用户名: 密码: 验证码:
光肩星天牛及其近缘种线粒体DNA COⅠ基因遗传差异及其PCR鉴定试剂盒的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光肩星天牛Anoplophora glabripennis(Motschulsky),是我国分布广泛而且危害非常严重的蛀干害虫。1996年以来,美国相继在纽约、芝加哥和新泽西州等地发现光肩星天牛危害,由于美方认为该虫是从中国传入的,因此于1998年开始对我国输美的货物木质包装(SWPM)实行了更为严厉的检疫措施,这对我国的出口贸易产生了严重影响。鉴于光肩星天牛对中关两国检疫的重要性,经双方商谈决定合作开展“星天牛种间及光肩星天牛种群间分子生物学的研究”课题。本研究为该课题的一部分。
     应用PCR直接测序法对15个不同地理来源的光肩星天牛及5个光肩星天牛近缘种共27个样品的线粒体DNA CO Ⅰ基因中一段504 bp的序列成功进行了测序。
     从序列分析结果可见,不同地理来源的光肩星天牛样品间存在一定的碱基差异,并呈现出一定的规律。结果表明,美国、韩国与中国的光肩星天牛存在明显标记性差异,说明美国的光肩星天牛已形成自己独有的基因特点,而区别于中国、韩国的光肩星天牛。由此可以推断,美国所发生的光肩星天牛不是从中国传入的。
     综合序列碱基差异分析和Bootstrap聚类结果,可将本研究中的光肩星天牛(含黄斑星天牛)样品分为4个种群:美国、韩国、中国北方和中国南方。中国北方种群包括:甘肃、内蒙古、河北、陕西;中国南方种群包括:安徽、江苏、浙江、湖北、河南、山东、宁夏、山西和辽宁。
     在所测序列中,光肩星天牛与黄斑星天牛样品间的碱基差异较小,且它们在系统树中全部聚于一分枝中,由此可见,光肩星天牛和黄斑星天牛并未达到种级分类水平,应归为同一个种。
     本研究结果显示,光肩星天牛样品与采自重庆的四川星天牛间碱基差异较大,且它们在系统树中位于不同的分枝,这一结果表明,四川星天牛应是一个独立的种。
     测序结果表明,光肩星天牛mtDNA CO Ⅰ基因这一片断,在种间差异明显,而在不同地理来源的光肩星天牛(包括黄斑星天牛)间相对保守,具有高度的特异性和稳定性,可用来鉴定光肩星天牛。
     根据所测mtDNA CO Ⅰ序列设计了一对光肩星天牛的特异性PCR引物用于光肩星天牛的PCR鉴定。对包括21个不同地理来源的光肩星天牛在内的39个样品进行实验,结果表明所设计的PCR引物具有较高的特异性和灵敏度。根据以上研究结果初步构建了光肩星天牛PCR鉴定试剂盒及其说明书,并获得了专利登记。
Anoplophora glabripennis (Motschulsky), which widely distribute in China, has been a great economic pest of forest trunk. Since 1996, A.glabripennis infestation has been discovered in New York City, Chicago City and New Jersey in U.S.A. in succession. U.S.A. government thought that this pest imported from China. So in 1998, U.S.A.. government implemented a series of more stern quarantine and inspection regulations to SWPM from China, that had influenced seriously on the export trade of our country and brought the enormous economic losses. As the importance of A.glabripennis to U.S.A. and China, the subject "Genetic differences and identification technology of A.glabripennis "was decided to study by co-operative of both sides after negotiations. This study is part of this subject.
    A 504bp fragment of mtDNA CO I gene were sequenced successfully by sequencing directly from a total of 27 samples including 15 A.glabripennis samples from different areas , 4 A.nobilis samples from different areas and the other 4 sibling species of A.glabripennis.
    From the result of analysis on the sequences, it can be seen that there are base difference in A.glabripennis samples from different areas and show definitive regulation. This show that there is visible marker difference in A.glabripennis from America, China and Korea. This indicates that A.glabripennis from America have formed unique character themselves and can differentiate from A.glabripennis from China and Korea. So we infer the A.glabripennis distributed in U.S.A. were not from China.
