用户名: 密码: 验证码:
诺氟沙星的土壤环境行为及生态效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗生素被广泛的用于治疗、预防人类和动物的疾病,但是抗生素进入动物或人体体内,并不被完全吸收,而是以原药或代谢产物的形式排到体外,进入土壤、水体等环境中。而后通过一系列的迁移和转化过程,在环境中广泛分布,进而对环境产生一定的影响。同时抗生素还可以与环境中已有污染物共同作用形成复合污染,对生态环境造成影响。铜是一种重要的工业原料和常用的饲料添加剂,它通过有机肥和污泥农用最终分布在农田土壤中。而且,铜离子能够与抗生素类药物分子中的功能基团结合形成络合物。因此,研究抗生素的环境行为和效应及重金属铜对其的影响有重要的意义。本研究选取诺氟沙星(Norfloxacin, Nor)为代表性污染物,利用HPLC、Biolog、 PCR-DGGE等现代检测和分析技术,研究了抗生素在典型农田土壤环境中的吸附、降解行为,及药物单独和与重金属复合污染条件下,土壤酶活性、土壤微生物群落结构的变化。结合对诺氟沙星植物毒性的研究,探讨抗生素的环境毒理学特性和潜在的环境风险。主要研究结果如下:
     诺氟沙星在黑土、潮土和红壤中的吸附特性存在差异。随溶液中诺氟沙星浓度的增加,诺氟沙星在三种土壤和相应的去有机质土壤中的吸附量逐渐增加,但是去有机质土壤中的吸附量要高于相应的母体土壤,这说明土壤有机质的存在降低了诺氟沙星在土壤中的吸附量。不同模型对试验数据拟合结果表明,Freundlich方程能够对诺氟沙星在六种土壤(三种原状土壤,三种去有机质土壤)上的吸附特性进行较好的拟合,而Langmuir方程只能拟合在黑土,红壤及它们对应的去有机质土壤中的结果,完全不能用于对潮土的研究结果。该结果说明Freundlich方程比Langmuir方程更适用于土壤中诺氟沙星在吸附特性的研究。在本研究条件下,土壤溶液pH值对诺氟沙星吸附有较大影响,在黑土、潮土和红壤三种供试土壤中最大的吸附量分别出现各自土壤溶液pH为6.1—6.9,6.6—7.4和5.7—6.0的区间内,而且红壤中的KD和Koc值均高于其它两种土壤的。铜离子对诺氟沙星在土壤中的吸附表现出一定的浓度效应,随着添加铜离子浓度的增加,三种土壤中诺氟沙星吸附量、KD和Koc值均表现为先升高,在100mg·L-1达到峰值,而后下降的变化趋势。
     随着培养时间的增加,无论是在灭菌土壤还是在非灭菌土壤中,诺氟沙星残留浓度均降低,但是其降解特性存在土壤差异。用一级动力学方程拟合结果很好的描述了土壤中诺氟沙星的降解过程,所得结果表明,在本实验条件下,潮土中降解较快,其次为红壤,黑土中降解最慢。
     在整个培养期间,污染物对土壤酶活性的影响与污染物浓度和处理时间相关,而且土壤之间存在差异。添加污染物后,土壤过氧化氢酶活性无显著变化,而对土壤脲酶、磷酸酶、蔗糖酶活性则产生显著影响。土壤中添加铜后,土壤酶活性受到抑制,特别是在培养后期表现出明显的浓度效应。就土壤磷酸酶而言,Norl处理对黑土中磷酸酶活性表现为激活作用,尤其是在培养28天后,该处理酶活比对照处理酶活增加了47%,而在潮土中与对照处理相比,Norl处理在培养前14天,土壤磷酸酶活性升高,而在培养28天后则对土壤酶活性表现为抑制作用。复合污染显著的抑制了黑土土壤磷酸酶活性,然而在潮土中,仅在培养前28天,复合污染处理对磷酸酶活性的影响显著高于污染物单独处理的。对于土壤脲酶和蔗糖酶的影响也表现出了相同的土壤差异的趋势。
     诺氟沙星单独及与铜复合处理均影响土壤微生物群落代谢功能多样性,且与污染物浓度和处理时间有很大的关系。AWCD值变化与处理强度和处理时间有关,而且与处理时间关系更加密切,污染处理28天后,各处理间差异达最大,Nor1O+Cu100显著低于其它处理。诺氟沙星单独处理对土壤微生物群落多样性和均一性、优势种微生物的影响要比复合污染处理的显著。对于不同碳源的利用,也表现出处理和时间的差异。在整个处理过程中,各处理土壤微生物对聚合物类底物的利用强度均比对其它类型高。在暴露处理7天和28天后,Nor10+Cu50, Nor10+Cu100两个复合污染处理土壤微生物对胺类和氨基酸类培养基利用强度较高;另外,暴露处理14和28天后,土壤微生物则对氨基酸类,醣类和羧酸类培养基利用强度也较高。聚类分析结果也表明不同暴露时间的处理之间碳源利用存在一定的差异,暴露3天后的处理被归为同一簇,而暴露28天后的处理则在不同簇出现。
     基于16S rDNA PCR-DGGE方法的研究结果表明,诺氟沙星单独或与铜复合污染均对土壤微生物遗传多样性产生影响。污染物处理28天,不同浓度诺氟沙星单独污染和与铜复合污染对土壤微生物区系基因条带的影响有一定的差别。与对照相比,诺氟沙星单独污染对土壤DNA条带数影响较小,诺氟沙星与铜复合污染则显著减少了DNA条带数,尤其是在较高铜浓度的处理中,但是聚类分析结果表明Nor10+Cu100处理与对照被归为同一簇。污染物处理56天后,与对照相比,诺氟沙星单独处理和Nor10+Cu50处理土壤微生物条带增多,Nor10+Cu100处理样品条带数虽少于对照处理,但是却多于同处理第28天时的样品。比较添加污染物处理不同时期与对照处理条带的相似性可以发现,所有处理在处理56天时的相似性均高于处理28天时的。这些结果说明随着处理时间的增加,土壤微生物对污染物胁迫产生了一定的耐性,样品微生物种群丰富度增加,在图谱上即表现为条带数增加,相似性升高。
     诺氟沙星对小麦幼苗生长和生理过程的影响存在显著的剂量效应。在1.0mg·L-1时,诺氟沙星促进了小麦幼苗地上部和根系生长。当培养液中浓度达到10mg·L-1时,幼苗生物量和叶片叶绿素含量显著低于对照处理。小麦幼苗丙二醛含量均随着诺氟沙星处理水平的升高而明显增加,而且根系中MDA含量显著地高于地上部。诺氟沙星胁迫同样使小麦幼苗叶片和根系超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)和抗坏血酸过氧化物酶(APX)酶活性发生变化。在地上部,与对照处理相比,诺氟沙星胁迫条件下,地上部SOD酶和POD酶活性显著升高,CAT酶活性仅在10.0和20.0mg·L-1两个处理下有显著的促进作用,而APX酶活性则在1.0和5.0mg·L-1两个处理浓度下有所下降,其它添加处理酶活均显著升高。而在根系中,与对照处理相比,诺氟沙星胁迫使SOD酶活性显著降低,CAT酶活性的变化则为先降低而后升高。另外,添加诺氟沙星显著的抑制了小麦幼苗根系POD酶活,但是促进了APX酶活性。
Pharmaceutical antibiotics are widely used in human and veterinary medicine to treat and prevent infectious bacterial diseases. The pharmaceutical antibiotics are excreted in urine or faeces from the treated body, either unaltered or as metabolites, some of which are still bioactive. Entering into the environment, antibiotics are distributed in various environments through a number of physical and chemical processes, and then influenced the environmental progress. The effects of drugs on environment depend on the dose and form of antibiotics, which were decided by their behavior in environment. The behaviors of antibiotics are related to various environmental properties and pharmaceutical properties in environment. Copper, an industrial product and food additive, has been widely found in manure and sludge, and might finally enter into the agricultural environment. It can bond to some antibiotic molecules through some functional groups. Therefore, norfloxacin (Nor), a fluoroquinolone and most commonly used in animal industries worldwide, was selected in the present study to investigate the sorption and degradation behavior of norfloxacin in various soils, the effect of norfloxacin on soil enzymes, soil microbial community and wheat seedlings using HPLC, BIOLOG and PCR-DGGE. At the same time, the effect of copper on the behavior and ecotoxicity of norfloxacin were studied in the present study. The main results were presented as follows:
     Sorption experiments were studied by the batch equibibrium method and sorption of norfloxacin was different in different soils. With increasing of norfloxacin concentrations, sorption amount of norfloxacin increased in both the bulk soils and their SOM-removed soils, but the sorption capacity in SOM-removed soils was higher than that of their corresponding bulk soils, indicating that the process of norfloxacin sorption in soil was influenced by the soil properties including SOM. The sorption data in bulk soils and SOM-removed soils were fitted to Freundlich and Langmuir models. The correlation coefficients suggested that the experimental data fitted better to Freundlich equation than to Langmuir equation. Furthermore, the data from soil F and SOM-removed F could not be described by Langmuir equation. The norfloxacin sorption amount decreased in soil B and soil F, whereas it increased in soil R as solution pH increased. The maximum KD and KOC were achieved in soil R when the equilibrium solution pH was6. And the Nor sorption was also influenced by the exogenous Cu2+ions, which depended on the soil types and Cu2+concentrations. With increasing of Cu2+concentrations in solution, generally, sorption amount, KD and Koc for norfloxacin in soils increased and were up to a peak at100mg·L-1Cu2+, and then the sorption amount decreased regardless of norfloxacin levels.
