用户名: 密码: 验证码:
考虑河谷场地效应的拱坝—地基地震响应分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河谷地形对场地地震响应有很大影响,但一般进行拱坝-地基体系动力分析时为方便计算,常常将三维拱坝-地基模型的河谷四周侧边界简化为水平成层半空间来求解自由场(本文称为自由场近似解),这与拱坝-地基体系实际受到的地震作用差别是显而易见的。在拱坝-地基动力相互作用地震反应分析中,包括自由场在内的波动输入处理的合理与否,将直接影响到计算结果的精度和可信度。本文以小湾拱坝为例,进行了有关不规则河谷场地数值模拟方法、河谷场地对拱坝结构地震响应的影响、拱坝-地基体系时程分析的地震动输入等一系列工作,主要成果如下:
     第一,给出了三维不规则场地的自由场计算方法。采用有限元结合透射边界求解二维不规则场地地震响应(本文称为自由场有限元解),并以此作为三维计算模型的自由场输入。通过对小湾拱坝坝址三维河谷场地的地震响应模拟,比较了侧边界自由场的有限元解和近似解,以及它们对河谷内部场点地震响应的影响,结果表明:河谷地形的自由场有限元解和近似解对场地地震响应有显著影响。
     第二,提出了考虑河谷场地效应的三维拱坝-地基体系的地震响应分析方法。分别以考虑河谷地形的自由场有限元解和简化为水平单一介质的自由场近似解作为输入,比较了三维拱坝-地基体系的地震响应。结果表明:考虑河谷地形影响计算的拱坝-地基地震响应与近似方法的计算结果存在很大差异,拱坝及坝基位移响应变化不大,但是应力响应出现大幅度的增大。
     第三,提出了地震波倾斜入射情形下考虑河谷场地效应的三维拱坝-地基体系的地震响应分析方法。采用有限元结合人工透射边界的方法,求解地震波倾斜入射情形下河谷地形侧边界的自由场,并以此作为三维拱坝-地基模型地震波的输入,求解拱坝-地基体系在地震波倾斜入射条件下三维地震响应。计算结果表明:地震波倾斜入射对拱坝坝体和坝基的应力响应影响显著。
     第四,提出了双向地震波不同振动方向输入情形下,考虑河谷场地效应的自由场简化计算方法。并以此作为三维拱坝-地基模型地震波的输入,求解拱坝-地基体系在入射地震波不同振动方向时三维地震响应。计算结果表明:在单向地震波输入情形下拱坝-地基最大地震响应一般发生在横河向或顺河向,但在双向地震波输入情形下拱坝及坝基的最大位移、应力响应振动方向与输入地震波相关。
     最后,对全文工作进行总结,并对今后的工作作出展望。
Valley topography has a great influence on the seismic responses of the vallysite, but for the convenience of calculation, the lateral boundary of thethree-dimensional dam-foundation model is usually simplified as level layered halfspace for solving the free field (In this paper, be called the approximate solution offree field). The actual earthquake input of the arch dam-foundation system isdifferent to the approximate soulution obviously. Consequently, in the seismicresponse analysis of arch dam-foundation dynamic interaction, the accuracy andreliability of calculation results are decided by the reasonability of the earthquakewave input. And then in this paper Xiaowan arch dam is selected as a3D elementmodel, the following series work: the simulation method of irregular landform, theeffects of vally site on arch dam’s seismic response, and the input ground motion intime domain anlysis of arch dam-foundation system are performed in this paper. Themain results are as follows:
     Firstly, the free field’s calculation method of3D irregular site is put forward inthis paper. The finite element method and artificial transmitting boundary areadopted to solve the seismic response of two-dimensional irregular site(In this paper,be called the finite-element solution of free field), and take the calculating results asthe free field input of three-dimensional calculation model. Then, the seismicresponse simulation of3D Valley site of Xiaowan Arch Dam is performed. Thefinite-element and approximate free field’s solutions of the lateral boundary and theeffects of valley topography on internal site’s seismic response are compared andanalysed. The results show that: large differences occur between the finite-elementfree field’s solutions and the approximate free field’s solutions. The differentsolving methods of free field have obvious influence on the seismic responses of thevally site.
