2359-2368
    Li J.,Wang X. Q.,Watson M. B., Assmann S. M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science,2000,287:300-303
    Lorenzo O.,Rodriguez D.,Nicolas G.,Rodriguez P. L.,Nicolas C. A new protein phosphatase 2C (FsPP2C1) induced by abscisic acid is specifically expressed in dormant beechnut seeds. Plant Physiol,2001 ,125:1949-1956
    Lorenzo O.,Nicolas C.,Nicolas G.,Rodriguez D. Molecular cloning of a functional protein phosphatase 2C(FsPP2C) with unusual features and synergistically up-regulated by ABA and calcium in dormant seeds of Fagus sylvatica. Physiologia Plantrum, 2002, 114: 482-490
    Lu, C., and Zhang, J. Role of light in the response of PSII photochemistry to salt stress in the cyanobacterium Spirulina platensis. J Exp Bot, 2000, 51:911-917
    Lu, C., Qiu, N., Wang, B., and Zhang, J. Salinity treatment shows no effects on photosystem II photochemistry, but increases the resistance of photosystem II to heat stress in halophyte Suaeda salsa. J Exp Bot, 2003, 54:851-860
    Luan, S. Protein phosphatases in plants. Annual review of plant biology, 2003, 54: 63-92
    Lyons J. M. Chilling injury in plants. Annu Rev Plant Physiol,1973,24:445-451
    Mackintosh C.,Cohen P. Identification of high levels of type 1 and type 2A protein phosphatase regulation in higher plants. Biochem J,1989,262:335-339
    Ma H. GTP-binding proteins in plants:new members of an old family,Plant Molecular Biol.,1994,26:1611-1636
    Mani S.,van de Cotte B.,van Montagu M. Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol,2002,128: 73-83
    Mao Jian, Zhang Yanchun, Sang Yi, Li Qinghua, and Yang Hongquan. A role for Arabidopsis cryptochromes and COP1 in the regulation of stomatal opening. Proceedings of theNational Academy of Seiences of the United States of America, 2005, 102: 12270-12275
    Mckersie B. D.,Murnaghan J.,Jones K. S.,Bowley S. R. Iron-superoxide dismutase expression in transgenic alfalfa increases winter survival without a detectable increase in photosynthetic oxidative stress tolerance.Plant Physiol,2000,122 :1427-1437
    Meinhard M.,Grill E. Hydrogen peroxide is a regulator of ABI1,a p rotein phosphatase 2C from A rabidopsis. FEBS Lett,2001,508:443 - 446
    Meinhard M.,Rodriguez P. L.,Grill E. The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-respose regulator to redox signalling. Planta,2002,214:775-782
    Merlot S.,Gosti F.,Guerrier D.,Vavasseur A.,Giraudat J. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. The Plant Journal,2001,25:295-303
    Meskiene I.,Baudouin E.,Schweighofer A.,Liwosz A., Jonak C., Rodriguez P. L., Jelinek H.,Hirt H. Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. J Biol Chem,2003,278:18945-18952
    Meskine I.,Bogre L.,Glaser W.,Balog J.,Brandstotter M.,Zwerger K.,Ammerer G., Hirt H. MP2C,a plant protein phosphatase 2C,functions as a negative regulator of mitogen-activated protein kinase pathways in yeast and plants. Proc Natl Acad Sci USA, 1998,95:1938-1943
    Meyer K.,Leube M. P. Grill E. A Protein phosphatase 2C Involved in ABA Signal Transduction in Arabidopsis thaliana. Science,1994,264:1452-1455
    McAinsh M . R.,Clayton H.,Mansfield T. A., Hetherington A . M. Changes in stomatal behaviour and guard cell cytosolic free calcium in response to oxidative stress. Plant Physiol,1996, 111:1031-1042
    Miao Y. C.,Song C. P,Dong F. C, Wang X. C. ABA-induced hydrogen peroxide generation in guard cell of Vicia faba. Acta Phytophysiol Sin,2000,26:53-58