     Results from the experiments with the degradation of norfloxacin suggested that with increasing of incubation time, the residue norfloxacin concentrations were decreased in all samples, while differences were found among soil types. The norfloxacin degradation data were fitted to the first dynamic equation, showing that the norfloxacin degradation was in the order of soil F> soil R> soil B.
     No significant differences in hydrogen peroxidase activity were found among soil samples treated with pollutants, however the activities of urease, phosphatase and sucrase were significantly influenced compared with the control. The effects of pollutants on activities of soil enzymes depended on the concentration of pollutant and exposure time, which also based on the soil types. The activities of soil enzymes were inhibited by adding copper, especially in the later incubation time. In Norl treatments, activities of soil phosphatase increased in every treatment in both soils except of the treatment exposure28-day in fluvo-aquic soil compared with respective control. After treating28-day, the activity of soil phosphatase was inhibited in fluvo-aquic soil, while it increased47%in black soil. The effects of cocontamination of norfloxacin and copper on soil enzymes were similar to the effect of norfloxacin alone, but the effect of cocontamination on soil enzymes was stronger and time-dependent.
     Biolog was employed to assess the effect of norfloxacin alone and cocotamination with copper on soil microbial functional community. With increasing of exposure time, the differences in average well colour development (AWCD) values were enlarged among treatments, and the AWCD value in28-day Nor10+Cu100treatment was significantly lower than that in any other treatment. Comparing diversity variation of soil microbial communities under different treatments revealed that the richness and evenness of microbial communities in norfloxacin alone treatments were different from that in co-contamination treatments. Higher percent of polymers was utilized by soil microbe in the whole incubation period compared with other substrates, and more amino acids, carbohydrates and carboxylic substrates were utilized in the soil treated with pollutant after14and28days.Cluster analyses also indicated that samples from different treatments could be distinguished from each other, and that exposure3-day treatments sorted into the same cluster, while28-day treatments distributed in different cluster.
     The polymerase chain reaction (PCR) based on16S rDNA, followed by denaturing gradient gel electrophoresis (DGGE), was used to describe the effect of norfloxacin alone and cocotamination with copper on soil microbial community. Microbial diversity in soil treated with pollutants changed with time. At28day, no significant changes were found in the number of bands in soil samples treated with norfloxacin alone. Diversity of microorganisms in soil obviously decreased under the stress of norfloxacin and copper compared to control, but the Nor10+Cu100were sorted into the same clusters. At56day, the number of bands increased in norfloxacin alone treatments and Nor10+Cu50compared to control.The number of bands in Nor10+Cu100was lower than that in control, while it was higher than that in the samples treated with Nor10+Cu100for28day. Comparison of the bacterial DGGE profiles among treatments revealed that the similarity of bacterial communities in the56-day treatments was significantly higher than that in the28-day treatments. The changes in microbial community function and composition in response to the pollutants could be attributed to increased tolerance of soil microbe to pollutants (norfloxacin, norfloxacin+copper) in soil system.
     The wheat seedlings growth and chlorophyll content were promoted by the treatment with norfloxacin at the rate of1.0mg·L-1, while they were significantly reduced at the rate of10mg·L-1compared with the control. The content of MDA was enhanced under norfloxacin stress and, was significantly higher in roots than in shoots. The activities of superoxide dismutase (SOD), catalase (CAT), guaiacol peroxidase (POD) and ascorbate peroxidase (APX) in wheat seedlings were changed by the treatment with norfloxacin. In shoots, compared with the control treatment, the activities of SOD and POD significantly increased, but the activities of CAT and APX significantly increased only at some norfloxacin concentration in shoots. In roots, the activities of SOD and POD obviously decreased, while the activity of APX remarkably increased by adding norfloxacin.
引文
1.曹慧,孙辉,杨浩等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报.2003,9:105-109.
    2.陈海刚,李兆利,徐韵等.兽药添加剂喹乙醇的生态毒理学效应研究[J].农业环境科学学报.2006,25:885-889.
    3.陈志宇,苏继影,栾冬梅.畜禽粪便堆肥技术研究进展[J].当代畜牧,2004,10:41-43.