    On the basis of the base difference and the Bootstrap tree, The A.glabripennis specimens including A.nobilis of this study can be divided into 4 populations: the population of America, the population of Korea, the population of the North of China and that of the South of China. The population of the North of China consist of A.glabripennis from the provinces of Gansu, Neimenggu, Hebei and Shananxi. The population of the South of China consist of A.glabripennis from Anhui, Jiangsu, Zhejiang, Hubei, Henan, Shandong, Ningxia, Shanxi and Liaoning.
    The base difference between A.glabripennis and A.nobilis samples is very small. And they all grouped in a clade. Thus show these two sibling species should belong to the same species.
    The morphological characters of are very similar. As a result, the biggest base difference between A.glabripennis samples and A.freyi from Chongqing is 6.8% and they were grouped into tow clades in the Bootstrap tree. Therefore, A.freyi can be seen a independent species in the light of the result.
    The result of sequencing indicates the region of mtDNA CO I gene show distinct difference in different species but conservation in A. glabripennis samples relatively. This region
    
    
    
    has special stability and specificity. It can be used to identify A.glabripennis by sequencing directly.
    A pair of specific PCR primers was designed according to the sequences of mtDNA CO I gene had sequenced. These primers can be used to identify A.glabripennis. The PCR system and condition of specific PCR of identifying A.glabripennis were optimized and defined the optimum PCR system and condition. A total of 39 specimens were tested including 21 A.glabripennis specimens of different geographical sources. The result show that the primers designed have high specificity and sensitivity. The identification kit for A.glabripennis and its working protocol were developed primarily based on the PCR and have obtained the register patent.
引文
1.安榆林.光肩星天牛在美国的发生情况及其分析.植物检疫,1999,13(2):9—10.
    2.邴积才,强维秀.黄斑星天牛的综合防治技术.林业科技开发.1998,(5):25—27.
    3.陈宏.光肩星天牛传入美国及其对策.植物检疫,2000,14(3):187—188.
    4.程家安,唐振华.2001.昆虫分子科学.北京:科学出版社.
    5.成新跃,周红章,张广学.分子生物学技术在昆虫系统学研究中的应用.动物分类学报,2000,25(2):121—133.
    6.程颖慧,章桂明,王颖,等.小麦印度腥黑穗病菌PCR检测.植物检疫,2001,15(6):321—325.
    7.C.W迪芬巴赫,G.S.德维克斯勒著.1998.黄培堂等译.PCR技术实验指南.北京:科学出版社,88—95.
    8.代金霞,郑哲民.鞘翅目昆虫线粒体DNA多态性研究进展.宁夏农学院学报,2003,24(3):70—74.
    9.段子渊.PCR技术影响扩增大片段基因产量的因素.草食家畜,1997(4):18—20.
    10.F.奥斯伯,R.布伦特,R.E.金斯顿,等.1998.精编分子生物学实验指南.颜子颖,王海林译.北京:科学出版社.
    11.傅荣昭,邵鹏柱,高文远,孙勇如,罗玉萍.DNA分子标记技术及其在药用植物研究上的应用.生物工程进展,1998,18(4):14—16.
    12.高瑞桐,李国宏.我国光肩星天牛研究回顾及发展趋势.昆虫知识,2001,38(4):252—258.
    13.高瑞桐,秦锡祥,陈德均,等.林业科学研究,1993,6(2):189—193.
    14.高瑞桐,王保德,等.光肩星天牛和黄斑星天牛杂交研究.北京林业大学学报,2000,22(3):22—26.
    15.龚鹏,杨效文,等.分子遗传标记技术及其在昆虫科学中的应用.昆虫知识.2001,38(2):86—91.
    16.国家级森林病虫害中心测报点杨树星天牛监测、预测预报办法(试行).
    17.国家质检总局.2004.输往中国货物木质包装传带有害生物的风险分析报告.
    18.贺水山,闻伟刚,杨兰英等.松材线虫PCR快速检测方法研究.植物检疫,2002,16(6):321-324.
    19.黄永成,李伟丰,陆温,陈永久,张亚平.长蠹科几种检疫性害虫的ND4基因序列及系统进化.昆虫学报,2001,44(4):494—500.
    20.黄原.1998.分子系统学——原理、方法及应用.北京:中国农业出版社.