    Mihindukulasuriya, K.A., Zhou, G., Qin, J., and Tan, T.H. Protein phosphatase 4 interacts with and down-regulates insulin receptor substrate 4 following tumor necrosis factor-alpha stimulation. The Journal of biological chemistry, 2004, 279: 46588-46594
    Millward, T.A., Zolnierowicz, S., and Hemmings, B.A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends in biochemical sciences, 1999, 24: 186-191
    Mishra, G., Zhang, W., Deng, F., Zhao, J., and Wang, X. A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science, 2006, 312: 264-266
    Mittler R.Oxidative stress,antioxidants and stress tolerance.Trends in Plant Sci,2002,7: 405-410
    Miyazaki S.,Koga R.,Bohnert H. J.,Fukuhara T. Tissue and environmental response-specific expression of 10 PP2C transcripts in Mesembryanthemum crystallinum. Mol Gen Genet, 1999,261:307- 316
    Monory A. F,Sarhan F.,Dhindsa R. S. Cold-induced changes in freezing tolerance protein phosphorylation and gene expression. Plant Physiol,1993,102:1227-1235
    Moore F.,Weekes J.,Hardie D. G. Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur J Biochem,1991,199: 691-697
    Mori I C.,Pinontoan R.,Kawano T., Muto S. Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol, 2001, 42: 1383-1388
    Morris P. C. MAP kinase signal transduction pathways in plants. New Pytologist, 2001, 151:67-89
    Munnik T.,Ligterink W.,Meskiene T.,Calderini O.,Beyerly J.,Musgrave A.,Hrit H. Distinct osmo-sensing protein kinase pathways are involved in signalling moderate and severe hyper-osmotic stress. The Plant Journal,1999,20:381-388
    Murata Y.,Pei Z. M,Mori I. C., Schroeder J. Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell,2001,13:2513-2523
    Nanjo T.,Fujita M.,Seki M.,Kato T., Tabata S., Shinozaki K. Toxicity of free prolinerevealed in a Arabidopsis T-DNA-Tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol,2003, 44:541-548
    Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., and Hancock, J.T. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J Exp Bot,2002,53:1237-1247
    Neill S.,Desikan R.,Hancock J. Hydrogen peroxide signalling. Curr Opin Plant Biol, 2002, 5:388-395
    Ohta, M., Guo, Y., Halfter, U., and Zhu, J.K. A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 11771-11776
    Orozco-Cardenas M. L,Narvaez-vasque Z. J.,Ryanc A. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell,2001,13:179-19
    Park A. R.,Cho S. K.,Yun U. J.,Jin M. Y.,Lee S. H.,Sachetto-Martins G., Park O. K (). Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich protein, AtGRP-3. J Biol Chem,2001,276:26688-26693
    Pei Z. M, Murata Y., Benning G., Thomine S., Klüsener B., Allen G. J., Grill E., Schroeder J. I. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature,2000,406:731-734
    Perl A.,Perl treves R.,etal. Enhanced oxidative-stress defense in transgenic potato expressing tomato Cu,Zn superoxid dismutases. Theor Appl Genet,1993,85:568-57
    Prasad T. K.,Anderson M. D.,Stewart C. R. Acclimation, hydrogen peroxide, and abscisic acid protect mitochondria against ire-versible chilling injury in maize seedlings. Plant Physiol.,1 994,105:619-627
    Pullen, K.E., Ng, H., Sung PY, Good M.C., Smith S.M., Alber T. An alternate conformation and a third metal in PstP /Ppp, the M. tuberculosis PP2C2- family Ser/Thr protein phosphatase. Structure, 2004, 12: 1947 - 1954
    Reddy A.S.N. Calcium:silver bulle in signaling. Plant Sci,2001,160:381-404
    Ren D.,Yang H.,Zhang S. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J Biol Chem,2002,277:559-565
