用户名: 密码: 验证码:
抗天牛基因(cry3Aa同源基因)的克隆、改造及其对杨树的转化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对中国林业科学研究院林业研究所生物技术室所分离、筛选的苏云金芽孢杆菌(Bacillus thuringiensis)菌株Bt886进行的深入研究,初步确认了该菌株所属的类型,然后深入到分子水平做出了验证。以该菌株为材料,克隆出了对光肩星天牛(Anoplophra labripennis (Motsch.))具有毒杀作用的cry3Aa同源基因,并且对该基因进行了人工改造、人工合成、大肠杆菌表达、生物活性测定、双元表达载体的构建以及对杨树的转化等一系列研究,主要结果如下:
     (1)显微观察该菌株所形成的伴孢晶体为方形。生物活性测定结果表明该菌株对榆蓝叶甲(Pyrrhalta aenescens (Fairmaire))和光肩星天牛等鞘翅目昆虫具有较高的毒力,因此初步确认该菌株属于cry3类;
     (2)发现该菌株中编码毒蛋白的基因位于质粒上,并且已经成功地克隆到该基因。经测序表明,该cry3Aa同源基因全长1956bp,GC含量较低,为35.95%,与cry3Aa1的序列同源性极高,仅有6个碱基和2个氨基酸的差异;
     (3)苏云金芽孢杆菌来源的cry3Aa同源基因与真核来源的杨树基因相比,发现它们对各种氨基酸的同义三联体密码子的偏好和使用频率存住着很大的差异,这可能正是原核来源的基因在真核生物中表达效率低的主要原因之一。通过对氨基酸密码子的偏好、使用频率、多聚腺苷酸信号序列(PPSS)、mRNA不稳定序列(DST)以及Kozak等结构的优化改造,人工设计、合成了预期能在杨树中高效表达的毒蛋白基因Modified cry3Aa同源基因;
     (4)利用强启动子表达载体pET30-b完成了cry3Aa同源基因在大肠杆菌中的表达。SDS-PAGE电泳表明,在大肠杆菌中所表达的融合蛋白位于66kDa~97kDa之间;
     (5)大肠杆菌表达产物生物测定表明:苏云金芽孢杆菌菌株Bt886对鞘翅目昆虫的高毒力主要归因于菌体内位于质粒上的cry3Aa同源基因。因此,所克隆的cry3Aa同源基因完全可以用于培育抗天牛的植物新品种;
     (6)获得了重组双元植物表达载体pBin438-Mcry3和pBI121-2k,为进一步转化杨树及其它植物品种,培育抗天牛的植物新品种奠定了良好的基础;
    
     中南林学院硕士研究生毕业论文2003
     (7)建立了两套完整的杨树转化体系,一套为农杆菌介导的外源基因转化体系,一
    套为花粉管通道法转化体系;
     ()获得了一批抗恃那霉素的,导入了外源基因 err3Aa同源基因和 Modified err3Aa
    同源基因的杨树幼茁,目前正在进行检测筛选。
This thesis studied on Bacillus thuringiensis strain Bt886 which was separated and selected by researchers of our laboratory. According to the observation of crystal shape and the bioassay of Motschulsky and Fairmaire, Bacillus thuringiensis strain Bt886 was identified as cry3 type, and the conclusion was assured by the further study on molecular level.
    The 1956 base pairs full lengrh homological cry3Aa gene which was toxic to Motschulsky was cloned and sequenced. It is highly homologized to cry3Aal gene. Further sequence analysis show that only 6 base pairs of nucleotide and 2 amino acids are different between them.
    The homological cry3Aa gene was expressed in Escherichia coli.. And the expressed products which contain a fused peptide of 66-97 kilo-Dalton was observed by means of SDS-PAGE. Bioassay results show that the expressed protein in Escherichia coli. is toxic to Tenebrio molitor L..
