用户名: 密码: 验证码:
土壤盐分影响棉花(Gossypium hirsutum L.)生长的生理机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐渍化是影响土地生产力的重要障碍因子,严重制约了粮食生产和农业可持续发展。棉花是盐碱地种植的先锋作物,随着耕地面积的减少,棉花种植逐渐向盐碱地集中,因此大力提高盐碱地棉花产量已经成为棉花生产的主攻方向。开展盐分影响棉花生长发育的生理机制研究,可以为优化滨海盐土植棉技术及培育高耐盐品种提供理论依据。本论文包括两部分内容:1、以14个在不同年代黄河流域黄淮棉区和长江流域下游棉区大面积推广的棉花品种为材料,在NaCl胁迫下进行棉花萌发期和苗期的耐盐性评价及耐盐指标筛选。2、以耐盐性差异较大的两个棉花品种(中棉所44,耐盐品种;苏棉12号,盐敏感品种)为材料,采用混合盐分,研究土壤盐分对不同基因型棉花离子运移、根系生理及光合生理的影响,并从抗氧化酶活性、内源激素平衡和膜生理的角度探讨土壤盐分影响棉花光合性能的生理机制。
     主要研究结果如下:
     1.棉花萌发期和苗期耐盐性评价及耐盐指标筛选
     以14个在不同年代黄河流域黄淮棉区和长江流域下游棉区大面积推广的棉花品种为材料,在NaCl胁迫下进行棉花萌发期和苗期的耐盐性评价及耐盐指标筛选。结果表明,150mmol·L-1NaCl水溶液是进行棉花耐盐性鉴定的适宜浓度。棉花的耐盐性在生育期和品种间表现不同,中棉所44和中棉所177是萌发期和苗期均表现稳定的耐盐品种,表现稳定但不耐盐品种有中棉所102、苏棉12号和泗棉3号,表现稳定且中等耐盐品种有中棉所103、德夏棉1号和美棉33B。发芽率、发芽势、发芽指数、活力指数和鲜重的盐害系数可以作为棉花萌发期耐盐鉴定指标,株高、叶片伸展速率、地上部干重、根系干重、根系活力和净光合速率的盐害系数可以作为棉花苗期耐盐鉴定指标。
     2.土壤盐分影响棉花产量形成的生理机制
     (1)以耐盐性差异较大的两个棉花品种(中棉所44,耐盐品种;苏棉12号,盐敏感品种)为材料,采用混合盐分,研究土壤盐分对棉株离子吸收、运输和分配的影响。结果表明,土壤盐分降低棉株干物质重,对地上部分影响大于根系,同时降低了根系吸水能力,抑制了水分从根系向叶片的运输。盐胁迫显著影响棉株体内离子分布,随盐分水平升高,棉株各器官Na+.Cl-和Mg2+含量升高,K+和Ca2+含量降低,各器官中K+/Na+、Ca2+/Na+和Mg2+/Na+比值降低,尽管K+含量呈降低趋势,但叶片中K+含量并未超出临界浓度。棉花茎枝是棉株重要的离子库,可以通过输出K+/Ca2+和Mg2+和纳入Na+来提高耐盐性。但是棉株不能有效控制Cl-向叶片运输,致使叶片中Cl-含量较高。随盐分水平升高,根系向茎枝选择性运输K+、Ca2+和Mg2+的能力降低,但是茎枝向叶片及蕾花铃选择性运输K+、Ca2+和Mg2+的能力升高,这使得叶片和蕾花铃中K+/Na+、Ca2+/Na+和Mg2+/Na+匕值在高盐水平下不至于下降过多。耐盐品种中棉所44茎枝截留Na+的能力、叶片拒Cl-的能力及茎枝向叶片选择性运输K+、Ca2+和Mg2+的能力较强,是其耐盐性较高的重要原因。
     (2)以耐盐性差异较大的两个棉花品种(中棉所44,耐盐品种;苏棉12号,盐敏感品种)为材料,设置对照、盐胁迫、干旱胁迫和盐旱胁迫4个处理组合,研究土壤盐分与干旱对棉花根系生理特性的影响。结果表明,干旱、盐分和盐旱胁迫处理显著降低了根系干物质重,不同处理对根干重的影响以盐旱胁迫最大,干旱次之,盐胁迫最小。三种胁迫处理降低了根系超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和过氧化物酶(POD)活性,导致丙二醛(MDA)含量升高,根系活力降低。胁迫处理下根系质膜磷脂含量量降低,糖脂含量上升,磷脂/糖脂比值降低,同时根系质膜棕榈酸、硬脂酸和油酸含量升高,亚油酸和亚麻酸含量降低,导致双键指数减小,质膜H+-ATPase和Ca2+-ATPase活性降低,导致根系胞质内H+、Ca2+的稳衡被打破,代谢紊乱,根系活力降低。干旱、盐分和盐旱胁迫处理对根系生理特性的影响以盐旱最大,干旱次之,盐胁迫最小。三种胁迫处理下中棉所44根系中相对较高的抗氧化酶活性,较稳定的磷脂/糖脂比值,较高的双键指数保证了较高的质膜H+-ATPase和Ca2+-ATPase活性,是其抗逆性高于苏棉12号的主要原因。