     Secondly, the seismic response analysis method of3D arch dam-foundationmodel is put forward under the condition of considering the effects of vally site. Thefinite-element and approximate solutions of free field are taken as the earthquakeinput of the3D model, then comparing the seismic response of3D archdam-foundation model under the condition of different earthquake input. The resultsshow that: Great differences occur between the finite-element method and theapproximate method. Although the displacement response of arch dam andfoundation have little changes, but the stress responses of arch dam increases greatlywhen adopting the finite-element solution of free field.
     Thirdly, the seismic response analysis method of3D arch dam-foundation modelunder the condition of inclined incident earthquake wave is put forward whenconsidering the the effects of vally site. The finite element method and artificial transmitting boundary are adopted to solve the free field of lateral boundary withvally topography under the condition of inclined incident earthquake wave. And thentake the calculating results as the free field input of three-dimensional calculationmodel, the seismic response of3D arch dam-foundation system under the conditionof inclined incident earthquake wave is resloved. The calculation results show that:The stress response of arch dam and foundation has great changes when theearthquake wave inclined incidence.
     Fourthly, the calculation method of free field with valley topography is putforward under the bidirectional earthquake wave input case when considering thedifferent vibration direction of incident earthquake wave. Then the seismic responseof arch dam and foundation is simulated considering the different vibration directionof bidirectional incident earthquake wave. The results show that: in the case ofunidirectional earthquake wave input, the maximum seismic response of arch damand foundation occur when the vibration direction of input earthquake wave is acrossor along the river. But in the case of bidirectional earthquake wave input, themaximum displacement and strain responses of arch dam occur when the vibrationdirection isn’t across or along the river, the maximum responses are related to theinput earthquake wave.
     Finally, the whole study work is summarized and the prospects on the futureprogress of the work are proposed.
引文
[1]车伟,罗奇峰.复杂地形条件下地震波的传播研究[J].岩土工程学报,2008,30(9):1333-1337.
    [2]陈波,吕西林,李培振,陈跃庆.均匀土-桩基-结构相互作用体系的计算分析[J].地震工程与工程震动,2002,22(3):91-99.
    [3]陈厚群.重视高坝大库的抗震安全[J].中国水利水电科学研究院学报.2006,4(3):161-169.
    [4]陈厚群.坝址地震动输入机制探讨[J].水利学报,2006,37(12).
    [5]陈厚群.混凝土坝自由场行进波分析[J],水利学报,1988,(9):59-67.
    [6]陈厚群,侯顺载,王均.拱坝自由场地震输入和反应[J].地震工程与工程振动,1990,10(2).
    [7]陈青生,高广运,何俊锋.上海软土场地三维非线性地震反应分析[J].岩土力学,2011,32(11):3461-3467.
    [8]陈清军,赵云峰,王汉东等.振动台模型试验中地基土域的数值模拟[J].力学季刊,2002,23(3):407-411.
    [9]陈跃庆,吕西林,黄炜.结构-地基相互作用振动台试验中土体边界条件的模拟方法[J].结构工程师,2000,(3):25-30.
    [10]董俊,赵成刚.三维半球形凹陷饱和土场地对平面P波散射问题的解析解[J].地球物理学报,2005,48(3):680-688.
    [11]杜建国,基于SBFEM的大坝-库水-地基动力相互作用分析[D].大连理工大学博士论文,2007.
    [12]杜修力,赵密.基于粘弹性边界的拱坝地震反应分析方法[J].水利学报,2006,37(9).
    [13]杜修力,陈厚群,侯顺载.拱坝-地基系统的三维非线性地震反应分析[J].水利学报,1997,8:7-14.
    [14]杜修力,陈维,李亮,李立云.斜入射条件下地下结构时域地震反应分析初探[J],震灾防御技术,2007,2(3):290-296.