    The homological cry3Aa gene was modified according to the characters of poplus genes and the other features of eukaryotic gene, and was artificially synthesized. The original and modified homological c/y3Aa gene were cloned into binary vector pB121 and pBin438 respectively, and transplanted into 84K clone (P. tomentos X P. glandulossa) to breed new anti-insects tree species.
引文
[1]张世权.华北天牛及其防治[M].北京:中国林业出版社,1994.150~261。
    [2]骆有庆,李建光.杨树灾害控制的应用技术和基础研究策略[J].北京林业大学学报,1999,21(4):6~12。
    [3]李文杰,邬承先.杨树天牛综合管理[M].北京:中国林业出版社,1993.147~267。
    [4]黄竞方,骆有庆.我国杨树蛀干害虫的现状[J].森林病虫通讯,1991,(1):29~33。
    [5]蒋书楠.中国天牛幼虫[M].重庆:重庆出版社,1989.2~5。
    [6]熊善松.三北防护林地区天牛发生的危害特点及其防治对策[J].森林病虫通讯,1995(1):20~22。
    [7]黄大庄.桑天牛的研究进展[J].河北林学院学报,1996,11(3-4):290~296。
    [8]林良斌,官春云.Bt毒蛋白基因与植物抗虫基因工程[J].生物工程进展,1997,17(2):51~55。
    [9]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,1998,179~317。
    [10]王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002,3~5。
    [11]胡建军,刘庆一,王克胜等.欧洲黑杨转Bt毒蛋白基因植株大田抗虫性测定[J].林业科学研究,1999,12(2):202~205。
    [12]王忠华,舒庆尧等.Bt杀虫基因与Bt转基因抗虫植物研究进展[J].植物学通报,1999,16(1):51~58。
    [13]E. SCHNEPF, N. CRICKMORE. Bacillus thuringiensis and Its Pesticidal Crystal Proteins[J]. MICROBIOLOGY, 1998, 62(3):775~806
    [14]林良斌,官春云.Bt毒蛋白基因的研究进展[J].湖南农大学学报,1997,23(4):389-396。
    [15]KL Brown, and HR Whiteley. Molecular characterization of two novel crystal protein genes from Bacillus thuringiensis subsp. Thompsoni[J] J. Bacteriol. 1992, 174(2):549-557
    [16]崔洪志,郭三堆.B.t毒蛋白抗虫植物基因工程研究院[J].农业生物技术学报,1998,6(2):166-172。
    [17]戴莲韵,王学聘.苏云金芽孢杆菌研究进展[M].北京:科学出版社[M],1997:1~24。
    [18]HERMANH FTE, H. R. WHITELY. Insecticidal Crystal Protein of Bacillus thringiensis[J]. MICROBIOLOGY, 1989, 53(2):242~255.
    [19]鲁松清,孙明等.苏云金芽孢杆菌杀虫晶体蛋白基因的分类[J].生物工程进展,1998,18(5),57~62。
    [20]Crickmore, N., D. R. Zeigler, J. Feitelson, E. Schnepf, B. Lambert, D. Lereclus, J. Baum and D. H. Dean. In: Program and Abstracts of the 28th Annual Meeting of the Society for Invertebrate Pathology[J]. Society for Invertebrate Pathology, 1995, 62(3):14-19
    [21]Sankaranarayanan, R., K. Sekar, R. Banerjee, V. Sharma, A. Surolia, andM. Vijayan. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a b-prism fold[J]. Nat. Struct. Biol. 1996, 3:596-603.
    [22]Shimizu, T., and K. Morikawa. The b-prism: a new folding motif[J]. Trends Biochem. Sci. 1996, 21:3-6
    [23]Li, J., J. Carroll, and D. J. Ellar. Crystal structure of insecticidal d-endotoxin from Bacillus thuringiensis at 2.5 resolution[J]. Nature1991, 353:815-821.
    [24]Grochulski, P., L. Masson, S. Borisova, M. Pusztai-Carey, J. -L. Schwartz, R. Brousseau, and M. Cygler. Bacillus thuringiensis CryIA(a) insecticidal toxin: crystal structure and channel formation[J]. Mol. Biol. 1995, 254:447-464.