    4.刁晓平,史光华.环境污染物对土壤生态系统的影响及其评价方法[J].海南大学学报自然科学版.2004,22(4):360-364.
    5.刁晓平,孙英健,孙振均等.安普霉素对不同土壤中微生物活动的影响[J].生态环境.2004,13:565-568.
    6.刁晓平,孙振均,沈建忠.兽药的生态毒理及其对环境影响的研究进展[J].应用生态学报.2004,15:321-325.
    7.段丽丽.磺胺二甲嘧啶及其主要代谢产物在砂质壤土中转归的研究[J].硕士学位论文,中国农业大学,2005.
    8.宫璇,李培军,张海荣等.菲对土壤酶活性的影响[J].农业环境科学学报,2004a,23(5):981-984.
    9.宫璇,李培军,张海荣等.土壤的芘污染与土壤酶活性[J].农村生态环境,2004b,20(3):53-55,59.
    10.关菘荫.土壤酶活测定方法[M].北京,中国农业出版社,1987.
    11.韩云晓.喹诺酮类药物金属配合物的荧光光谱特性的研究及分析应用[J].硕士学位论文,山东大学,2004.
    12.贺全山,杨昌云,陈维中等.诺氟沙星金属盐的合成及体外抑菌实验[J].药学实践杂志.2007,25(5):303-306.
    13.胡冠九,王冰,孙成,高效液相色谱法测定环境水样中5种四环素类抗生素残留[J].环境化学,2007,26,(1),106—107.
    14.胡枭,樊耀波,王敏健.影响有机污染物在土壤中的迁移、转化行为的因素[J].环境科学进展.1999,7(5):14-22.
    15.焦少俊.四环素在环境中的行为及生态效应研究[D].博士学位论文.南京大学,2008.
    16.可欣,颜丽,朱宁等.双氰胺对土壤酶活性的影响[J].土壤通报.2003,34(4):346-348.
    17.孔维栋,朱永官,傅伯杰等.农业土壤微生物基因与群落多样性研究进展[J].生态学报.2004,24(12):2894-2900.
    18.孔维栋,朱永官.抗生素类兽药对植物和土壤微生物的生态毒理学效应研究进展[J].生态毒理 学报,2007,2:1—9.
    19.孔维栋.土霉素在土壤-植物系统中的行为及对土壤微生物群落的影响[D].博士学位论文,中国科学院,2005.
    20.李明,王根轩.干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响[J].生态学报,2002,22(4):503-507.
    21.李翠枝,刘艳辉,郭军.抗生素和其他兽药残留的危害[J].乳品工业,2004,32(10),17-22.
    22.李德培,抗菌促长药物耐药和残留的危害和预防[J].兽药与饲料添加剂,1999,4(3),19-24.
    23.李俊锁,邱月明,王超.兽药残留分析[M].上海:上海科学技术出版社,2002.
    24.李银生,曾振灵,陈杖榴等.洛克沙砷的作用、毒性及环境行为[J].上海畜牧兽医通讯.2003,(1):10-12.
    25.李兆君,姚志鹏,张杰等.兽用抗生素在土壤环境内的行为及其生态毒理效应研究进展[J].生态毒理学报,2008,3:15-20.
    26.梁增辉.喹诺酮类药物多残留的高效液相色谱检测方法及其在鳗鱼体内的药代动力学研究[J].硕士学位论文,中国海洋大学,2006.
    27.刘明亮编译.喹诺酮类抗菌药在不同介质中的理化性质[J].国外医药抗生素分册.2006,27(1):22-34,39.
    28.刘秀红,李健,王群.诺氟沙星在芽鲆体内的残留及消除规律研究[J].海洋水产研究.2003,24(4):13-18.
    29.刘有胜,杨朝晖,曾光明等.PCR-DGGE技术对城市餐厨垃圾堆肥中细菌种群结构分析[J].环境科学学报,2007,27(7):1151—1156.
    30.卢彤岩,杨雨辉,徐连伟.达氟沙星对施氏鲟的急性毒性及组织残留检测[J].中国水产科学,2004,11(6):542-548.
    31.鲁如坤.土壤农业化学分析方法.农业科学出版社.北京,2000.
    32.马驿,陈杖榴.兽药对生态环境影响的研究进展[J].中国兽医科技.2005,35(9):746-751.
    33.马万里.土壤微生物多样性研究的新方法[J].土壤学报.2004,41(1):103—107.
    34.孟凡婷,陆利霞,熊晓辉.毛细管电泳法分析食品中残留抗生素的研究进展[J].食品科技,2007,32(11),178-181.
    35.聂湘平,鹿金雁,李潇等.诺氟沙星(Norfloxacin)对蛋白核小球藻(Chlorella pyrenoidosa)生长及抗氧化酶活性的影响[J].生态毒理学报.2007,2(3):327-332.
    36.邱莉萍,刘军,王益权等.土壤酶活性与土壤肥力的关系研究[J].植物营养与肥料学报.2004,10:277-280.
    37.曲甍甍,孙立伟,陈鋆等.兽药添加剂阿散酸和土霉素的毒理学研究[J].农业环境科学学报.2004,23(2):240-242.
    38.曲甍甍,徐韵,陈海刚等.三种兽药添加剂对土壤赤子爱胜蚓的毒理学研究[J].应用生态学报.2005,16(6):1108-1111.
    39.佘小平,贺军民,张建等.水杨酸对盐胁迫下黄瓜幼苗生长抑制的缓解效应[J].干旱区资源与环境.2000,14(4):76-80.
    40.沈国清,陆贻通,洪静波.重金属和多环芳烃复合污染对土壤酶活性的影响及定量表征[J].应用与环境生物学报.2005,11(4):479-482.
    41.史长青.重金属污染对水稻土酶活性的影响[J].土壤通报.1995,26(1):34-35.
    42.孙铁珩,李培军,周启星.土壤污染形成机理与修复技术[J].北京:科学出版社.2005:574.
    43.孙英健,刁晓平,沈建忠.阿维菌素Bla对土壤微生物和蚯蚓的影响[J].应用生态学报.2005,16(11):2140-2143.
    44.孙永学,陈杖榴,陈展飞.洛克沙胂对鲫鱼暴露胁迫的毒性效应[J].华南农业大学学报.2004,25(3):101-104.
    45.谭峰.四环素和喹诺酮类药物分析方法研究[J].硕士学位论文,西北大学,2001.
    46.谭兆赞,刘可星,廖宗文.土壤微生物BIOLOG分析中特征碳源的判别[J].华南农业大学学报.2006,27(4):10-13.
    47.滕应,骆永明,李振高.污染土壤的微生物多样性研究[J].土壤学报.2006,43(6):1018-1026.
    48.滕应,黄昌勇,龙健等.不同相伴阴离子对镉污染红壤微生物区系及其群落功能多样性影响[J].环境科学学报,2003,23(3):370-375.
    49.王洪媛,管华诗,江晓路.微生物生态学中分子生物学方法及T-RFLP技术研究[J].中国生物工程杂志.2004,8:42-47.