    [15]苑举卫,杜成斌,刘志明.地震波斜入射条件下重力坝动力响应分析[J].振动与冲击,2011,30(7):121-126.
    [16]傅淑芳,刘宝诚.地震学教程[M].北京:地震出版社,1991.
    [17]关惠敏(导师:廖振鹏).土-结构动力相互作用分析中的人工边界[D].中国地震局工程力学研究所(博士研究生学位论文),1994.
    [18]何建涛,陈厚群,马怀发.拱坝非线性地震反应分析[J].地震工程与工程振动,2012,(2):68-73.
    [19]胡聿贤.地震工程学[M].地震出版社,1988.
    [20]黄菊花,何成宏,杨国泰,刘卫东.地基中振动波传播的有限元分析[J].振动与冲击,1999,18(1):38-43.
    [21]姬淑艳,李英民,刘立平等.考虑双向水平地震作用的结构设计问题研究[J].地震工程与工程振动,2006,(5):68-72.
    [22]金峰,张楚汉,王光纶.结构地基相互作用的FE-BE-IBE耦合模型[J].清华大学学报,1993,33(2):17-24.
    [23]金峰,张楚汉,王光纶.辐射阻尼与峡谷自由场分布对拱坝动应力的影响[J].大连理工大学学报,1993,9:22,S.1.
    [24]李德玉,陈厚群.高拱坝抗震动力分析和安全评价[J].水利水电技术,2004,35:45-48.
    [25]李德玉,王海波,涂劲等.拱坝坝体-地基动力相互作用的振动台动力模型试验研究[J].水利学报,2003,(7):30-35.
    [26]李德玉,张伯艳,王海波.重力坝坝体-库水相互作用的振动台试验研究[J].中国水利水电科学研究院学报,2003,l(3):216-220.
    [27]李辉,赖明,白绍良,土-结动力相互作用研究综述(I)[J].重庆建筑大学学报,1999,21(4):112-116.
    [28]李培振,吕西林,陈波,陈跃庆.均匀土-箱基-结构相互作用体系的计算分析[J].地震工程与工程震动,2002,22(5):115-121.
    [29]李山有.重大工程结构的设计地震输入[D].工学博士学位论文,中国地震局,2000.
    [30]李山有,王学良,周正华.地震波斜入射情形下水平成层半空间自由场的时域计算[J].吉林大学学报(地球科学版),2003,33(3).
    [31]李忠献,刘颖,王健.滑移隔震结构考虑土-结构动力相互作用的动力分析[J].工程抗震,2004,4.
    [32]梁建文,张彦帅,Vincent W Lee.平面SV波入射下半圆凸起地形地表运动解析解[J].地震学报,2006,5,3(28):238-249.
    [33]梁建文,巴振宁.三维层状场地的精确动力刚度矩阵及格林函数[J].地震工程与工程振动,2007,27(5).
    [34]廖振鹏.工程波动理论导论[M].科学出版社,2002.
    [35]廖振鹏,杨柏坡,袁一凡.三维地形对地震地面运动的影响[J].地震工程与工程振动,1981,1(1):56-77.
    [36]廖振鹏.近场波动的数值模拟[J].力学进展,1997,27(2):193-302.
    [37]林皋,陈健云.混凝土大坝的安全性评价[J].水利学报,2001,2:8-15.
    [38]林皋,土-结构动力相互作用[J].世界地震工程,1991(1):4-21.
    [39]林皋,奕茂田,陈怀海,土-结构相互作用对高层建筑非线性地震反应的影响[J].土木工程学报,1993,26(4):l-13.
    [40]林皋,杜建国.基于SBFEM的坝-库水相互作用分析[J].大连理工大学学报,2005,45(5):723-729.
    [41]刘殿魁,吕晓棠.半圆形凸起与凹陷地形对SH波的散射[J].哈尔滨工程大学学报,2007,28(4).
    [42]刘晶波,吕彦东.结构-地基动力相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [43]刘晶波,王振宇,张克峰,裴欲晓.考虑土-结构相互作用大型动力机器基础三维有限元分析[J].工程力学,2002,19(3):34-39.