    [25]Li, J., P. A. Koni, and D. J. Ellar. Structure of the mosquitocidal d-endotoxin CytB from
    
    Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation[J]. Mol Biol. 1996, 257:129-152
    [26] Lereclus, D., C. Bourgouin, M. -M. Lecadet, A. Klier, and G. Rapoport. Role, structure, and molecular organization of the genes coding forparasporal d-endotoxins of Bacillus thuringiensis. In I. Smith, R. A. Slepecky, and P. Setlow (ed.), Regulation of procaryotic development: structural and functional analysis of bacterial sporulation and germination[J]. American Society for Microbiology, 1989, 12:15-19
    [27] Yoshisue, H., T. Fukada, K. -I. Yoshida, K. Sen, S. -I. Kurosawa, H. Sakai, Transcriptional regulation of Bacillus thuringiensis, subsp, israelensis mosquito larvicidal crystal protein gene cryIVA[J]. Bacteriol, 1993, 175:2750-2753
    [28] Chestukhina, G. G., L. I. Kostina, A. L. Mikhailova, S. A. Tyurin, F. S. Klepikova, and V. M. Stepanov. The main features of Bacillus thuringiensis delta-endotoxin molecular structure[J]. Arch. Microbiol. 1982, 132:159-162
    [29] Choma, C. T., W. K. Surewicz, P. R. Carey, M. Pozsgay, and H. Kaplan. Secondary structure of the entomocidal toxin from Bacillus thuringiensis subsp, kurstaki HD-73. [J]. Protein Chem. 1990, 9:87-94.
    [30] Lecadct, M. -M., and R. Dedonder. Enzymatic hydrolysis of the crystals of Bacillus thuringiensis by the proteases of Pieris brassicae. I. Preparation and fractionation of the lysates[J]. Invertebr. Pathol. 1967, 9:310-321
    [31] Tojo, A., and K. Aizawa. Dissolution and degradation of Bacillus thuringiensis d-endotoxin by gut juice protease of the silkworm Bombyx mori[J]. Appl. Environ. Microbiol. 1983. 45:576-580.
    [32] Milne, R., and H. Kaplan. Purification and characterization of a trypsin-like digestive enzyme from spruce budworm (Choristoneura fumiferana) responsible for the activation of d-cndotoxin from Bacillus thuringiensis[J]. Insect Biochem. Mol. Biol. 1993. 23:663-673.
    [33] Yizhi Liang, Smita S. Patel. Irreversible Binding Kinetics of Bacillus thuringiensis CryIA δ-Endotoxins to Gypsy Moth Brush Border Membrane Vesicles Is Directly Correlated to Toxicity[J]. The Journal of Biology. Chemistry, 1996, 270(42):24719~24724.
    [34] Hofmann, C., and P. Lu thy. Binding and activity of Bacillus thuringiensis delta-cndotoxin to invertebrate cells[J]. Arch. Microbiol. 1986, 146:7-11.
    [35] Van Rie, J., S. Jansens, H. Ho fte, D. Degheele, and H. Van Mellaert. Specificity of Bacillus thuringiensis d-endotoxin: importance of specific receptors on the brush border membrane of the mid-gut of target insects[J]. Eur. J. Biochem. 1989, 186:239-247.
    [36] A. S. MANOJ KUMAR, A. I. ARONSON. Analysis of Mutations in the Pore-Forming Region Essential for Insecticidal Activity of a Bacillus thuringiensis d-Endotoxin[J]. Journal of Bacteriology, 181(19):6103~6107.
    [37] Luke Masson, Bruce E. Tabashnik. Helix 4 of the Bacillus thuringiensis Cry1Aa Toxin Lines the Lumen of the Ion Channel[J]. Applied and Environmental. Microbiology, 1999, 274(45):31996~32000.