     (3)以耐盐性差异较大的两个棉花品种(中棉所44,耐盐品种;苏棉12号,盐敏感品种)为材料,采用混合盐分,研究土壤盐分对棉花叶片抗氧化酶活性、激素生理、膜生理和光合生理的影响,结果表明,随盐分水平升高,超氧阴离子(O2-·)生成速率和过氧化氢(H2O2)含量迅速升高,达到一定量后趋于稳定,可溶性蛋白含量和超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性均呈先上升后降低趋势,过氧化物酶(POD)活性则呈持续升高趋势。生长素氧化酶(IAAO)活性在5.80dS-1时降低,但随着盐分水平升高而升高;生长素(IAA)含量在5.80dS"1时上升,但随盐分水平上升,IAAO活性升高,导致IAA含量逐渐下降。盐胁迫下棉花功能叶中ABA含量上升;赤霉素(GA3)含量在5.80dS-1时上升,随后逐渐下降;细胞分裂素(ZR)含量在盐胁迫下迅速降低。高于5.80dS-1盐分水时,耐盐品种中棉所44叶片中IAA含量低于苏棉12号,而IAA和GA3含量则低于苏棉12号;品种间ZR含量差异较小。2品种IAA/ABA、GA3/ABA和ZR/ABA比值随盐分水平的升高而下降,耐盐品种中棉所44功能叶中IAA/ABA、GA3/ABA和ZR/ABA比值高于盐敏感品种苏棉12号。盐分处理下,叶片中较高的SOD和POD活性和较强的协调自身激素平衡的能力,是中棉所44在盐胁迫下保持相对较高净光合速率(P。)的重要原因。
     盐分处理下,棉花叶片中棕榈酸、硬脂酸及油酸含量升高,而亚油酸和亚麻酸含量降低,不饱和脂肪酸与饱和脂肪酸含量比值升高,双键指数降低。脂氧合酶活性的差异是导致品种间膜脂过氧化程度不同的主要原因之一,低于13.70ds m-1水平时,膜脂过氧化是活性氧和脂氧合酶共同作用结果,高于此水平时,膜脂过氧化主要由脂氧合酶活性升高导致。双键指数的降低增加了棉花叶片光系统Ⅱ的光抑制,降低了光能转化效率,导致Pn降低。此外,高于5.80dS m-1盐分处理提高了棉花功能叶对日间光辐射强度和温度的敏感程度,导致光温抑制现象加重,并改变了P。和气孔导度(Gs)的日变化趋势,使其由单峰曲线逐渐变为持续下降趋势。耐盐品种中棉所44催化脂肪酸氧化能力较弱,从而有助于维持相对较低的不饱和脂肪酸含量及膜脂过氧化水平。较高的不饱和脂肪酸含量是中棉所44功能叶的净光合速率较苏棉12号高的重要原因之一。
Salinity is considered one of the major limiting factors for plant growth and agricultural productivity. Cotton is one of the most important economic crops in China, which has been reported to be salt tolerant. With the reduction of field area, more and more cotton was planted on saline soil. Thus it is necessary to increase cotton production. The study on the effects of soil salinity on physiological mechanism for cotton yield formation has obvious implication for improving salt resistance and guiding cultural management in cotton.
     1. Fourteen cotton cultivars were used to evaluate of salt tolerance and select the salt tolerance indices of cotton (Gossypium hirsutum L.) at germinating and seedling stage.