    [44]刘晶波.局部不规则地形对地震地面运动的影响[J].地震学报,1996,18(2):239-245.
    [45]刘晶波,王艳.成层介质中平面内SH波自由场的一维化时域算法[J].工程力学,2007,24(7).
    [46]刘晶波,王艳.弹性半空间二维出平面自由波场的一维化时域算法[J].应用力学学报,2006,23(2).
    [47]刘晶波.局部不规则地形对地震地面运动的影响[J].地震学报,1996,18(2).
    [48]刘晶波,王振宇,杜修力等.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [49]刘晶波,王艳.成层介质中平面内SV波自由波场的一维化时域算法[J].工程力学,2007,24(7).
    [50]刘天云,刘光廷.拱坝河谷自由场反应[J].水利学报,1999,9:20-23.
    [51]刘新佳,徐艳杰,金峰等.地震非均匀自由场输入下的拱坝非线性反应分析[J].清华大学学报(自然科学版),2003,43(11),1567-1571.
    [52]楼梦麟,林皋.粘弹性地基中人工边界的波动反射效应[J].水利学报,1986,6.
    [53]楼梦麟,林皋.重力坝地震行波反应分析[J],水利学报,1984,(5):26-32.
    [54]吕西林,陈跃庆,陈波等.结构-地基动力相互作用体系振动台模型试验研究[J].地震工程与工程振动,2000,20(4):20-29.
    [55]马恒春,陈健云,朱彤等.非对称剪力墙-筒体超高层结构的振动台试验研究[J].结构工程师,2004,(2):69-74.
    [56]潘旦光,楼梦麟,董聪,SH波作用下层状土层随机波动分析[J].工程力学,2005,22(5):35-42.
    [57]宋贞霞.LS-DYNA程序的二次开发及其在隔震结构中的应用[D].苏州科技学院硕士论文,2007.
    [58]松谷辉雄等.兵库县南部地震中超高层钢筋混凝土结构建筑物振动特性评价[C].第二届中日建筑结构技术交流会议论文集(上集),上海,1995.
    [59]孙树民,土-结构动力相互作用研究进展[J],中国海洋平台,2001,16(5):31-37.
    [60]涂劲.混凝土大坝抗震数值分析理论与工程应用[M].中国水利水电出版社,2007.
    [61]王凤霞,荆玉龙.浅谈土与结构动力相互作用[J].低温建筑技术,2001,4:27-29.
    [62]王复明.层状地基分析的样条半解析法及其应用[D].大连:大连理工大学,1987.
    [63]王海波,李德玉,陈厚群.拱坝振动台动力破坏试验研究[J].土木工程学报,2006,39(7):109-118.
    [64] wolf,J.P著,吴世明等译.土-结构动力相互作用[M].北京:地震出版社,1989.
    [65]吴健,金峰,张楚汉等.无限地基辐射阻尼对溪洛渡拱坝地震响应的影响[J].岩土工程学报,2002,24(6):717-719.
    [66]武敏刚,吕西林.混合结构振动台模型试验研究与计算分析[J].地震工程与工程振动,2004,24(6):103-108.
    [67]吴兆营.倾斜入射条件下土石坝最不利地震动输入研究[D].工学博士学位论文,中国地震局工程力学研究所,2007.
    [68]肖诗云,林皋,李宏男.拱坝非线性地震反应分析[J].地震工程与工程振动,2002,(4):36-40.
    [69]奕茂田,林皋.地基动力阻抗的双白由度集总参数模型[J].大连理工大学学报,1996,36(4):477-481.
    [70]袁晓铭,廖振鹏.圆弧形凹陷地形对平面SH波散射问题的级数解答[J].地震工程与工程振动,1993,13(2):2-11.
    [71]赵兰浩,考虑坝体-库水-地基相互作用的有横缝拱坝地震响应分析[D].河海大学博士论文,2006.