    [38] Doron Gerber, Yechiel Shai. Insertion and Organization within Membranes of the d-Endotoxin Pore-forming Domain, Helix 4-Loop-Helix 5, and Inhibition of Its Activity by a Mutant Helix 4 Peptide[J]. Applied and Environmental. Microbiology, 2000, 275(31):23602~23607.
    [39] Xuc Jun Chen, April Curtiss. Mutations in Domain I of Bacillus thuringiensis δ-Endotoxin
    
    CryIAb Reduce thc Irreversible Binding of Toxin to Manduca Sexta Brush Border Membrane Vesicles[J]. The Journal of Biology. Chemistry, 1995, 270(11):6412~6419.
    [40] Phizicky, E. M., and S. Fields. Protein-protein interactions: methods for detection and analysis[J]. Microbiol. Rev. 1995, 59:94-123.
    [41] Francis Rajamohan, Syed-Rehan A. Hussain. Mutations at Domain Ⅱ, Loop 3, of Bacillus thuringiensis CryIAa and CryIAb d-Endotoxins Suggest Loop 3 Is Involved in Initial Binding to Lepidopteran Midguts[J]. The Journal of Biology. Chemistry, 1996, 271(41):25220~25226.
    [42] FRANCIS RAJAMOHAN, EDWIN ALCANTARA. Single Amino Acid Changes in Domain Ⅱof Bacillus thuringiensis CryIAb d-Endotoxin Affect Irreversible Binding to Manduca Sexta Midgut Membrane Vesicles[J]. JOURNAL OF BACTERIOLOGY, 1995, 177(9):2276~2282.
    [43] Ge, A. Z., N. I. Shivarova, and D. H. Dean. Location of the Bombyx mori specificity domain on a Bacillus thuringiensis d-endotoxin protein[J]. Proc. Natl. Acad. Sci., 1989, 86:4037-4041.
    [44] Rajamohan, F., M. K. Lee, and D. H. Dean. Bacillus thuringiensis insecticidal proteins: molecular mode of action[J]. Progress in Nucleic Acid Research and Molecular Biology, 1998, 60:1011-1017
    [45] JUAN LUIS JURAT-FUENTES1, MICHAEL J. ADANG. Importance of Crvl d-Endotoxin Domain Ⅱ Loops for Binding Specificity in Heliothis virescens (L.)[J]. Applied and Environmental. Microbiology, 2001, 67(1):323~329.
    [46] Francis Rajamohan, Jeffrey A. Cotrill. Role of Domain Ⅱ, Loop 2 Residucs of Bacillus thuringiensis CryIAb d-Endotoxin in Reversible and Irreversible Binding to Manduca sexta and Heliothis virescens[J]. The Journal of Biology. Chemistry, 1996, 271(5):2390~2396.
    [47] Sarjeet S. Gill, Elizabeth A. Cowles. Identification, Isolation, and Cloning of a Bacillus thuringiensis CryIAc Toxin-binding Protein from the Midgut of the Lepidopteran Insect Heliothis virescens[J]. Applied and Environmental. Microbiology, 1995, 270(45):27277~27282.
    [48] Schnepf, H. E., K. Tomczak, J. P. Ortega, and H. R. Whiteley. Specificity-determining regions of a lepidopteran-specific insecticidal protein produced by Bacillus thuringiensis[J]. Biol. Chem. 1990. 265:20923-20930.
    [49] Lee, M. K., B. A. Young, and D. H. Dean. Domain Ⅲ exchanges of Bacillus thuringiensis CryIA toxins affect binding to different gypsy moth midgul receptors[J]. Biochem. Biophys. Res. Commun. 1995, 216:306-312.
    [50] H Lu, F Rajamohan, and DH Dean. Identification of amino acid residues of Bacillus thuringiensis delta- endotoxin CryIAa associated with membrane binding and toxicity to Bombyx mori [J]. Bacteriol. 1994, 176(17):5554-5559.