    50.王加龙,刘坚真,陈杖榴等.恩诺沙星残留对土壤微生物生物数量及群落功能多样性的影响[J].应用与环境生物学报.2005,11:86-89.
    51.王冉,刘铁铮,王恬.抗生素在环境中的转归及其生态毒性[J].生态学报,2006,26:265-270.
    52.王绍云,李雪梅.喹诺酮类药物在鱼体内的药动学及残留研究概况[J].水利渔业.2006,26(5):110-113.
    53.王秀丽.重金属复合污染对土壤环境微生物群落的影响机理研究[D].硕士学位论文,浙江大学,2002.
    54.吴银宝,汪植三,廖星俤等.恩诺沙星在鸡体中的排泄及其在鸡粪中的降解[J].畜牧兽医学报,2005,36:1069-1074.
    55.夏北成,Zhou JZ, Tiedje JM.分子生物学方法在微生物生态学中的应用[J].中山大学学报(自然科学版).1998,37(2):97-101.
    56.徐郎莱,叶茂炳.过氧化物酶活力连续记录测定法[J].南京农业大学学报,1989,12(3):82-83.
    57.徐维海,张干,邹世春等.香港维多利亚港和珠江广州河段水体中抗生素的含量特征及其 季节变化[J].环境科学,2006,27(12),2458-2462.
    58.杨春璐,孙铁珩,和文祥等.农药对土壤脲酶活性的影响[J].应用生态学报.2006,17:1354—1356.
    59.杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].2000,20(2):23—26.
    60.杨永华,姚健.分子生物学方法在微生物多样性研究中的应用[J].生物多样性.2000,8(3):337-342.
    61.姚斌,钱晓刚,于成志等.土壤微生物多样性的表征方法[J].贵州农业科学.2005,33(3):91—92.
    62.叶计朋,邹世春,张干.典型抗生素类药物在珠江三角洲水体中的污染特征[J].生态环境,2007,16(2),384-388.
    63.俞慎.红壤铜污染的物理化学行为和生物学表征[D].博士学位论文,浙江大学,2002.
    64.张劲强,董元华.阳离子强度和阳离子类型对诺氟沙星吸附的影响[J].环境科学.2007,28:2383-2388.
    65.张可煜,章力建,薛飞群等.兽药的立体污染及防治[J].中国兽医寄生虫病.2006,14:40-46.
    66.张倩茹,周启星,张惠文.乙草胺与硫酸铜对黑土微生物的复合生态影响[J].环境科学.2007,28(4):826-831.
    67.张咏梅,周国逸,吴宁.土壤酶学的研究进展.热带亚热带[J].植物学报.2004,12:83—90.
    68.赵祥伟,骆永明,滕应等.重金属复合污染农田土壤的微生物群落遗传多样性研究[J].环境科学学报,2005,25(2):186—191.
    69.赵兴青,杨柳燕,陈灿等.PCR-DGGE技术用于湖泊沉积物中微生物群落结构多样性研究[J].生态学报,2006,26(11):3610-3616.
    70.郑华,欧阳志云,方治国等.BIOLOG在土壤微生物群落功能多样性研究中的应用[J].土壤学报.2004,41(3):456-461.
    71.郑振华,周培疆,吴振斌.复合污染研究的新进展[J].应用生态学报.2001,12(3):469-473.
    72.钟文辉,蔡祖聪.土壤微生物多样性研究方法[J].应用生态学报.2004,15(5):899-904.
    73.周礼恺.土壤酶活性的总体在评价土壤肥力水平中的作用[J].土壤学报,1983,20:413-417.
    74.周启星,罗义,王美俄.抗生素的环境残留、生态毒性及抗性基因污染[J].生态毒理学报,2007,2:243—251.
    75.周启星,王美娥.土壤生态毒理学研究进展与展望[J].生态毒理学报.2006,1:1-11.
    76. Addison JB.Antibiotics in sediments and run-off waters from feedlots[J]. Residue Rev.1984, 92:1-24.
    77. Aga DS, Goldfish R, Kulshrestha P. Application of ELISA in determining the fate of tetracyclines in land-applied livestock wastes[J].Analyst 2003,128:658-662.
    78. Alder AC, McArdell CS, Golet EM, et al. Occurrence and fate of fluoroquinolone, macrolide, and sulfonamide antibiotics during wastewater treatment and in ambient waters in Switzerland. In: Daughton, C.G., Jones-Lepp, T. (Eds.), Pharmaceuticals and Personal Care Products in the Environment:Scientific and Regulatory Issues, American Chemical Society, Symposium Series, 2001,791:56-69.
    79. Alexandra Karaliota, Nikos Katsaros, et al.Neutral and cationic mononuclear copper(Ⅱ) complexes with enrofloxacin:Structure and biological activity[J]. J. Inorg. Biochem.2006,100:1378-1388.
    80. Anadon A, M artinez-LarranagaM R, Diaz M J. Pharmacokinetics and tissur residues of norfloxacin and its N-de-sethyl- and oxo-metabolites in healthy pig[J]. J. Vet. Pharmacol. Therap.1995,18 (2): 220-225.
    81. Anadon A, Martinez-Larranaga M R, Velez C. Pharmacokinetics of norfloxacin and its N-desethyl- and oxo-metabolites in broiler chickens[J]. Am. J. Vet. Res.1992,53 (11):2084-2088.
    82. Arnow LE. Clorimeteric determination of the components of 2,4-ihydroxyphenyl alanine[J]. Biol. Chem.1937,118:531-539.
    83. Auerbach E, Seyfried E, McMahon K. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Res.2007,41,1143-1151.
    84. Bassam BJ, Caetano-Anolles G, Gresshoff PM. Fast and sensitive silver staining of DNA in polyacrylamide gels[J]. Ann. Biochem.1991,80:81-84.
    85. Batchelder AR. Chlortetracycline and oxytetracycline effects on plant growth and development in liquid cultures[J]. J. Environ. Qual.1981,10:515-518.
    86. Bayard R, Barna L, Mahjoub B, Gourdon R. Investigation of naphthalene sorption in soils and soil fraction using bath and column studies[J]. Environ. Toxicol. Chem.1998,17:2383-2390.
    87. Berger K, Peterson B, Buening-Pfaune H. Persistence of drugs occurring in liquid manure in the food chain [J]. Arch. Lebenmittelsh 1986,37:99-102.
    88. Bert E, Kristin M, Friedriech VW. Monitoring impact of a pesticide treatment on bacterial soil communities by metabolic and genetic fingerprinting in addition to conventional testing procedures[J]. App. Environ. Microbio.1998,64 (8):2814-2821
    89. Bloom R. Use of veterinary pha rmaceuticals in the United States[M]. In:Kummerer K (Ed.),Pharmaceuticals in the Environment:Sources, Fate,Effects, and Risks. Berlin: Springer-Verlag.