    21.贾振宇,朱定良,庚镇城,等.中国大陆若干群体的黑果蝇的线粒体DNA多态性研究.动物学研究,1995,16(1):65—73.
    22.蒋书楠.黄斑星天牛种的鉴定和有关问题的讨论.昆虫知识.1980(2):96—97.
    23.蒋书楠,吴蔚文.黄斑星天牛和光肩星天牛的数值分类研究.昆虫学报,1989,32(2):211—220.
    24.郎杏茹,孙普等.光肩星天牛与黄斑星天牛交配试验初报.西北林学院学报,1997,12(增):58—60.
    25.李谦,李雅青.提高PCR反应特异性的几点策略.临沂师范学院学报,2001,23(4):56—57.
    26.李伟丰,黄永成,陈邦禄,陈永久,张亚平.7种长蠹科昆虫的线粒体DNA ND4基因序列比较分析.植物检疫,2001,15(5):257—262.
    27.李文杰,邬承先主编.1992.杨树天牛综合管理.中国林业出版社,29.
    28.李文蓉,武坚,刘明军,黄俊成,杨冬梅,郭志勤.建立高效的转基因动物鉴定技术体系.草食家畜,2001(增刊):45—50.
    29.李正西,沈佐锐.赤眼蜂rDNA-ITS2克隆测序及蜂种特异引物设计.中国生物防治,2001,17(2):75—80.
    30.刘鹤昌.昆虫与植病,1937,5(23):470—473.
    31.卢对栋.1999.现代分子生物实验技术(第2版).
    32.卢希平,朱传样,刘玉,等.利用病原线虫防治几种天牛幼虫的室内寄生性测试.森林病虫通讯,1994(4):31—33.
    33.罗晨,姚远,王戎疆,阎凤鸣,胡敦孝,张芝利.利用mtDNACOⅠ基因序列鉴定我国烟粉虱的生物型.昆虫学报,2002,45(6):759—763.
    34.骆有庆,黄竞芳,李建光.我国杨树天牛研究的主要成就、问题及展望.昆虫知识,2000,37(2),116—122.
    35.骆有庆,黄竞芳,杞杰.光肩星天牛对小美旱杨幼林生长量的危害损失的初步研究.北京林业大学学报,1993,15(3):75—87.
    36.骆有庆,黄少鸣,等.2000.光肩星天牛和黄斑星天牛混合种群的系统聚类分析.防护林杨树天牛持续控制技术专题论文集.
    37.骆有庆,黄少鸣,等.光肩星天牛和黄斑星天牛混合种群的显微特征比较.北京林业大学学报,2000,22(1):56—62.
    
    
    38.骆有庆,李建光.光肩星天牛的生物学特性及发生现状.植物检疫,1999(1):5—7.
    39.骆有庆,沈瑞祥.加强口岸检疫 为外贸保驾护航.江苏省昆虫植病学会通讯,2000,13—14.
    40.牛屹东,李明,魏辅文,冯祚建.线粒体DNA用作分子标记的可靠性和研究前景.遗传,2001,23(6):593—598.
    41.庞峻峰,张亚平.标本DNA的研究进展.动物学研究,2001,22(6):490—496.
    42.任竹梅,马恩波,郭亚平.不同地域小稻蝗mtDNA部分序列及其相互关系.昆虫学报,2003,46(1):51—57.
    43.任竹梅,马恩波,郭亚平.不同区域日本稻蝗Cytb基因序列及相互关系.山西大学学报(自然科学版),2002,25(3):244—248.
    44.邵红光.关于节肢动物分类与进化的分子佐证.动物分类学报,2000,25(1):1—8.
    45.施红.新型的DNA序列测定策略:PCR产物直接测序.生物技术通讯,2000,11(2):154—155.
    46.唐桦.2002.天牛科部分种类分子系统学以及光肩星天牛等害虫天敌与不育技术的研究.陕西师范大学动物学博士毕业论文.
    47.王备新,杨莲芳.线粒体DNA序列特点与昆虫系统学研究.昆虫知识,2002,39(2):88—92.
    48.王亮,张金山,朱丹,印螺,王秀琴,吴昊.快速可靠的双链PCR产物直接测序.生物化学与生物物理进展,1994,21(5):458—459,478.