    [51] H Wabiko, and E Yasuda. Bacillus thuringiensis protoxin: location of toxic border and requirement of non-toxic domain for high-level in vivo production of active toxin[J]. Microbiology 1995, 141(5):629-639
    [52] CCILE RANG, VINCENTVACHON. Interaction between Functional Domains of Bacillus thuringiensis Insecticidal Crystal Proteins[J]. Applied and Environmental. Microbiology, 1999, 65(7):2918~2925.
    [53] ALEJANDRA BRAVO. Phylogenetic Relationships of Bacillus thuringiensis d-Endotoxin Family Proteins and Their Functional Domains[J]. JOURNAL OF BACTERIOLOGY, 1997. 179(9):2793~2801.
    [54] HYUN-WOO PARK, DENNIS K. BIDESHI. Molecular Genetic Manipulation of Truncated CrylC Protein Synthesis in Bacillus thuringiensis To Improve Stability and Yield[J]. Applied and
    
    Environmental. Microbiology, 2000, 66(10):4449~4455.
    [55] Adang, M. J., M. J. Staver, T. A. Rocheleau, J. Leighton, R. F. Barker, and D. V. Thompson. Characterized full-length and truncated plasmid clones of the crystal protein of Bacillus thuringiensis subsp, kurstaki HD-73 and their toxicity to Manduca Sexta[J]. Gene 1985, 36:289-300.
    [56] Agaisse, H., and D. Lereclus. STAB-SD: a Shine-Dalgarno sequence in the 59 untranslated region is a determinant of mRNA stability[J]. Mol. Microbiol. 1996. 20:633-643.
    [57] Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4[J]. Nature. 1970, 227:680-685.
    [58] 罗志军.Bt毒蛋白基因工程研究进展[J].重庆师专学报,2000,19(2):89~91。
    [59] 石春林,朱祯等.高效Bt抗虫基因表达结构的构建及其在转基因烟草中表达行为的研究[J].生物工程学报,1999,15(4):422~427。
    [60] 汤慕瑾,余健秀等.利用突变技术研究苏云金杆菌杀虫晶体蛋白的进展[J].生物工程进展,2001,21(4):42~51。
    [61] ARTHUR I. ARONSON, DONG WU. Mutagenesis of Specificity and Toxicity Regions of a Bacillus thuringiensis Protoxin Gene[J]. The Journal of Biology. Chemistry, 1995, 177(14):4059~4065.
    [62] S J Wu, C N Koller, D L Miller, L S Bauer, and D H Dean. Enhanced toxicity of Bacillus thuringiensis Cry3A delta-endotoxin in coleopterans by mutagenesis in a receptor binding loop[J]. FEBS Lett, 2000, 473(2): 227-232.
    [63] Almond, B. D., and D. H. Dean. Suppression of protein structure destabilizing mutations in Bacillus thuringiensis d-endotoxins by second site mutations[J]. Biochemistry 1993, 32:1040-1046.
    [64] Wu, D., and A. I. Aronson. Localized mutagenesis defines regions of the Bacillus thuringiensis d-endotoxin involved in toxicity and specificity[J]. Biol. Chem. 1992, 267:2311-2317.
    [65] 张宝红.害虫对转Bt抗虫棉的抗性及对策[J].棉花学报,2000,12(3):164~168。
    [66] 余健秀,余榕捷等.昆虫对苏云金杆菌抗性的研究进展(Ⅰ):抗性的特点及其机制[J],昆虫天敌,1997,19(4):173~179。
    [67] 罗科,张贵文等.苏云金杆菌杀虫蛋白质和基因的结构、特点、分化及调控的研究进展(综述)[J].农业生物技术学报,1995,3(3):15~24。
    [68] BRIAN A. FEDERICI, LEAH S. BAUER. CytlAa Protein of Bacillus thuringiensis Is Toxic to the Cottonwood Leaf Beetle, Chrysomela scripta, and Suppresses High Levels of Resistance to Cry3Aa[J]. Applied and Environmental. Microbiology, 1998, 64(11):4368~4371.