    90. Boleas Sara, Carmen Alonso, Javier Pro, et al. Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS 3) and influence of manure coaddition. Environmental Toxicology and Chemistry[J]. J. Hazar. Mater.2005,122:233-241.
    91. Boschker HTS, Middelburg JJ. Stable isotopes and biomarkers in microbial ecology[J]. FEMS Micro. Ecol.2002,40:85-95.
    92. Boxall ABA, Blackwell P, Cavallo R, et al. The sorption and transport of a sulfonamide antibiotic in soil systems[J]. Toxicol. Lett.2002,131:19-28.
    93. Boxall ABA, Fogg IA, Blackwell PA, et al. Veterinary medicines in the environment[J]. Rev. Environ. Contam. T.2004,180:1-91.
    94. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal. Biochem.1976,72:248-254.
    95. Brosius J, Palmer ML, Kennedy PL, et al. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli[J]. Proc. Nat. Acad. Sci.1978,75:4801-4805.
    96. Burns RG. Enzyme activity in soil:location and a possible role in microbial activity[J]. Soil Biol. Biochem.1982,14:423-427.
    97. Cakmak I, Marschner H. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reducatase in bean leaves [J].Plant Physiol. Plant Pathol.1987,31:133-148.
    98. Campagnolo ER, Johnson KR, Karpati A, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations[J]. Sci. Total Environ.2002, 299:89-95.
    99. Carballa M, Omil F, Juan M. Behavior of pharmaceuticals, cosmetics and hormones in a sewage treatment plant[J]. Water Res.2004,38:2918-2926.
    100. Castiglioni S, Bagnati R, Fanelli R, et al. Removal of Pharmaceuticals in Sewage Treatment Plants in Italy[J]. Environ. Sci. Tech.2006,40,357-263.
    101. Chiou CT, Peter LJ, Freed VH. A physical concept of soil-water equilibria for nonionic organic conpounds[J]. Science.1979,206:831-832.
    102. Christensen FM. Pharmaceutical in the environment-a human risk[J]. Regul. Phann.1998,28, 212-221.
    103. Cifuentes LA, Salata GG. Significance of carbon isotope discrimination between bulk carbon and extracted phospholipids fatty acids in selected terrestrial and marine environments [J]. Org. Geochem.2001,32:613-621.
    104. Colaizzi J, Klink P. pH-partitioning behaviour of tetracyclines[J]. Pharmacol. Sci.1969,58: 1184-1189.
    105. Costanzo SD, Murby J, Bates J. Ecosystem response to antibiotics entering the aquatic environment[J]. Mar Pollut Bull,2005,51,218-223.
    106. Damiani G, Amedeo P, Bandi C. Bacteria identification by PCR-based techniques [J]. Chapter 10, Microbial Genome Methods. CRC press.1996,167-177.
    107. Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment, agents of subtle change[J]? Environ. Health Pers.1999,107,907-938.
    108. Dong SF, Denise Brooks, Melanie D Jones, et al.A method for linking in situ activities of hydrolytic enzymes to associated organisms in forest soils[J].Soil Biol. Biochem.2007, 39:2414-2419.
    109. Donoho AL. Biochemical studies on the fate of monensin in animals and in the environment[J]. J. Anim. Sci,1984,58:1528-1539.
    110. Drevensek Petra, Kosmrlj Janez, Giester Gerald, et al. X-Ray crystallographic, NMR and antimicrobial activity studies of magnesium complexes of fluoroquinolones-racemic ofloxacin and its S-form, levofloxacin[J]. J. Inorg. Biochem.2006,100 (11):1755-1763.
    111. Drillia P, Stamatelatou K, Lyberatos G. Fate and mobility of pharmaceuticals in solid matrices [J]. Chemosphere,2005,60:1034-1044.
    112. Duineveld BM. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via DGGE and substrate utilization patterns[J]. Appl. Environ. Microbiol.1998,64: 4950-4957.
    113. Edhlund LB, Arnold W, Mcneill K. Aquatic Photochemistry of Nitrofuran Antibiotics[J]. Environ. Sci. Technol.2006,40,5422-5427.
    114. Efthimiadou Eleni K, Psomas George, Sanakis Yiannis, et al. Metal complexes with the quinolone antibacterial agent N-propyl-norfloxacin:Synthesis, structure and bioactivity[J]. J. Inorg. Biochem. 2007,101:525-535.
    115. Efthimiadou Eleni K, Yiannis Sanakis, Maria Katsarou, et al. Mobility of tetracycline-hydrochloride in lysimeters with humous sandy soil[M]. In:Program abstract of SETAC Euro 14th Annual Meeting,2004:18-22.
    116. Eva M, Golet A C, Giger W. Environmental exposure and Risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt valley watershed, Switzerland [J]. Environ. Sci. Tech.2002,36:3645-3651.
    117. Fent K. Ecotoxicological problems associated with contaminated sites[J]. Toxicol. Lett.2003, 140-141:353-365.
    118. Fernandez C, Alonso C, Babin MM. Ecotoxicological assessment of doxycycline in aged pig manure using multispecies soil systems[J]. Sci. Total Environ.2004,323(1-3):63-69.
    119. Figueroa RA, Leonard A, Mackay AA. Modeling tetracycline antibiotic sorption to clays [J]. Environ. Sci. Technol.2004,38:476-483.
    120. Figueroa RA, Mackay AA. Sorption of oxytetracycline to iron oxides and iron oxide-rich soils[J]. Environ. Sci. Technol.2005,39:6664-6671.
    121. Fornazier RF, FeiTcira RR, Vitaria AP. Effect of cadmium on antioxidant enzyme activities in sugar cane[J]. Biol. Plant 45(l):91-97.
    122. Fridovich I. Superoxide readical and superoxide dismutases[J]. Anrm. Rev. Biochem.1995,64:97.
    123. Gao YZ, Xiong W, Ling WT, et al. Sorption of phenanthrene by soils contaminated with heavy metals[J]. Chemosphere,2006,65:1355-1361.
    124. Garland JL, Mills AL. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source-utilization[J]. Appl. EnvironMicrob. 1991,57:2351-2359.
    125. Gavalchin J, Katz SE. The persistence of fecal-borne antibiotics in soil[J]. J. AOAC Int.1994,177: 481-485.
    126. Gilberstson TJ, Hornish RE, Jaglan PS, et al. Environmental fate of ceftiofur sodium, a cephalosporin antibiotic. Role of animal excreta in its decomposition[J]. J. Agric. Food Chem.1990, 38:890-894.
    127. Golet EM, Alder AC, Hartmann A, et al. Trance determination of fluoroquinolone antibacterial agents in urban wastewater by solid-phase extraction and liquid chromatography with fluorescence detection[J]. Anal. Chem.2001,73:3632-3638.
    128. Gonsalves D, Tucker DPH. Behaviour of oxytetracycline in Florida citrus and soils[J]. Arch. Environ. Contain. Toxicol.1077,6:515-523.