     2Two cotton cultivars with different salt-tolerance with different salinity levels were imposed, The study focused on:(1) effects of soil salinity on ions transportation and distribution and plant growth of cotton;(2) effects of soil salinity on root growth, antioxidant enzyme activities, root vigor, the changes of root plasma membrane lipid and fatty acid;(3) responses of photosynthesis of cotton to soil salinity, and the relationship between chlorophyll fluorescence characteristic, antioxidant enzyme activity, endogenous hormone content, fatty acid composition and net photosynthetic rate in cotton founctional leaf. The main results were as follows:
     1. Evaluation of salt tolerance and selection of salt tolerance indices of cotton (Gossypium hirsutum L.) at germinating and seedling stage
     By artificial simulated salt stress with NaCl aqueous solution, we compared salt tolerance of13cotton cultivars at their germinating stage and seedling stage according to subjection values of salt toxicity coefficient of indices determined and the sum subjection values and classified the13cultivars at the two stages by cluster analysis using their single salt toxicity coefficient subjection values and the sum subjection values. Results indicated that, the appropriate concentration of NaCl aqueous solution, for the assessment of salt tolerance, was150mmol L-1; and the capacities of salt tolerance were of differences at different growth stages among these cultivars; of which, CCRI-44and CCRI-177were two salt-tolerant cultivars, showing a stabilized capacity at both germinating and seedling stage; yet CCRI-102, Sumian12and Simian3were the salt-sensitive ones despite of unsteady properties; meanwhile CCRI-103, Dexiamian1and NuCOTN33B were the ones with the steady properties at the medium levels. That the salt toxicity coefficient of germination rate, germination energy, germination index, vigor index and fresh weight could serve as the indicators to determinate salt tolerance in the cultivars at germinating stage. And the coefficient of plant height, leaf expansion rate, shoot dry weight, root dry weight, root vigor and net photosynthetic rate could function as the indexes in the assessment of salt tolerance at seedling stage.
     2. Effect of soil salinity on yield firmation and its physiological mechanism for cotton (Gossypium hirsutum L.)
     (1) In2008-2009, two cotton cultivars with different salt-tolerance with different salinity levels were imposed to determinate the effects of soil salinity on ions absorption and transportation and plant growth of cotton. Results showed that, Soil salinity significantly decreased the dry matter weight of cotton plant, the impact on aerial parts was more significant than on roots. Soil salinity could weaken the water adsorption of roots and suppress water transportation from roots to leaves. Soil salinity had an action on ions distribution in plants, displaying a rising tendency of Na+, Cl-and Mg2+contents and a deducing one of that of K+and Ca2+as the salinity level increasing, meanwhile, the ratios of K+/Na+, Ca2+/Na+and Mg2+/Na+in tissues decreased. As an important ions tank for plants, stem and branch could enhance the salt tolerance magnitude by pumping out K+, Ca2+and Mg2+while pumping in Na+, yet its inability of manipulating the transportation of Cl-to leaves caused a relatively high Cl-content in leaves. With the rising of salt densities, the transportation of K+、Ca2+and Mg2+from roots to ground shoots weakened, while that of selective transportation of K+, Ca2+and Mg2+from ground shoots to leaves and cotton flower buds and bolls was strengthened. Due to the factors as mentioned above, the figures of K+/Na+, Ca2+/Na+and Mg2+/Na+were maintained less significant drops as compared to those at the relatively higher salinity levels. Thus, the relatively higher salt tolerance of CCRI was largely accountable to the high abilities, of stem and branch intercepting Na+, of leaves excluding Cl-, as well as of the transportation of K+, Ca2+and Mg2+from stem and branch to leaf.
     (2) In2008-2009, two cotton cultivars with different salt-tolerance with four treatments (CK, DT, ST and SD) were set to determinate the effects of soil salinity and drought and their combination on cotton root physiological characters and growth. Results showed that, Drought, salinity and their combination treatments reduced cotton root plasma membrane phospholipid content but increased Galactoselipid lipid content, which resulting in decrease in ratio of phospholipid and Galactoselipid. DT, ST and SD decreased activity of antioxidant enzyme, which lead to increasing of lipid peroxidation and changing in membrane fatty acid composition. The relatively high activity of antioxidant and ratio of phospholipid and Galactoselipid was helpful to maintain a relatively high plasma membrane H+-ATPase andCa2+-ATPase. SD had most significant impact on root physiological characters and growth, followed by DT and ST.