    [69] JIAN-ZHOU ZHAO, HILDA L. COLLINS. Development and Characterization of Diamondback Moth Resistance to Transgenic Broccoli Expressing High Levels of Cry1C[J]. Applied and Environmental. Microbiology, 2000, 66(9):3784~3789.
    [70] ALI H. SAYYED, ROBERT HAWARD. Genetic and Biochemical Approach for Characterization of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Field Population of the Diamondback Moth, Plutella xylostella[J]. Applied and Environmental. Microbiology, 2000, 66(4):1509~1516.
    [71] R Iannacone, P D Grieco, and F Cellini. Specific sequence modifications of a cry3B endotoxin gene result in high levels of expression and insect resistance[J]. Plant Mol Biol, 1997; 34(3):485-496.
    
    
    [72] T Malvar, C Gawron-Burke, and JA Baum. Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homology, bypasses early Spo mutations that result in CryⅢA overproduction[J]. Bacteriol. 1994, 176(15): 4742-4749.
    [73] HYUN-WOO PARK, BAOXUE GE. Optimization of Cry3A Yields in Bacillus thuringiensis by Use of Sporulation-Dependent Promoters in Combination with the STAB-SD mRNA Sequence[J]. Applied and Environmental. Microbiology, 1998, 64(10): 3932~3938.
    [74] MIRA SEDLAK, THOMAS WALTER. Regulation by Overlapping Promoters of the Rate of Synthesis and Deposition into Crystalline Inclusions of Bacillus thuringiensis d-Endotoxins[J]. JOURNAL OF BACTERIOLOGY, 2000, 182(3): 734~741.
    [75] Y Z Haffani, S Overney, S Yelle, G Bellemare, and F J Belzile. Premature polyadenylation contributes to the poor expression of the Bacillus thuringiensis cry3Cal gene in transgenic potato plants[J]. Mol Gen Genet, 2000, 264(1-2): 82-88.
    [76] 俞志华.抗虫基因的抗虫原理及其应用现状和展望[J].生物学通报,2000,35(7):8~10。
    [77] 杜孟芳.杀光肩星天牛 Anoplophra glabripennis (Motsch) Bt 菌株的筛选及其杀虫基因的克隆[D].郑州:河南农业大学,2002。
    [78] Beegle, C. C., and T. Yamamoto. History of Bacillus thuringiensis Berliner research and development[J]. Can. Entomol. 1992, 124: 587-616.
    [79] Ehud Gazit, Yechiel Shai. The Assembly and Organization of the α5 and α7 Helices from the Pore-forming Domain of Bacillus thuringiensis δ-Endotoxin[J]. The Journal of Biological. chemistry, 1995, 270(6): 2671-2678.
    [80] FRANCIS RAJAMOHAN, EDWIN ALCANTARA, MI K. LEE, etc. Single Amino Acid Changes in Domain Ⅱ of Bacillus thuringiensis CryⅠAb d-Endotoxin Affect Irreversible Binding to Manduca Sexta Midgut Membrane Vesicles[J]. JOURNAL OF BACTERIOLOGY, 1995, 177(9): 2276-2282.
    [81] JUAN LUIS JURAT FUENTES, MICHAEL J. ADANG. Importance of Cry 1 d-Endotoxin Domain Ⅱ Loops for Binding Specificity in Heliothis virescens (L.)[J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2001, 67(1):323-329.
    [82] Isabel Gomez, Juan Miranda-Rios, Enrique Rudino-Pin, etc. Hydropathic Complementarity Determines Interaction of Epitope 869HITDTNNK876 in Manduca sexta Bt-R1 Receptor with Loop 2 of Domain Ⅱ of Bacillus thuringiensis Cry1A Toxins[J]. THE JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277(33):30137-30143.
    [83] 张杰.对鞘翅目害虫高毒力 Btcry基因分离克隆和工程菌的构建[D].北京:中国农业科学院,2000.