    129. Graslund S, Holmstrom K, Wahlstrom A. A field survey of chemicals and biological products used in shrimp farming[J]. Mar. Pollut. Bull.2003,46:81-90.
    130. Halling-S(?)ensen B, Jacobsen AM, Jensen J, et al. Dissipation and effects of chlortetracycline and tylosin in two agricultural soils:a field-scale study in Southern Denmark[J]. Environ. Toxicol. Chem.2005,24:802-810.
    131. Halling-S(?)rensen B, Nors Nielsen S, Lanzky PF, et al. Occurrence, fate and effects of pharmaceutical substances in the environment-a review[J]. Chemosphere,1998,36:357-393.
    132. Hamscher G, Sczesny S, Hoper H, et al. Determination of persistent tetracycline residues in soil fertilised with liquid manure by high-performance liquid chromatography with electrospray ionization tandem mass spectrometry[JJ. Anal. Chem.2002,74:1509-1518.
    133. Hang CH, Jay ER, Kristen LS, et al. Assessment of potential antibiotics contaminants in water and preliminary occurrence analysis[J].J. Environ. Qual.2002, (11):675-678.
    134. Harry M, Jusseaume N, Gambier B, et al. Use of RAPD markers for the study of microbial community similarity from termite mounds and tropical soils [J]. Soil Bio. Biochem.2001,3 (425): 417-427.
    135. Hartmann A, Alder AC, Koller T, et al.Identification of fluoroquinolone antibiotics as the main source of human genotoxicity in native hospital wastewater[J]. Environ. Toxicol. Chem.1998, 17:377-382.
    136. Heberer T, Stan HJ.Determination of clofibric acid and N-(phenylsulfonyl)-sarcosine in sewage, river, and drinking water[J]. International J. Environ. Analy. Chem.67:113-124.
    137. Heberer T.Occurrence, fate and removal of pharmaceutical residues in the quuatic environment:a review of recent research data[J].Toxicol. Lett.2002,131:5-17.
    138. Heuer H, Small K. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) for studying soil microbial community[M]. In:Modern soil microbiology.1997:353-373.
    139. Hill GT, Mitkowski NA, Aldrich-Wolfe L, et al. Methods for assessing the composition and diversity of soil microbial communities [J]. App. Soil. Ecolo.2000,15 (1),25-36.
    140. Hinrichs KU, Hayes JM, Sylva SP, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature.1999,398:802-805.
    141. Hirsch R, Ternes T, Haberer K, et al. Occurrence of antibiotic in the aquatic environment[J]. Sci. Total Environ,1999,225:109-118.
    142. Ingerslev F, Halling-S(?)ensen B. Biodegradability of metronidazole, olaquindox, and tylosin and formation of tylosin degradation products in aerobic soil-manure slurries[J]. Ecotoxicol. Environ. Safety.2001,48:311-320.
    143. Ingerslev, F., Halling-S(?)ensen, B. Biodegradability properties of sulfonamides in activated sludge[J]. Environ. Toxicol. Chem.2000,19:2467-2473.
    144. Jjemba PK. The potential impact of veterinary and human therapeutic agents in manure and biosolids on plants grown on arable land:a review. Agric. Ecosyst. Environ,2002,93:267-278.
    145. Jones AD, Bruland GL, Agrawal AG, et al. Factors influencing the sorption of oxytetracycline to soil[J]. Environ. Toxicol. Chem.2005,24:761-770.
    146. Jongdloed AW, Lenis NP. Environmental concerns about animal manure[J]. J. Anim. Sci.1998, 76:2641-2648.
    147. Kaiser K. Dissolved organic matter sorption by mineral constituents of subsoil clay fraction[J]. J. Pant. Nutr. Soil. Sci.2000,163:531-535.
    148. Kakimoto T, Funamizu N. Factors affecting the degradation of amoxicillin in composting toilet[J]. Chemosphere,2007,66,2219-2224.
    149. Kanfer I, Skinner MF, Walker RB.1998. Analysis of macrolide antibiotics [J]. J. Chromatogr. A 1998,812:25-286.
    150. Karthikeyan KG, Meyer MT. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA[J]. Sci. Total. Environ.2006,36,196-207.
    151. Kay P, Black PA, Boxall ABA. Fate of veterinary antibiotics in a macroporous tile drained clay soi 1[J]. Environ. Toxicol. Chem.2004,23:1136-1144.
    152. Kay P, Blackwell PA, Boxall ABA. Alysimeter experiment to investigate the leaching of veterinary antibiotics through a clay soil and comparison with field data[J]. Environ. Pollut.2005 a,134: 333-341.
    153. Kay P, Blackwell PA, Boxall ABA. Column studies to investigate the fate of veterinary antibiotics in clay soils following slurry application to agricultural land[J]. Chemosphere,2005b,60:497-507.
    154. Kim S, Carlson K. Temporal and Spatial Trends in the Occurrence of Human and Veterinary Antibiotics in Aqueous and River Sediment Matrices[J]. Environ. Sci. Technol.2007,41:50-57.
    155. Kim S, Cho J, Kim I, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters [J]. Water Res.2007,41:1013-1021.
    156. Kim S, Jensen J, Aga D, et al. Tetracycline as a selector for resistant bacteria in activated sludge[J]. Chemosphere,2007,66:1643-1651.
    157. Klaver AL, Matthews RA. Effects of oxytetracycline on nitrification in a model aquatic system[J]. Aquaculture.1994,123:237-247.
    158. Knight B P, Mcgrath S P, Chaudri AM. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc[J]. App. Environ. Micro,1997,63 (1):39-43.
    159. Kolz AC, Moorman TB, Ong SK, et al. Degradation and metabolite production of tylosin in anaerobic and aerobic swine-manure lagoons[J]. Water Environ. Res.2005,77:55-56.
    160. Kolz AC, Ong SK, Moorman TB. Sorption of tylosin onto swine manure[J]. Chemosphere,2005, 60:284-289.
    161. Kong WD, Zhu YG, Fu BJ, et al. The veterinary antibiotic oxytetracycline and Cu influence functional diversity of the soil microbial community[J]. Environ. Pollut.2005,145:1-9.
    162. Kong WD, Zhu YG, Liang YC, et al. Uptake of oxytetracycline and its phytotoxicity to alfalfa[J].Environ. Pollut.2007,147:187-193.
    163. Kuhne M, Ihnen D, Moller G, et al. Stability of tetracycline in water and liquid manure [J]. J. Vet. Med. Ser. A,2000,47:379-384.
    164. Kulshrestha P, Rossman Jr FG, Aga D. Investigating the molecular interactions of oxytetracycline in clay and organic matter:insights on factors affecting its mobility in soil[J]. Environ. Sci. Technol. 2004,38:4097-4105.
    165. Kumar K, Gupta SC, Baidoo SK, et al. Antibiotic uptake by plants from soil fertilized with animal manure [J].J. Environ. Qual.2005,34:2082-2085.