    Reyes D.,Rodriguez D.,Gonzalez-Garcia M. P.,Lorenzo O.,Nicolas G.,Garcia-Martinez J. L.,Nicolas C. Overexpression of a protein phosphatase 2C from beech seeds in Arabidopsis shows phenotypes related to abscisic acid responses and gibberellin biosynthesis. Plant Physiol,2006,141:1414-1424
    Rodriguez P. L. 1998. Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol Biol 38,919-927
    Rodriguez P. L.,Benning G.,Grill E. (). ABI2,a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Lett,1998,421:185-190
    Sakamoto A.,Murata N. Genetic engineering of glycinebetaine synthesis in plants: current status and implications for enhancement of stress tolerance. J Exp Bot,2000,51:81-88
    Sakamoto A.,Murata N. (). The role of glycinebetaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ,2002,25:163-171
    Sambrook J.,Fritsch E. F., Maniatis T. Analysis of genomic DNA by Southern hybridization. Molecular Cloning,1989,9:31–62
    Samis K.,Bowley S.,McKersie B. Pyramiding Mn2+ superoxide dismutase transgenes to improve persistence and biomass production in alafalfa. J ExpBot,2002,53(372):1343-135
    Samuel M. A.,Miles G. P.,Ellis B. E. Ozone treatment rapidly activates MAP kinase signalling in plant. The Plant Journal,2000,22:367-376
    Sanders D.,Brownlcc C.,Harper J. F.,Communicating with calcium,Plant Cell,1999, 11:691-706
    Scherer G. R. E. Phospholipid signaling and lipid-derived second messengers in plants. Plant Growth Regul.,1996,18:125-133
    Schroeder J. I.,Kwak J. M.,Allen G. J. Guard cell abscisic acid signaling and engineering drought hardiness in plants. Nature,2001,410:327-330
    Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., and Waner, D. Guard cell signal transduction. Annu Rev Plant Physiol Plant Mol Biol,2001,52:627-658
    Schweighofer A.,Hirt H.,Meskiene I. Plant PP2C phosphatases emerging functions in stress signaling. Trends Plant Sci,2004,9:236-243
    Sgherri C. L. M,Maffei M.,Navari-Izzo F. Antioxidative enzymes in wheatsubjected to increasing water deficit and rewatering.J Plant Physiol,2000, 157:273-279
    Shah K.,Russinova E.,Gadella T.W.,Willemse J.,De Vries S. C. The Arabidopsis kinase-associated protein phosphatase controls internalization of the somatic embryogenesis receptor kinase 1. Genes Dev,2002,16:1707-1720
    Sheen J. Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proc Natl Acad Sci USA,1998,95:975-980
    Sheen J. Specific Ca2+-dependent protein kinase in stress signal transduction. Science,1996,274:1900-1902
    Shiozaki K.,Russell P. Counteractive roles of protein phosphatase 2C (PP2C) and a MAP kinase kinase homolog in the osmoregulation of fission yeast. EMBO J,1995,14: 492-502
    Silva J. M.,Arrabaca M. C. Contributions of soluble carbohydrates to the osmotic adjustment in the C4 grass Setaria sphacelata:a comparison between rapidly and slowly imposed water stress. Plant Physiol,2004,161:551~555
    Simon-plas F., Elmayan T., Bleinj P. The plasma membrane oxidase NtrbohD is responsible for AOS production in elicited tobacco cell. The Plant Journal,2002,31:137-147
    Smith R. D.,Walker J. C. Plant protein phosphatases. Annu Rev Plant Phys,1996,47: 101-125
    Spiegel S.,Olivera A.,Zhang H.,Thompson E. W.,Su Y.,Berger A. Roles of sphingosine-1-phosphate in cell growth,differentiation,and death. Breast Cancer Res.Treat.,1994,31:337-348
    Stark M. J. R,Black S.,Sneddon A. A.,Andrews PD. Genetic analysis of yeast protein serine/threonine phosphatases. FEMS Microbiol Lett,1994,117:121-130