     (3) Soil salinity had obviously inhibitory effects on the net photo synthetic rate, especially, of Sumian12. The content of superoxide anions(O2-) and hydrogen peroxide (H2O2) increased with the increasing of salinity level. The content of soluble protein and activities of superoxide dismutase (SOD) and catalase (CAT) increased first and then decreased, activity of peroxidase (POD) showed a continuous increase trend. Activity of IAA oxidase increased at5.80dS"1of salinity level, but decreased with the increase of salinity level. The content of IAA and GA3increased at5.80dS-1, but decreased at higher salinity level. With the soil salinity level increasing, the content of ABA gradually increased, while the content of ZR sharply decreased. The ratios of IAA/ABA、GA3/ABA and ZR/ABA showed dropping trend with increased salt concentration, However, the ratios of CCRI-44were higher than those of Sumian12subject to salt stress. Those results mentioned above suggested that salinity-tolerance cultivar had higher activities of SOD and POD and stronger ability to regulate endogenous hormone contents of functional leaves for adapting salt stress, which was benefit to keep a higher Pn.
     When in saline environments, the contents of saturated fatty acids (palmitic acids and stearic acids) and unsaturated fatty acids (oleic acids) increased, while the contents of high-unsaturated fatty acids (linoleic acids and linolenic acids) decreased; that of short-chain fatty acids (palmitate acids) increased, yet that of long-chain fatty acids decreased; the ratios of the contents of unsaturated fatty acids by saturated ones became larger with a lowering DBI indexes. The disparities of lipoxygenase activities accounted mainly for multiple grades of membrane lipid peroxidation amongst species. When the figures of lipoxygenase activities was smaller than13.70ds m-1, membrane lipid peroxidation was triggered by the combined action of active oxygen and lipoxygenases; otherwise, it was mainly accountable to the rising activities of lipoxygenases. The deduction of DBI indexes initiated the improvement of photo-inhibition of in PS II in cotton leaves and the decreased the conversion efficiency of solar radiation, so the lowered net photosynthetic rates were caused. Soil salinity that higher than0.35%made the diurnal variation patterns of the net photosynthetic rate changed from a one-peak curve to a constantly decreasing one gradually. The relatively low intensity of oxidation catalyzed by CCRI-44was helpful to maintain a relatively low degree of the contents of unsaturated fatty acids and membrane lipid peroxidation intensity. And the relatively high contents of unsaturated fatty acids was one of the important reasons for the higher net photosynthetic rates of CCRI-44than that of Sumian12.
引文
[1]Munns R. Genes and salt tolerance:bringing them together [J]. New Phytologist,2005,167: 645-663
    [2]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845
    [3]俞仁培,陈德明.我国盐渍土资源及其开发利用[J].土壤通报,1999,30(4):158-159
    [4]Vorob'eva L A, Pankova E I. Saline-Alkali Soils of Russia [J]. Eurasian Soil Science,2008, 41(5):457-470
    [5]Hasegawa P M, Bressan R A. Plant cellular and molecular responses to high salinity [J]. Annual Review of Plant Physiology and Plant Molecular Biology.2000,51:463-499
    [6]Ahmad S, Khan N, Zaffarlqbal M, et al. Salt tolerance of cotton(Gossypium hirsutum L.) [J]. Asian journal of Plant Sciences,2002,1(6):715-719
    [7]Walia H, Wilson C, Condamine P, et al. Large-scale expression profiling and physiological characterization of jasmonic acid-mediated adaptation of barley to salinity stress [J]. Plant Cell Environment,2007,30:410-421.