    [72]赵崇斌,张楚汉,张光斗.V型拱坝峡谷地震自由场分析及地表风化层的影响[J].水利学报,1988,11.
    [73]张伯艳,陈厚群,李德玉.有缝拱坝地震自由场输入模型及其工程应用[C].水电2006国际研讨会论文集.
    [74]张伯艳,刘云贺,陈厚群.水平层状地基地震自由场计算的新方法[J].建筑结构学报(增刊).
    [75]张楚汉,王光纶.论拱坝地震,地震工程与工程振动[J].1986,12:59-69.
    [76]张楚汉.结构-地基相互作用问题:结构与介质相互作用理论及应用[M].南京:河海大学出版社,1993.
    [77]赵剑锋,杜修力,韩强,李立云.外源波动问题数值模拟的一种实现方式[J].工程力学,2007,24(4).
    [78]朱彤.结构动力模型相似问题及结构动力试验技术研究[D].硕士学位论文,大连理工大学,2004.
    [79]周国良.河谷地形对多支撑大跨桥梁地震反应影响[D].工学博士学位论文,中国地震局,2011.
    [80] Abascal R, Dominguez J. Vibrations of footing on viscoelastic soil. EngineeringMechanical[J]. ASCE,1985,111(2):123-141.
    [81] Abdul Hayir.AntiPlane Response of a Dike with Flexible Soil Sturcutre Intearfceto Incident SH waves[J].Soil Dynamics and Earthquake Engineering,2001(21):603-613.
    [82] Arnod R. Netal. Forced vibrations of body on an infinite elastic solid[J].Journalof Applied Mechanics.ASCE,1995,77:319-401.
    [83] ASHFORD S A, SITAR N. Analysis of topographic amplification of inclinedshear waves in a steep coastal bluff[J]. Bull Seis Soc Am,1997,87:692-700.
    [84] ASHFORD S A, SITAR N, LYSMER J, DENG N.Topographic effects on theseismic response of steep[J]. Bull Seis Soc Am,1997,87:701-709.
    [85] Bard P Y. Diffracted waves and displacement field over two-dimensionalelevated topographics[J]. Geophy J Rastr Soc,1982,71:731-760.
    [86] Bard P Y, Tucker B E.Underground and ridge site effects: A comparison ofobservation and theory[J]. Bull Seism Soc Amer,1985,75:905-922.
    [87] Biot M A. Fundamentals of generalized rigiditymatrices for multi-layeredmedia[J]. Bull Seism Soc Am,1983,73:749-763.
    [88] Bouchon M.Effect of topography on surface motions[J]. Bull Seism SocAmer,1973,63:615-632.
    [89] Bycroft G N.Foreed vibrations of arigid circular Plate on a semi-infinite elasticspace and on an elastic stratum[C]. Philo. Trans. Roy. Soc.1956,248:327-368.
    [90] Cao H, Lee V W.Scattering of Plane Waves by Circular Cylindrical Canyons withVaribale Depth-to-width Ratio[J].European Earthq. Engng,1989(2):29-37.
    [91] Chopra,A.K.Earthquake response of earth dams[J].Soil Mech.And Found.Div.,ASCE,1967,93,SM2.
    [92] Clough, R. W., K. T. Chang, H. Q. Chen, and Y. Ghanaat, Dynamic InteractionEffects in Arch Dams[C]. Proc.2nd ASME Conference on ElectronicComputation. Pittsburgh, Pa.,1987.
    [93] Davis L L, West L R. Observed effects of topography on ground motion[J]. BullSeism Soc Amer,1973,63:283-298.
    [94] De Barros F C P,Luco J E. Disctete model for vertical vibrations of surface andembedded foundation[J]. Earthquake Engineering and Structural Dynamics,1990,19:289-303.
    [95] Deeks A J,Cheng L. Potential flow around obstacles using the scaled boundaryfinite-element method[C]. International Journal for Numerieal Methods inFluids,2003,41(7):721-741.