    49.王志刚,阎浚杰,刘玉军,唐晓琴,陈彦芹.西藏南部光肩星天牛发生情况调查报告.东北林业大学学报,2003,31(4):70—71.
    50.王志林,吴新荣,赵树进.分子标记技术及其进展.生物技术.2002,12(3—4):封2、封2-封3.
    51.危文亮.分子标记在作物育种中的应用.生物技术通报,2000,16(2):12—16.
    52.吴红芝,孔宝华,陈海如,等.RT-PCR检测番茄不孕病毒.植物检疫,2002,16(2):66—69.
    53.吴新华,王良华,季健清.应用聚合酶链反应技术鉴定印度腥黑穗病菌.植物检疫,1998,(3):129—131.
    54.吴蔚文,陈斌.光肩星天牛种组的研究现状.昆虫知识,2003,40(1):19—24.
    55.吴蔚文,蒋书楠.中国的光肩星天牛类群.昆虫学报,1998,41(3):284—290.
    56.J.萨姆布鲁克,E.F.费里奇,曼尼阿蒂斯 T.1992.分子克隆实验指南(第二版).金冬雁,黎孟枫译.北京:科学出版社.
    57.J.萨姆布鲁克,D.W.拉塞尔,著.2002.黄培堂,等译.分子克隆实验指南(第三版).北京:科学出版社,611—618.
    58.夏玉玲,张春霖,鲁成.不同处理对动物线粒体DNA提取的影响.蚕学通讯,2003,23(1):5—10.
    59.萧刚柔主编.1992.中国森林昆虫第二版(增订版).北京:中国林业出版社,455—475.
    60.熊善熹.三北防护林地区天牛发生危害特点及防治对策.森林病虫通讯,1995(1):28—31.
    61.邢连喜,胡萃,程家安.四种白蚁的线粒体DNA限制性片段长度多态性研究(等翅目:鼻白蚁科,木白蚁科).昆虫分类学报,1999,21(3):181—185.
    62.徐光勇,陈斌,吴蔚文,刘彦群,鲁成.天牛干标本DNA的提取及RAPD-PCR扩增反应.西南农业大学学报,2003,25(2):95—97.
    63.徐金柱,樊美珍,李增智.放菌方式对白僵菌防治光肩星天牛效果的影响.中国生物防治,2003,19(1):27--30.
    64.徐庆刚,花保祯.线粒体DNA在昆虫系统学研究中的应用.西北农林科技大学学报(自然科学版),2001,29(增刊):79—83.
    65.徐祖元,包其郁,牛宇新.PCR产物直接测序技术中影响因素的研究.2002,24(5):548—550.
    66.阎浚杰.中国东部光肩星天牛分布区的研究.东北林业大学学报,1985,13(1):62—69.
    67.叶建仁.中国森林病虫害防治现状与展望.昆虫植病学会通讯,2002(4).
    68.易建平,陶庭典,潘良文,等.套式PCR直接检测印度腥黑穗病菌冬孢子.植物检疫,2002,16(4):197—200.
    69.伊冬明,等.生物工程进展,1997,17(1):6—9.
    70.余本渊.2002.伞滑刃属两新种描述及松材线虫(Bursaphelenchus xylophilus)分子鉴定研究.南京农业大学硕士学位论文,39—50.
    71.余道坚,邓中平,陈志磷,康林.昆虫分子标记基因和序列及应用.植物检疫,2003,17(3):156—159.
    72.张波,白杨,岛津光明,等.无纺布法防治光肩星天牛成虫的初步研究.西北林学院学报,1999,14(1):68—72.
    73.张亚平.从DNA序列到物种树.动物学研究,1996,17(3):247—252.
    74.张亚平,施立明.动物线粒体DNA多态性的研究概况.动物学研究,1992,13(3):289—298.
    75.张玉凤,陆群,唐蒙昌,等.对光肩星天牛防治策略的思考.内蒙古林业科技,2003(1):15—16.
    76.张仲信.刍议光肩星天牛的间接性危害.森林病虫通讯,1997(4):41—43.