    Stone E.M.,Yamano H. Kinoshita N.,Yanagida M. Mitotic regulation of protein phosphatases by the fission yeast sds22 protein. Curr. Biol. 1993,3:13-26
    Stone J. M.,Collinge M. A.,Smith R. D.,Horn M. A.,Walker J. C. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science,1994,266: 793-795
    Stone J. M.,Trotochaud A. E.,Walker J. C.,Clark S. E. Control of meristem development by CLAVATA1 receptor kinase and kinase-associated protein phosphatase interactions. Plant Physiol,1998,117:217-1225
    Tahtiharju S.,Palva T. Antisense inhibition of protein phosphatase 2C accelerates cold acclimation in Arabidopsis thaliana. The Plant Journal,2001 26:461-470
    Takekawa M.,Adachi M.,Nakahata A.,Nakayama I., Itoh F., Tsukuda H., Taya Y., Imai K. p532inducibleWip1 phosphatase mediates a negative feedback regulation of p38 MAPK2p53 signaling in response to UV radiation. EMBO J,2000,19:6517– 6526
    Takezawa D. Characterization of a novel plant PP2C2like protein Ser/Thr phosphatase as a calmodulin-binding protein. J Biol Chem,2003,278:38076 - 38083
    Tarczynski M. C,Jense R. G. Bohnert H. J. Stress protection of transgenic tobacco by production of the osmolyte mannitol.Science,1993,259∶508-10
    Thomashow M. E. Plant cold acclimation:freezing tolerance genes and regulatory. Plant Mol. Biol,1999,50:571-599
    Trotochaud A. E,Hao T.,Wu G.,Yang Z.,Clark S. E. The CLAVATA1 receptor-like kinase requires CLAVATA3 for its assembly into a signaling complex that includes KAPP and a Rho-related protein. Plant Cell,1999,11:393-406
    Van Camp W.,Willekens H., etal. Elevated levels of superoxide dismutase protect transgenic plants agains to zone damage. Bio Technology,1994,12:1 65-16
    Vde Smedt V., Poulhe R., Cayla X., Dessauge F., Karaiskou A., Jessus C., Ozon R. Thr2161 phosphorylation of monomeric Cdc2. Regulation by protein phosphatase 2C in Xenopusoocytes. J Biol Chem,2002,277:28592 - 28600
    Vogel H. J. Calmodulin,a versatile calcium mediator protein. Biochem. Cell Biol.,1994, 72:357-376
    Williams R. W,Wilson J. M., Meyerowitz E. M. A possible role for kinase-associated protein phosphatase in the Arabidopsis CLAVATA1 signaling pathway. Proc Natl Acad Sci U S A,1997,94:10467-10472
    Yoshida T.,Nishimura N.,Kitahata N.,Kuromori T.,Ito T.,Asami T.,Shinozaki K., Hirayama T. ABA-hypersensitive germination3 encodes a protein phosphatase 2C(AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol,2006,140:115-126
    Yoshioka H., Sugie K., Parkh J., Maeda H., Tsuda N., Kawakita K., Doke N. Induction of plant gp91ph oxhomolog by fungal cell wall, arachidonicacid, and salicylic acid in potato. Mol. Plant–Microbe Interact.,2001,14:725-736
    Yu L. P,Miller A. K,Clark S.E. POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr Biol,2003,13:179-188
    Zeevaart J.,Greelman R. A. Metabolism and physiology of abscisic acid. Annu Rev Plant Physiol Plant Mol Biol,1988,39:439-473
    Zhang C. S,Lu Q.,Verma D. P. S. Characterization of D1-pyrroline-5-carboxylate synthetase gene promoter in transgenic Arabidopsis thaliana subjected to water stress. Plant Sci, 1997,129:81-89
    Zhang X., Zhang L., Dong F., Gao J., Galbraith D. W., Song C. P. Hydrogen peroxide is involved in abscisic acid-induced stomatal closure in Vicia faba. Plant Physiol,2001,126:1438-1448
    Zhu J .K. Plant salt tolerance. Trends in plant Science,2001,6:66-71.1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700