    [96] Doherty J P,Deeks A J. APPlication of the scaled boundary finite-elementmethod to offshore foundation systems[C]. Proeeeding of the12th InternationalOffshore and Polar Engineering Conferene. Kitakyusha,2002.
    [97] Gaitanareos P. and Karabalis D.L.3-D flexibles embedded machine foundationsby BEM and FEM[J]. Recent applications in computational mechanics. ASCE.1986,81-96.
    [98] Gamtanaros A P, Karabalis D L. Dynamic response of3D flexible foundation byfrequency domain FEM-BEM[J]. Earthquake Engineering&StructureDynamics.1998,16:653-674.
    [99] Gelebi M. Topographical and geological amplifications determined fromstrong-motion and aftershock records of the3March1985Chile earthquake[J].Bull Seism Soc Amer,1987,77:1147-1167.
    [100] Geli L, Bard P Y, Jullien B. The effect of topography on earthquake groundmotion:A review and new results[J]. Bull Seism Soc Amer,1988,78:42-63.
    [101] Geli L.,P.Y.Bard.The Eeffct of Topography on Earthquake Ground Motion: aReview and New Results,Bull[J]. Seism. Soc. Amer.,1980,78(l).42-63.
    [102] Genes M C, Kocak S. Dynamic soil-structure interaction analysis of layeredunbounded media via a coupled finite element/boundary element/scaledboundary finite element model[C]. International Journal for Numerical Methodsin Engineering,2005,62(6):798-823.
    [103] George Gazetas.Seismic response of earth dams:some recent developments[J],Soil Dynamics and Earthquake Engineering,1987, Vol.6(1):2-47.
    [104] Haskell W T. The dispersion of surface waves on multilayered media[J]. BullSeism Soc Am,1953,73:17-24.
    [105] Jean W Y, Ling T W, Penzien J. System parameter of soil foundation for timedomain dynamic analysis[J]. Earthquake Engineering&StructuralDynamics,1990,19:541-553.
    [106] Jeffrey S. Mulliken, Dimitris L. Karabalis. Discrete model for dynamicthrough-the-soil coupling of3-D foundations and structures[J]. EarthquakeEngineering&Structural Dynamics.1998,27(7):687-710.
    [107] Kausel E, Roesset J M. Stiffness matrices for layered soils[J]. Bull Seism Soc Am,1981,71:1743-1761.
    [108] Lehmann L. An effective finite element approach for soil-structure analysis in thetime-domain[J]. Structural Engineering and Mechanics,2005,21(4):437-450.
    [109] Liang J,Zhang Y,Lee V W.2005. Scattering of plane P waves by asemi-cylindrical hill:analytical solution[J]. Earthquake Engineering andEngineering Vibration,4(1):27-36.
    [110] Liu D K, Gai B Z, Tao G Y. Applications of the method of complex function todynamic stress concentration [J].Wave Motion,1982,(4):293-304.
    [111] Luco J E.Vibrations of a rigid disc on a layered viscoelastic media[J]. NuclearEngineerting and Design,1976,36(3):325-340.
    [112] Lysmer J,Richart F E T. Dynamic response of footing to vertical loading[J].Journal of Soil Mechanics Division, ASCE,1966,92(1):65-91.
    [113] Lysmer J,Kuhlemeyer R L. Finite dynamic model for infinite media[J].Journal ofEngineering Mechanics,ASCE.1969,95(1):759-877.
    [114] Meek, J.W. and Veletsos, A.S. Simple models for foundations in lateral androcking motion[C]. Proc.5th World Conf. Earthq. Eng., Rome, Italy.1974,2:2610-2613.
    [115] M.D.Triufnac.Surafce Motion of a Semi-cylindrical Alluvial Valley For IncidentPlane SH Waves[J]. Bull. Seism. Soc. Amer.,1971,61(6):1755-1770.
    [116] M.D. Triufnac.Scattering of Plane SH-waves by a semi cylindrical canyon[J].Earthquake Engineering and Sturcutral dynamics,1973(l):267-281.