    
    
    77.郑敏.真核生物基因组多态性分析的DNA指纹技术.生物技术,1999,9(3):35—38.
    78.周嘉熹.1985.黄斑星天牛综合防治论文集第一集.
    79.周嘉熹,杨雪彦,崔敏,等.黄斑星天牛和光肩星天牛幼虫两种同功酶的测定.西北林学院学报,1995,10(2):67—70.
    80.周嘉熹,张克斌.光肩星天牛与黄斑星天牛幼虫消化道外形比较.西北林学院学报,1995,10(2):71—73.
    81.周亚君.天牛类害虫三种主要寄生性天敌及其对寄主的选择.河南农业大学学报,1985,22(2):197—202.
    82. Al-Soud W A, Rdstrm P.Purifidztion and characterization of PCR-inhibitory components in blood cells.J Clinic Microbio, 2001, 39 (2): 485—493.
    83. Anthony I Cognato, Felix A H Sperling. Phylogeny of Ips degeer species (Coleoptera: Scolytidae) inferred from mitochondrial cytochrome oxidase Ⅰ DNA sequence. Molecular Phylogenetics and Evolution, 2000, 14(3): 445—460.
    84. Aubert J, Solignac M. Experimental evidence for mitochodrial DNA introgression between Drosophila species. Evolution. 1990, 44: 1272—1282.
    85. Azeredo-Espin, et al. Intraspecific mtDNA variation in the Colorado potato beetle, Leptinotarsa decemlineata. Biochemical Genetics, 1996, 34(7-8): 253—268.
    86. Beckenbach A T, Wei Y W, Liu H. Relationship in the Drosophila obscura species group, inferred from mitochondrial cytochrome oxidase sequence. Mol Biol Evol, 1993, 10: 619—634.
    87. Boyce T M, Zwick M E, Aquadro C F.Mitochondrial DNA in the barkweevils: sizes, structure and heteroplasmy. Genetics, 1989, 123: 825—836.
    88. Brown W M, Prager M, Wang A, et al. Mitochondrial DNA sequences of primate: tempoandmode of evolution.J Mol Evol, 1982, 18: 225—239.
    89. Caccone, Adalgisa, et al. Molecular biogeography of cave life.Evolution, 2001, 55(1): 122—130.
    90. Clarke, T.E. et al. Rapid evolution in the Nebria gregaria group and the paleogeography of the Queen Charlotte Island.Evolution, 2001, 55(7): 1048—1418.
    91. Chapco W, Kuperus W R, Litzenberger G. Molecular phylogeny of melanopline grasshoppers (Orthoptera: Acrididae) the genus Melanoplus. Ann Entomol Soc Am, 1992, 92(5): 617—623.
    92. DeSalle R, Freedman T, Prager E M, et al. Tempo and mode of sequence evolution in imtochondrial DNA of Hawaiian Drosophila. Mol Evol, 1987, 26: 157—164.
    93. Dietrich CH, Fitzgerald SJ, Holme J L, Blackiv W C, Nault L R. Ann Entomol Soc Am, 1998, 91(5): 590—597.
    94. Diogo A C, et al. Conservation genetics of Cicinela deserticoloides, an endangered tiger beetle endemic to southeastern Spain. Journal of Insect Conservation, 1999, 3(2): 117—123.
    95. D R Kethidi, D B Roden, T R Ladd, P J Krell, A Retnakaran, Q Feng. Development of SCAR markers for the DNA-based detection pf the Asian long-horned beetle, Anoplophora glabripennis(Motschulsky). Arch Insect Biochem Physiol, 2003, 52(4): 193—204.
    96. Emerson, Brent C, et al. mtDNA phylogeography and recent intraisland diversification among Canary Island Calathus bettles.Molecular phylogenetics and Evolution, 1999, 13(1): 149—158.
    97. Emerson, Brent C, et al. Tracking colonization and diversification of insect lineages on islands: MtDNA phylogeography of Tarphius canadensis. Proceeding of the Royal Society Biological Science Series, 2000, 267(1458): 2199—2205.
    98. Erney S J, et al. Molecilar different of alfalfa weevil strains. Annals of the Entomological Socciety of America, 1996, 89(6): 804—811.