    166. Levy SB. The challenge of antibiotic resistance[J]. Sci. Am.1998,278:46-53.
    167. Liang YC, Chen Q, Liu Q, et al. Exogenous silicon (Si) increase antioxidant activity and reduce lipid peroxidation in roots of salt-stressed barley (Hordeum vulgarel.) [J]. J. Plant Physiol.2003, 160:1157-1164.
    168. Loke ML, Ingerslev F, Halling-S(?)ensen B, et al.Stability of tylosin A in manure containing test systems determined by high performance liquid chromatography[J]. Chemosphere,2000, 40:759-765.
    169. Lorphensri O, Intravijit J, Sabatini DA, et al. Sorption of acetaminophen,17a-ethynyl estradiol, nalidixic acid, and norfloxacin to silica, alumina, and a hydrophobic medium[J]. Water Res.2006: 1481-1491.
    170. Lyle-Fritch LP, Romero-Belran E, Paez-Osuna F. A survey on use of the chemical and biological products for shrimp farming in Sinaloa (NM Mexico) [J]. Aquacult. Eng.2006,35:135-146.
    171. Martinez-Carballo E, Gonzalez-Barreiro C, Scharf S, et al. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria[J]. Environ. Pollut.2007,148: 570-579.
    172. McGinley PM, Katz E, Weber Jr WJ. A distributed reactivity model for sorption by soils and sediments.2. Multicomponent systems and competitive effects[J]. Environ. Sci. Technol.1993,27: 1524-1532.
    173. McGowan E. Comment on Antibiotic Resistance Genes as Emerging Contaminants Studies in Northern Colorado [J]. Environ. Sci. Tech.2007,41:2652.
    174. Miao XS, Bishay F, Chen M, et al. Occurrence of antibiotics in the final effluents of wastewater treatment plants in Canada[J]. Environ. Sci. Tech.2004,38:3533-3541.
    175. Michael T. Veterinary use and antibiotic resistance[J]. Curr Opin Microbiol,2001,4:493-499.
    176. Migliore L, Brambilla G, Casoria P, et al. Effect of sulphadimethoxine contamination on barley (Hordeum distichum L., Poaceae, Liliopsida) [J]. Agr. Ecosyst. Environ.1996,60:121-128.
    177. Migliore L, Brambilla G, Cozzolino S, et al. Effect on plants of sulphadimethoxine used in intensive farming(Panicum miliaceum, Pisum sativum and Zea mays) [J]. Agric. Ecosyst. Environ. 1995,52:103-110.
    178. Migliore L, Civitareale SC, Rambilla G, et al. Toxicity of several important agricultural antibiotics to Artemia[J].Water Res.1997,31:1801-1806.
    179. Migliore L, Cozzolino S, Fiori Maurizio. Phytotoxicity to and uptake of enrofloxacin in crop plants[J]. Chemosphere,2003,52:1233-1244.
    180. Milone TM, Sgherri C, Clijsters H. Antioxidative responses of wheat treated with realistic concentration of cadmium[J]. Environ. Exp. Bot.2003,50:265-276.
    181. Mirand CD, Zemelman, R. Antimicrobial muhire sistance in bacteria isolated from freshwater Chilean salmon farms[J]. Sci. Total Environ.2002,293(1-3):207-218.
    182. Morris AK, Masterton RG.2002. Antibiotic resistance surveillance:action for international studies[J]. J. Antimicrob. Chemotherap.2002,49:7-10.
    183. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial population by denaturing gradient gel electrophoresis analysis of polymerase chain reaction2amplified genes coding for 16S rRNA[J]. App. Environ. Micro.1993,59:695-700.
    184. Muyzer G, Waal EC, Uitterlinden AG. Profiling of complex microbial populations using denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA[J]. App. Environ. Micro.1993,59:695-700.
    185. Niina L, Tuula T, Leif K. Occurrence of acidic pharmaceuticals in raw and treated sewages and in receiving waters[J]. Water Res.2005,39:2219-2228.
    186. Oliveira MF, Sarmah AK, Lee LS, et al. Fate of tylosin in aqueous manure-soil systems[M]. Presented at the Soil Science Society of America National Meeting, Indianapolis, IN,10-14, November 2002.
    187. Paton GI, Viventsova E, Kumpene J. An ecotoxicity assessment of contaminated forest soils from the Kola Peninsula[J].Sci. Total Environ.2006,355(1-3):106-117.
    188. Patten DK, Wolf DC, Kunkle WE, et al. Effect of antibiotics in beef cattle feces on nitrogen and carbon mineralisation in soil and on plant growth and composition[J]. J. Environ. Qual.1980, 9:167-172.
    189. Pawelzick HT, Hoper H, Nau H, et al. A survey of the occurrence of various tetracyclines and sulfamethazine in sandy soils in northwestern Germany fertilized with liquid manure[M]. In: SETAC Euro 14th Annual Meeting, Prague, Czech Republic,18-22 April 2004.
    190. Pei R, Cha J, Caloson KH, et al. Response of Antibiotic Resistance Genes (ARG) to Biological Treatment in Dairy Lagoon Water[J]. Environ. Sci. Tech.2007,39:5108-5113.
    191. Pelz O, Chatzinotas A, Andersen N, et al. Use of isotopic and molecular techniques to link toluene degradation in dentitrifying aquifer microcosms to specific microbial populations [J]. Arch. Microbiol.2001,175:270-281.
    192. Pils JV, Laird DA. Sorption of Tetracycline and Chlortetracycline on K- and Ca-Saturated Soil Clays, Humic Substances, and Clay-Humic Complexes[J]. Environ. Sci. Technol.2007, 41:1928-1933.
    193. Pouliquen H, Lebris H. Sorption of oxolinic acid and oxytetracycline to marine sediments[J]. Chemosphere,1996,33:801-815.
    194. Preston Matham J, Boddy L, Randerson PF. Analysis of microbial community functional diversity using sole-carbon-source utilization profile-acritique[J]. FEMS Microb. Ecol.2002,42:1-14.
    195. Pruden A, Pei R, Storteboom H, et al. Antibiotic resistance genes as emerging contaminants, studies in Northern Colorado[J]. Environ. Sci. Tech.2006,40:7445-7450.
    196. Pu XC, Cutright TJ. Sorption-desorption behavior of PCP on soil organic matter and clay minerals[J]. Chemosphere,2006,64:972-983.
    197. Rab(?)lle M, Spiild NH. Sorption and mobility of metronidazole, olaquindox, oxytetracycline and tylosin in soil[J]. Chemosphere,2000,40:715-722.
    198. Raloff J. Waterways carry antibiotic resistance[J]. The Weekly Newsmagazine of Science,1999, 155(23):356.
    199. Renner R. Do cattle growth hormones pose an environmental risk[J]? Environ. Sci. Technol.2002, 36:194-197.
    200. Ross DL, Riley CM. Dissociation and complexation of the fluoroquinolone antimicrobials-an update[J]. J. Pharm. Biomed. Anal.1994,12:1325-1331.