    [117] Moeen-Vaziri N,Triufnac M D.Scattering and Dirffaction of Plane SH Waves bytwo-dimensional Inhomogeneities[J].Soil Dyn. Earthq.Eng.,1988(7):179-188.
    [118] Pao Y H, Mow C C. The diffraction of elastic waves and dynamic stressconcentration[M]. New York: Crane&Russak,1973.
    [119] Parmelee R A.Building-foundation interaction effects[J].Journal of theEngineering Mechanics Division,ASCE,1967,93(EM2):131-152.
    [120] Reissner E.Stationare,axial symmertrische durch eine schuttelnde masse erregteschwingungen eines homogenen elastischen halbraumes[J]. Ingenieur-Arch,1936,7(6):381-396.
    [121] Sanchez-Sesma F J. Differaction of elastic waves by three-dimensional surfaceirregularities[J]. Bull Seism Soc Amer,1983,73:1621-1636.
    [122] Seed,H.B.Considerations in the earthquake-resistant of earth and rockfill dams[J],Geotechnique29, NO.3:215-223.
    [123] Sekhar Chandra Dutta, Rana Roy. A critical review on idealization and modelingfor interaction among soil-foundation-structure system[J]. Computers andStructures2002,80:1579-1594.
    [124] Song Ch,Wolf J P. Semi-analytical representation of stresss ingularities asoccurring in cracks in multi-materials with the scaled boundary finite-elementmethod[J]. Computers and Struetures,2002,80(2):183-197.
    [125] Sung T Y. Vibration in semi-infinite solids due to periodic loading[C].ASTM-STP,No.156,Symposium on Dynamic Testing of Soils,1953,35-64.
    [126] Tatsuo Ohmachi,Abdolrahim Jalali.Fundamental Study on Near-Field Effects onEarthquake Response of Arch Dams[J].Earthquake Engineering and EngineeringSeismology. Volume1, Number1, September1999,1-11.
    [127] ThomsonW T. Transmission of elastic waves through a stratified soilmedium[J]. JAppl Phys,1950,21:189-193.
    [128] Wang Haibo. Dynamic soil-structure interaction by combing FEM with trialfunction method and application to underground structure[D]. Japan: OkayamaUniversity,1994.
    [129] Wolf J P, Somaini D R.Approximate dynamic model of embedded foundation intime domain[J]. Earthquake Engineering&Structural Dynamics,1986,14:683-703.
    [130] Wolf J P, Song Ch. Finite-Element Modelling of Unbounded Media[M]. NewYork: Wiley,1996.
    [131] Wolf J P. The scaled boundary finite element method[M].Chiehester: Wiley,2003.
    [132] Wolf, J.P., Soil-Structure-Interaction analysis in time domain[M]. Prentice Hall.Englewood Cliffs, New Jersey,1988.
    [133] Wong H.L. and Triufnac M.D.Scattering of Plane SH-wave by a semi-ellipticalcanyon[J]. Engineering and Surtcutral dynamics,1974(3):157-159.
    [134] Xiuli Du,Yanhong Zhang and Boyan Zhang. Nonlinear seismic response analysisof arch dam-foundation systems-part I dam-foundation rock interaction[J]. BullEarthquake Eng (2007)5:105-119.
    [135] Yan J Y, Jin F, Zhang C H. A coupling procedure of FE and SBFE for Soil-structure interaction in time domain[C]. International Journal for NumericalMethods in Engineering,2004,59(11):1453-1471.
    [136] Yuan X M, Men F L. Scattering of plane SH waves by a semi-cylindrical hill[J].Earthq Engng Str Dyn,1992,21:1091-1098.
    [137] Zhang, C.H. and Zhao C.B. Coupling method of finite and infinite elements forstrip foundation wave problems[J]. Earthqake Engineering Structure Dynamic.1987,15.
    [138] Z.N.Li, Q.S. Li and M.L.Lou. Numerical studies on the effects of the lateralboundary on soil-structure interaction in homogeneous soil foundations[J].Structural Engineering and Mechanics.2005, Vol20, NO4:421-434.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700