    99. Forbes B A, Hicks K E. Substances interfering with direct detection of Mycobacterium tuberculosis in clinical specimens by PCR: effects of bovin serun albumin. J Clinic Microbio, 1996, 34 (9): 2125—2128.
    100. Garin, Claudia F.et al. MtDNA phylogeny and the evolution of host plant use in paiearctis Chrysolina leaf beetles.Entomological News, 1996, 107(5): 311—316.
    101. Gomez—Zurita et al. Neated cladistic analysis, phylogeography and speciation in the Timarcha goettingensis complex.Molecular Ecology, 2000, 9(5): 557—570.
    102. H D Loxdale, G Lushai. Molecuar markers in entomology. Bulletin of Entomological Research, 1998, 88(6): 577—600.
    103. Hidayat, Purnama et al. Molecular and morphological characters discriminate Sitophilus oryzae and S.zeamais and confirm reproductive isolation.Annals of the Entomological Society of American, 1996, 89(5): 645—652.
    
    
    104. J A Anstead, J D Burd, K A Shufran. Mitochondrial DNA sequence divergence among Schizaphis graminum (Hemiptera: Aphididae) clones from cultivated and non-cultivated hosts: haplotype and host associations. Bulletin of Entomological Research, 2002, 92: 17—24.
    105. Joseph F. Cavey. 2002. Solid Wood Packing Material from china APHIS.USDA.
    106. Juan, Carlos et al. MtDNA sequemce variation and phylogeography of Pimelia darkling beetles on the island of Tenerife.Heredity, 1996, 77(6): 589—598.
    107. Juan, Carlos et al. Phylogeny of the genus Hegeter and its colonization of the Canary Island deduced from cytochrome oxidase Ⅰ mitochondrial DNA sequence.Heredity, 1996, 76(4): 392—403.
    108. Kelley, Scott et al. Effects of specialization on genetic differentiation in sister species of bark beetles. Heredity, 2000, 84(2): 218—227.
    109. Kieran M.Clements, Brian M.Wiegmann, Clyde E.Sorenson et al.Genetic Variation in the Myzus persicae Complex (Homoptera: Aphididae): Evidence for a Single Species. Annals of the Entomological Society of America, 1993, 1: 31—46.
    110. Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequence. J Mol Evol, 1980, 16: 111—120.
    111. Kobayashi, Norio et al. Two cryptic species of the phytophagous ladybird beetle Epilachna vigintioctopunctata. Zoological Science (Tokyo), 2000, 17(8): 1159—1160.
    112. Kocher T D, Thomas W K, Meyer A, et al. Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing withc onservedprimers. Proc Natl Acad Sci USA, 1989, 86: 6196—6200.
    113. Kondo R, Satta Y, Matsuura E T, et al. Incomplete meternal transmission of mitochodrial DNA in Drosophila. Genetics, 1990, 126: 657—663.
    114. Kreader C A. Relief of amplification in haibition in PCR with Bovine serum albumin or T4 gene 32 protein. Appl Environ Microbio, 1996, 62(3): 1102—1106.
    115. Langor David W. et al. MtDNA variation and identification of bark weevils in the Pissodes strobi species group in western Canada. Canadian Entomologist, 1995, 127(6): 895—911.
    116. Lansman R A, Avise J C, Huettel M D. Critical experimental test of the possibility of "paternal leakage" of mitochondrial DNA. Proc. Natl. Sci. USA, 1993, 80: 1969—1971.
    117. Makita H, Shinkawa T, Ohta K, et al. Phylogeny of Luehdorfia butterflies inferred from mitochondrial ND5 gene sequences. Entomological Science, 2000, 3(2): 321—329.
    118. Masahiko M., Kenjiro K., Toru S. Appl. Entomol. Zool., 2000, 35(3): 293—300.
    119. Masahiko M., Kenjiro K., Toru S. Appl. Entomol. Zool., 2000, 35(3): 301—307
    120. Miller, Liza et al. Identification of morphologically similar canegrubs using a molecular diagnostic technique. Australian Journal of Entomology, 1999, 38(3)189—196.
    121. Nass M K, Nass S. Interamitochondrial fibers with DNA characteristics. J Cell Biol, 1963, 19: 593—611.
    122. Normark, Benjamin B. et al. Aramigus uruguayendid, a new specides based on mtDNA and morphological characters. Entomological News, 1996, 107(5): 311—316.