    [8]Athar H R, Khan A, Ashraf M. Exogenously applied ascorbic acid alleviates salt-induced oxidative stress in wheat [J]. Environmental and Experimental Botany,2008,63:224-231
    [9]Xie Z, Duan L, Tian X, et al. Coronatine alleviates salinity stress in cotton by improving the antioxidative defense system and radical-scavenging activity [J]. Journal of Plant Physiology,2008, 165(4):375-84
    [10]王俊娟,叶武威,周大云,等.盐胁迫下不同耐盐类型棉花的萌发特性[J].棉花学报,2007,19(4):315-317
    [11]孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报,1998,10(3):118-124
    [12]辛承松,董合忠,唐薇,等.棉花盐害与耐盐性的生理和分子机理研究进展[J].棉花学报,2005,17(5):309-313
    [13]Munis M F H, Tu L L, Ziaf K, et al. Critical osmotic, ionic and physiological indicators of salinity tolerance in cotton (Gossypium hirsutum L.) for cultivar selection [J]. Pakistan Journal of Botany, 2010,42(3):1685-1694
    [14]Ahmad S, Khan N, Iqbal M Z, et al. Salt tolerance of Cotton (Gossypium hirsutum L.) [J]. Asian journal of Plant Sciences,2002,1(6):715-719
    [15]Chachar Q I, Solangi A G, Verhoef A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L) [J]. Pakistan Journal of Botany,2008,40(1): 183-197
    [16]沈法富,尹承倄,于元杰,等.棉花植株和花粉耐盐性的鉴定[J].作物学报,1997,23(5):620-625
    [17]Ashraf M. Salt tolerance of cotton:some new advances [J]. Critical Reviews in Plant Science.2002, 21(1):1-30
    [18]孙景波,孙广玉,刘晓东,等.盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响[J].应用生态学报,2009,20(3):543-548
    [19]孙小芳,刘友良NaCl胁迫下棉花体内Na+、K+分布与耐盐性[J].西北植物学报.2000,20(6):1027-1033
    [20]张敏,王校常,严蔚东,等.盐胁迫下转基因棉的K+、Na+转运SOD活性的变化[J].土壤学报.2005,42(3):460-467
    [21]叶武威,庞念厂,王俊娟,等.盐胁迫下棉花体内Na+的积累、分配及耐盐机制研究[J].棉花 学报.2006,18(5):279-283.
    [22]朱义,谭贵娥,何池全,等.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响[J].生态学报,2008,27(12):5447-5453.
    [23]Wang Y, Nil N. Changes in chlorophyll, ribulose biphosphate Carboxylase-oxygenase, glycine betaine content, photosynthesis and transpiration in Amaranthus tricolor leaves during salt stress [J]. Journal of Horticultural Science and Biotechnology,2000,75,623-627
    [24]弋良朋,马健,李彦.盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响[J].中国科学D辑,2006,36(增刊11):86-94.
    [25]郑青松,刘兆普,刘友良.等渗的盐分和水分胁迫对芦荟幼苗生长和离子分布的效应[J].植物生态学报,2004,28(6):823-827.
    [26]Zheng Y H, Wang Z L, Sun X Z, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage [J]. Environmental and Experimental Botany.2008,62:129-138
    [27]Tuna A L, Kayab C, Ashraf M, et al. The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress [J]. Environmental and Experimental Botany,2007,59,173-178
    [28]Meloni, D A, Oliva M A, Ruiz H A, et al. Contribution of proline and inorganic solutes to osmotic adjustment in cotton under salt stress [J]. Journal of Plant Nutrition,2001,24:599-612
    [29]Drihem K, Pilibeam D J. Effect of salinity on accumulation of mineral nutrients in wheat grown with nitrate-nitrogen or mixed ammonium:nitrate-nitrogen [J]. Journal of Plant Nutrition,2002,25: 2091-2113
    [30]Mahajan S, Pandey G K, Tuteja N. Calcium- and salt-stress signaling in plants:Shedding light on SOS pathway:Archives of Biochemistry and Biophysics,2008,471:146-158
    [31]Norbert F. Tchiadje T. Strategies to reduce the impact of salt on crops (rice, cotton and chili) production:A case study of the tsunami-affected area of India [J]. Desalination,2007,206:524-530
    [32]朱义,何池全,杜玮,胡一灵,陈宇。盐胁迫下外源钙对高羊茅种子萌发和幼苗离子分布的影响[J].农业工程学报,2007,23(11):134-139.
    [33]Yang X, Lu C. Photosynthes is improved by exogenous glycinebetaine in salt-stressed maize Plants [J]. Plant Physiology.2005,124:343-352.
    [34]Li N, Chen S L, Zhou X Y, et al. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza [J]. Aquatic Botany 2008,88:303-310.
    [35]Qiu N, Lu Q, Lu C. Photosynthesis, photosystem Ⅱefficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centyalasiatica [J]. New Phytolgist.2003 159:479-486.