    [84] 姚江.高效广谱苏云金芽孢杆菌Ly30株的分子生物学研究[D].北京:中国农业科学院,2002.
    [85] Willbur HC, Gowri G. Codon usage in higher plants, green algae, and cyanobacteria[J]. Plant Physiol., 1990, 92:1-11.
    [86] Ingelbrecht IL, Herman LM, Dekeyser RA, et al. Different 3' end regions strongly influence the level of gene expression in plant cells[J]. The Plant Cell, 1989, 11:671-680.
    [87] Gallie DR, Lucas WJ, Walbot V. Visualizing mRNA expression in plant protoplasts: Factors influencing efficient mRNA uptake and translation[J]. The Plant Cell, 1989, 1:301-311.
    [88] Kozak M. Compilation and analysis of sequence upstream from translational site in eukaryotie mRNAs[J]. Nuceie Acids Res., 1984, 12(2):857-872.
    [89] Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates
    
    translation by cukaryotic ribosomcs[J]. Ccll, 1986. 44:283-292.
    [90] Kozak M. The scanning model for translation: an updatc[J]. Cell Biol., 1989, 108(2):229-241.
    [91] Chen D, Ye H, Li G. Expression of a chimeric farncsyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation[J]. Plant Sci. 2000, 29.155(2): 179-185.
    [92] Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y. Genetic Transformation of Wheat Mediated by Agrobacterium tumefaciens[J]. Plant Physiol. 1997, 115(3):971-980.
    [93] Zhang P, Jaynes JM, Potrykus I, Gruissem W, Puonti-Kaerlas J. Transfer and expression of an artificial storage protein (ASP1) gene in cassava (Manihot esculenta Crantz)[J]. Transgenic Res. 2003, 12(2):243-250.
    [94] Sharma KK, Anjaiah V V. An efficient method for the production of transgenic plants of peanut (Arachis hypogaea L.) through Agrobacterium tumefaciens-mediated genetic transformation]J]. Plant Sci. 2000, 159(1):7-19.
    [95] Le VQ, Belles-Isles J, Dusabenyagasani M, Tremblay FM. An improved procedure for production of white spruce (Picea glauca) transgenic plants using Agrobacterium tumefaciens[J]. Exp Bot. 2001, 52(364):2089-2095.
    [96] Susan P. O'Brien. Pistil Structure and Pollen Tube Pathways in Leptospermum myrsinoidcs and L. continentale (Myrtaceae)[J]. Ann. Bot., 1994, 73:225-230.
    [97] Van Quy Le, Julie Belles Isles, Mathieu Dusabenyagasani. An improved procedure for production of white spruce(Picea glauca) transgenic plants using Agrobacterium tumefaciens[J]. Journal of Experimental Botany, 2001, 52(364):2089-2095.
    [98] Hannele Tuominen, Folke Sitbon2, Charlotta Jacobsson, Coran Sandberg, Olof Olsson, and Bjorn Sundberg. Altered Growth and Wood Characteristics in Transgenic, Hybrid Aspen Expressing Agrobacferium fumefa ciens T-DNA, Indoleacetic Acid-Biosynthetic Cenes[J]. Plant Physiol. 1995, 109:1179-1189.
    [99] 白永延,唐惕等.植物遗传操作技术[M].北京:科学出版社,1988,211
    [100] Mu HM, Liu SJ, Zhou WJ, Wen YX, Zhang WJ, Wei RX. Transformation of wheat with insecticide gene of arrowhead proteinase inhibitor by pollen tube pathway and analysis of transgenic plants[J]. Chuan Hsueh Pao 1999; 26(6):634-42
    [101] Chen WS, Chiu CC, Liu HY, Lee TL, Cheng JT, Lin CC, Wu YJ, Chang HY. Gene transfer via pollen-tube pathway for anti-fusarium wilt in watermelon]J]. Biochem Mol Biol Int 1998 12, 46(6): 1201-1209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700