    123. Normark, Benjamin B. et al. Phylogeny and evolution of parthenogenetic weevils of the Arami tessellates gus species complex.Evoluyion, 1996, 50(2): 734—745.
    124. Pashley D, KeL D. Sequence evolution in the mitochondrial ribosomal and ND-1 gene in Lepidoptera: implications for phylogenetic analyses. Mol Biol Evol, 1992, 9: 1061—1075.
    125. Piau, Olivier et al. Within and among population divergence levels in mtDNA of Aphodius obsurus and A.immaturus from Trance.Annals de la society Entomologique de France, 1999, 35(sup): 117—123.
    126. Reid D Frederick, Karen E Snyder, Paul W Tooley, et al. Identification and differentitation of Tilletia indica and T.walkeri using the polymerase chain reaction. Phytopathology, 2000, 90 (9): 951—960.
    127. Rees, D.J. et al. Reconciling gene trees with organism history: The mtDNA phylogeography of these Nesotes species on the western Canary Island. Journal of Evolutionary Biology, 2001, 14(1): 139—147.
    128. Sedlmair, Dieter et al. Application of ubiquitin SCCP analysis in taxonomic studies within the subgenus orinocarabus. European Journal of Entomology, 2000, 97(3): 387—394.
    
    
    129. Shufran K A, Burd J D, Ansead J A, Lushai G. Insect Mol. Biol., 2000, 9 (2): 279—284.
    130. Simon C, Frati F, Beckenbach A, et al. Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compliation of conserved polymerase chain reaction primers. Ann Entomol Soc Am, 1994, 87(6): 651—701.
    131. Sota, Teigi et al. Incongruence of mt and nuclear gene tree in the Carabid beetles Ohomoterus. Systematc Biology, 2001, 50(1): 39—59.
    132. Sperling F A H, Hicker D A. Mitochondrial DNA sequence variation in the spruce budworm species complex (Choristoneura: Lepidoptera). Mol Biol Evol, 1994, 11: 656—665.
    133. Sperling F A H, Raske A G, Otvos I S. Mitochondrial DNA sequence variation among populations and host races of Lambdina fiscellaria (Gn) (Lepidoptera: Geometridae). Insect Mol Biol, 1999, 8: 97—106.
    134. Steven W. Lingafelter, E.Richard Hoebeke. 2002. Revision of the genus Anoplophora(Coleoptera: Cerambycidae). The Entomological Society of Washington D.C.
    135. Uehara T, Mizukubo T, Kushida a, et al. Identification of Pratylenchus coffeae and P.loosi using specific primer for PCRamplification of ribosomal DNA. Nematologica, 1998,44:357—368.
    136. Vogler, Alfried P. et al. Phylogeny of North American Cicinedela tiger beetles inferred from multiple mtDNA sequence. Molecular phylogenetics and Evolution, 1997, 8(2): 225—235.
    137. Vogler, Alfried P, et al. Covariation of defensive traits in tiger beetles. Evolution, 1998, 52(2): 529—538.
    138. Wahlberg N, Descimon H. Phylogeny of Euphydryas checkerspot butterflies (Lepidoptera: Nymphalidae) based on mitochondrial DNA sequence data. Ann Entomol Soc Am, 2000, 93(3): 347—355.
    139. Weeler W C, Cartwright P, Hayashi C Y. A sombined approach. Cladistics. Arthropod phylogeny, 1993, 9 (1): 1—39.
    140. Welsh J, et al. Nucl Acids Res, 1990, 18: 7213—7218.
    141. Williams. G. K. J., Kubelik, A. R., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucl.Acids Res. 1990, 18(22): 6531—653.
    142. Zhang D X, Hewitt G M. Nuclear integrations: challenges for mitochodrial DNA markers. TREE. 1996, 11(6): 247—251.
    143. Zimmermann M, Wahlberg N, Descimon H.Phylogeny of Euphydryas checkerspot butterflies (Lepidoptera: Nymphalidae) based on mitochondrial DNA sequence data. Ann Entomol Soc Am, 2000, 93(3): 347—355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700