    [36]Brugnoli E, Bjorkman O. Growth of cotton under continuous salinity stress:influence on allocation pattem, stomatal and non-stomatal components of Photosynthesis and dissipation of excess light energy [J]. Planta,1992,187:335-347.
    [37]Kao W Y, Tsai T T, Tsai H C, et al. Response of three Glyeine species to salt stress [J]. Environmental and Experimental Botany,2006,56:120-125
    [38]薛延丰,刘兆普.不同浓度NaCl和Na2CO3处理对菊芋幼苗光合及叶绿素荧光的影响[J].植物生态学报,2008,32(1):161-167
    [39]Brugnoli E, Lauteri M. Effects of salinity on stomatal conductance, photosynthetic capacity and capacity and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive bean (Phaseilus vulgarisL.) C3 non-halophytes [J]. Plant Physiology,1991,95: 628-635
    [40]唐薇,罗振,温四民,等.干旱和盐胁迫对棉苗光合抑制效应的比较[J].棉花学报,2007,19(1):28-32
    [41]Ennahli S, Earl H J. Physiological limitations to photosynthetic carbon assimilation in cotton under water stress [J]. Crop Science,2005,45:2374-2382
    [42]白文波,李品芳,李保国.NaCl和NaHCO3胁迫下马蔺生长于光合特性的反应[J].土壤学报.2008,45(2):328-335.
    [43]Sayed O H. Chlorophyll fluorescence as a tool in cereal croresearch [J]. Photosynthetica,2003, 41,321-330.
    [44]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448
    [45]Netondo G W, Onyango J C, Beck E. Sorghum and salinity:Ⅱ. Gas exchange and chlorophyll fluorescence of sorghum under salt stress [J]. Crop Science,44:806-811
    [46]Yang X, Lu C. Photosynthesis is improved by exogenous glycinebetaine in salt-stressed maize Plants [J]. Physiologia Plantarum,2005,124:343-352
    [47]Qiu N, Lu C. Enhanced toleranced of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasiatica Plants [J]. Plant and Cell Environment,2003,26: 1137-1145
    [48]Ashraf M, Harris P. Potential biochemical indicators of salinity tolerance in plants [J].Plant Science, 2004,166:3-16
    [49]Neill S, DesikanR, Haneoek J. Hydrogen peroxide signaling [J].Current Opinion in Plant Biology. 2002,5:388-395
    [50]Azevedo Neto A D, Prisco J T, Eneas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize genotypes [J]. Environ Exp Bot,2006,56:87-94
    [51]Eraslan F, Inal A, Savasturk O, et al. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity [J]. Scientia Horticulturae,2007,114,5-10
    [52]Koca H, Bor M, Ozdemir F, et al. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars [J]. Environmental and Experimental Botany,2007, 60:344-351
    [53]Navarro J M. Flores P C. Martinez G V. Changes in the contents of antioxidant compounds in pepper fruits at ripening stages, as affected by salinity [J]. Food Chemistry.2006,96:66-73.
    [54]Perez-Lopez U, Robredo A, Lacuesta M, et al. The oxidative stress caused by salinity in two barley cultivars is mitigated by elevated CO2 [J]. Physiologia Plantarum,2009,135:29-42
    [55]朱会娟,王瑞刚,陈少良,等NaCl胁迫下胡杨iPoulus euphratica)和群众杨{P. popularis)抗氧化能力及耐盐性[J].生态学报,2007,27(10):4113-4121.