    201. Ruiz P, Ortiz R, PerelloL, et al. Synthesis, structure, and nuclease properties of several binary and ternary complexes of copper(Ⅱ) with norfloxacin and 1,10 phenantroline [J]. J. Inorg. Biochem. 2007,101:831-840.
    202. Sadeek A Sadeek. Synthesis, thermogravimetric analysis, infrared, electronic and mass spectra of Mn(Ⅱ), Co(Ⅱ) and Fe(Ⅲ) norfloxacin complexes[J]. J. Mol. Struct.2005,753:1-12.
    203. Samuelsen OB, Lunestad BT, Ervik A, et al. Stability of antibacterial agents in an artificial marine aquaculture sediment studied under laboratory conditions [J]. Aquaculture,1994,126,283-290.
    204. Sannino F, Gianfreda L. Pesticide influence on soil enzymatic activities [J]. Chemosphere,2001,45, 417-425
    205. Sardar Khan, Cao Q, Hesham Abd El-Latif, et al. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb [J]. J. Envir. Sci.2007, 19:834-840.
    206. Sarmah AK, Meyer MT, Boxall ABA. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006,65:725-759.
    207. Sassman SA, Lee LS. Sorption of three tetracyclines by several soils:assessing the role of pH and cation exchange[J]. Environ. Sci. Technol.2005,39:7452-7459.
    208. Sassman SA, Sannah AK, Lee LS, et al. Sorption of tylosin and tylosin A-aldol by soils [M]. Presented at the Soil Science Society of America National Meeting, Denver, CO.2003
    209. Schmitt Heike, Heidi Haapakangas, Patrick van Beelen.Effects of antibiotics on soil microorganisms:time and nutrients influence pollution-induced community tolerance [J]. Soil Biol. Biochem.2005,37:1882-1892.
    210. SchutterM, Dick R. Shift in substrate utilization potential and structure of soilmicrobial communities in response to carbon substrates [J]. Soil Biol. Biochem.2001,33:1481-1491.
    211. Shah K, Kumar RG, Verma A. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes ingrowing rice seedlings [J]. Plant Sci. 161:1135-1144.
    212. Singh G, Spencer WF, Cliath MM, et al. Sorption behavior of s-triazine and thio-carbmate herbicides on soil[J]. J. Environ. Qual.1990,1:520-525.
    213. Sithole BB, Guy RG. Models for chlortetracycline in aquatic environments. Ⅰ. Interaction with bentonite clay systems [J]. Water, Air, Soil Pollut.1987,32:303-314.
    214. Smith DL, Harris AD, Johnson JA, et al. Animal antibiotic use has an early but important impact on the emergence of antibiotic resistance in human commensal bacteria [J]. Proc. Natl. Acad. Sci.2002, 99:6434-6439.
    215. Stoob K, Singer H, Mueller S, et al. Dissipation and Transport of Veterinary Sulfonamide Antibiotics after Manure Application to Grassland in a Small Catchment [J]. Environ. Sci. Technol. 2007,41:7349-7355.
    216. Takacs-Novak K, Noszal B, Hermecz I, et al. Protonation equilibria of quinolone antibacterials [J]. J. Pharm.1990,79:89-96.
    217. Tate RL, Halley BA, Taub R, et al. Efrotomycin interaction with soil clay and organic matter fraction [J]. J. Agric. Food Chem.1989,37:1165-1169.
    218. Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils-a review [J]. J. Plant. Nutri. Soil Sci.2003,166:145-167.
    219. Thiele-Bruhn Soren, Iris-Constanze Beck. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere.2005,59:457-465.
    220. Thomas Heberer. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment:a review of recent research data [J]. Toxicol. Lett.2002,131:5-17.
    221. Tolls J. Sorption of veterinary pharmaceuticals in soils:a review [J]. Environ. Sci. Technol,2001, 35:3397-3406.
    222. Tuan XL, Yukihiro M. Residues of selected antibiotics in water and mud from shrimp ponds in mangrove areas in Viet Nam[J]. Mar. Pollut. Bul.2004,49:922-929.
    223. Turel I, Gruber K, Leban I, et al. Synthesis, crystal structure and characterization of three novel compounds of the quinolone family member (norfloxacin) [J]. J. Inorg. Biochem.1996,61 (3):197-212.
    224. Turel I. The interactions of metal ions with quinolone antibacterial agents [J]. Coord. Chem. Rev. 2002,232:27-47.
    225. Vacearo E, Giorgi M, Longo V, et al. Inhibition of eytochmme P450 enzymes by enrofloxacin in the sea bass (Dicentrarchus labrax) [J]. Aquat Toxicol.2003,62:27-33.
    226. Venturelli A, Tondi D, Cancian L, et al. Optimizing cell permeation of an antibiotic resistance inhibitor for improved efficacy [J]. J. Med. Chem.2007,50:5644-5654.
    227. Vieno NM, Tuhkanen T, Kronberg L. Seasonal Variation in the Occurrence of Pharmaceuticals in Effluents from a Sewage Treatment Plant and in the Recipient Water [J]. Environ. Sci. Tech.2005, 39:8220-8226.
    228. Wallis SC, Gahan LR, Charles BG, et al. Duckworth PA. Copper (Ⅱ) Complexes of the Fluoroquinolone Antimicrobial Ciprofloxacin. Synthesis, X-Ray Structural Characterization, and Potentiometric Study[J]. J. Inorg. Biochem.1996,62:1-16.
    229. Walter J, Weber Jr WJ. Distributed reactivity model for sorption by soils and sediments:15. High-concentration co-contaminant effects on phenanthrene sorption and desorption [J]. Environ. Sci. Technol.2002,36:3625-3634.
    230. Watkinsona A, Murbyc EJ, Costanzoa SD. Removal of antibiotics in conventional and advanced wastewater treatment-Implications for environmental discharge and wastewater recycling [J]. Water Res.2007,41:4164-4176.
    231. Watts CD, Craythorne B, Fielding M, et al. Nonvolatile organic compounds in treated waters [J]. Environ. Health Persp.1982,46:87-89.
    232. Wollen-berger L, Hallong-Sorensen B, KuskK O. Acute and chronic toxicity of veterinary antibiotics to Daphnia magna [J]. Chemosphere,2000,40:723-730.
    233. Xu W, Zhang G, Zou S, et al. Determination of selected antibiotics in the Victoria Harbour and the Pearl River, South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry [J]. Environ. Pollut.2007,145:672-679.
    234. Yeager RL, Halley BA.1990. Sorption/desorption of 14C-efrotomycin with soils [J].J Agric. Food Chem.1990,38:883-886.
    235. Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition [J]. Appl. Environ. Microbiol.1996,62:316-322.
    236. Zuccato E, Calamari D, Natangelo M, et al. Presence of therapeutic drugs in the environment [J]. Lancet 2000,355:1789-1790.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700