    [56]Mandhania S, Mandas S, Sawhney V. Antioxidant defense mechanism under salt stress in wheat seedlings [J]. Biologia Plantarum,2006,50(2):227-231
    [57]De Azevedo Neto A D, Prisco J T, Eneas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes [J]. Environmental and Experimental Botany.2006,56:87-94
    [58]Yazici I, Tiirkan I, Sekmen A H, et al. Salinity tolerance of purslane (Portulaca oleracea L.) is achieved by enhanced antioxidative system, lower level of lipid peroxidation and proline accumulation [J]. Environmental and Experimental Botany,2007,61:49-57
    [59]辛承松,董合忠,唐薇,等.棉花盐害与耐盐性的生理和分子机理研究进展[J].棉花学报,2005,17(5):309-314
    [60]Gosset D R, Millhollon E P, Iucas M C. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivar of cotton [J].Crop Science.1994,34:706-714
    [61]魏国强,朱祝军,方学智,等.NaCl胁迫对不同品种黄瓜幼苗生长、叶绿素荧光特性和活性氧代谢的影响[J].中国农业科学2004,37(11):1754-1759
    [62]Etehadnia M, Waterer D R, Tanino K K. The Method of ABA application affects salt stress responses in resistant and sensitive potato lines [J]. Plant Growth Regulation,2008,27:331-341
    [63]Lu C, Qiu N, Lu Q, et al. Does salt stress lead to increased susceptibility of photosystemll to photoinhibition and changes in photosynthetic pigment composition in halophyte Suaeda salsa grown outdoors [J]. Plant science,2002,163:1063-1068
    [64]Chang Y, Chen S L, Yin W L, et al. Growth, gas exchange, abscisic acid, and calmodulin response to salt stress in three poplars [J]. Journal of Integrative Plant Biology,2006,48 (3):286-293
    [65]Liu F L, Jensen C R, Shahanzari A. ABA regulated stomatal control and photosynthetic water use efficiency of potato(Solanum tuberosum L.) during progressive soil drying [J]. Plant Science,2005, 168:831-836
    [66]Wildinson S, Davies W J. ABA-based chemical signaling:the coordination of responses to stress in plants [J]. Plant Cell Environment,2002,25:195-210
    [67]柯玉琴,潘廷国.NaCl胁迫对甘薯叶片水分代谢、光合速率、ABA含量的影响[J].植物营养与肥料学报,2001,7(3):337-343
    [68]Pei Z M, Murata Y, Bening G, et al. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells [J]. Nature,2000,406:731-734
    [69]Zhang G H, Su Q, An L J. The promoter of ALNHX gene directs tissue-specific expression and is inducible by salt, ABA and drought [J]. Journal of Biotechnology,2008,136S:S168-S168
    [70]Price A H, Hendry G F. Iron-catalysed oxygen radical formation and its possible contribution to drought damage in nine native grasses and three cereals [J]. Plant Cell Enviroment,2006,14: 477-484
    [71]Yin C Y, Duan B L, Wang X, et al. Morphological and physiological responses of two contrasting Poplar species to drought stress and exogenous abscisic acid application [J]. Plant Science,2004, 167:1091-1097
    [72]Popova L P, Stoinova Z G, Maslenkova L T. Involvement of abscisic acid in photosynthetic process in Hordeum vulgareL during salinity stress [J]. Plant Growth Regulation,1995,14:211-218
    [73]张岁岐,山仑,薛青武.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,2000,6(2):147-151
    [74]董宝娣,刘孟雨,张正斌.水分胁迫条件下不同抗旱类型小麦灌浆初期内源激素的变化[J].麦类作物学报,2007,27(5):852-858
    [75]温福平,张檀,张朝晖,等.赤霉素对盐胁迫抑制水稻种子萌发的缓解作用的蛋白质组分析[J].作物学报,2009,35(3):483-489
    [76]KuiperD, Schuit J, KuiperP J C. Actual cytokinin concentrations in plant tissues as an indicator for salt resistance in cereals [J]. Plant Soil,1990,123:243-250
    [77]朱速松,刘友良.6-苄基嘌呤对大麦耐盐性的调节机理[J].南京农业大学学报,1996,19(3):12-16
    [78]Wang Y Y, Zhou R, Zhou X. Endogenous levels of ABA and Cytokinins and their relation to stomatal behavior in dayflower (Commelina communis L.) [J]. Journal of Plant Physiology,1994, 144:45.48
    [79]贺继临,刘鸿先.干旱胁迫下不同抗旱性小麦内源激素含量的变化与抗旱力强弱的关系[J].热带亚热带植物学报,1998,6(4):341-346
    [80]王玮,李德全,杨兴洪,等.水分胁迫对不同抗旱性小麦品种芽根生长过程中IAA、ABA含量的影响[J].作物学报,2000,26(6):737-742
    [81]Guinn G, Brummett D L. Leaf age, decline in photosynthesis, and changes in abscisic acid, indole-3-acetic acid, and cytokinin in cotton leaves [J]. Field Crop Research,1993,32:269-275
    [82]张敏,蔡瑞国,李慧芝,等.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J].生态学报,2008.28(1):310-320
    [83]Strompen G, Dettmer J, Stierhof Y D, et al. Arabidopsis vacuolar H+-ATPase subunit E isoform 1 is required for Golgi organization and vacuolar function in embryogenesis [J]. Plant Journal,2005,41: 125-132
    [84]Zhang Y, Wang L, Liu Y. Nitric oxide enhance salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+antiport in the tonoplast [J]. Planta,2006,224(3):545-555
    [85]Han N, Shao Q, Lu C M, et al. The leaf tonoplast V-H+-ATPase activity of a C3 halophyte Suaeda salsa is enhanced by salt stress in a Ca-dependent mode [J]. Journal of Plant Physiology,2005,162: 267-274
    [86]郭房庆,黄昊,汤章城.NaCl胁迫对小麦抗盐突变体根液泡膜H+-ATP酶H+-PP酶活性的影响[J].植物生理学报,1999,25(4):395-400.
    [87]王宝山,邹琦NaCl胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响[J].植物生理学报,2000,26(3):181_188.
    [88]Sanders D, Brownlee C, Harper J F. Communicating with calcium [J]. Plant Cell,1999,11:691-706
    [89]Zhao F, Wang Z, Zhang Q, et al. Analysis of the physiological mechanism of salt tolerant transgenic rice carrying a vacuolar Na+/H+antiporter gene from Suaeda salsa [J]. Planta,2006,119(2):95-104
    [90]Chen S, Li J, Fritz E, et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress [J]. Forest Ecology and Management,2002,168(1): 217-230
    [91]Chen S, Li, J, Wang S, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation and transport in regenerated plants of Populus euphratica and P. tomentosa [J]. Canadian Journal of Forest Research,2003,33 (6):967-975
    [92]Janicka-Russak M, Klobus G. Modification of plasma membrane and vacuolar H+-ATPase in response to NaCl and ABA [J]. Journal of Plant Physiology,2006,141:97-107
    [93]Wang X Q, Ullah H, Jones A M. G protein regulation channels and abscisic acid signaling in Arabidopsis guard cells [J]. Science,2001,292:2070-2072
    [94]Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell [J]. Annuals of Botany,2009,103,551-560
    [95]Netting AG. pH, abscisic acid and the integration of metabolism in plants under stressed and non-stressed conditions:cellular responses to stress and their implication for plant water relations [J]. Journal of Experimental Botany,2000,51(343):147-158
    [96]Nakamura Y, Kasamo K, Shimosato N, et al. Stimulation of the extrusion Of protons and H+-ATPase activites with the decline in Pyrophosphatase activity of the tonoplast in intact mung bean roots under high-NaCl stress and its relation to external levels of Ca2+ions [J]. Plant Cell and Physiology,1992,33:139-149
    [97]Fukuda A, Chiba K, Maeda M, et al. Effect of salt and osmotic stresses on the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiport from barly [J]. Journal of Experimental Botany,2004,55(397):585-594
    [98]Guo S L, Yin H B, Zhang X, et al. Molecular Cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte tolerance of Arobidopsis [J]. Plant Molecular Biology,2006,60:41-50
    [99]Brini F, Gaxiola R A, Berkowitz G A, et al. Cloning and characterization of a wheat vacuolar cation/Proton antiporter and pyrophoshatase proton pump [J]. Plant Physiology and Biochemistry, 2005,43:347-354
    [100]Upchurch R G. Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress [J]. Biotechnol Letters,2008,30:967-977
    [101]Xin Z, Bmwse J. Cold comfort farm:the acclimation of plants to freezing temperatures [J]. Plant Cell Environ.2000,23:893-902
    [102]Palta J P, Whitaker B D, Weiss L S. Plasma membrane lipids associated with genetic variability in freezing tolerance and cold acclimation of Solaum species [J]. Plant Physiology,1993,103,793:803
    [103]Uemura M, Joseph R A, Steponkus P L. Cold acclimation of Arabidopsis thaliana:Effect on plasma membrane composition and freezing induced lesions [J]. Plant Physiology,1995,109:15-30
    [104]Uemura M, Steponkus P L. Effect of cold acclimation on the lipid composition of the inner and outer membrane of the chloroplast envelope isolated from rye leaves [J]. Plant Physiology,1997, 114:1493-1500.
    [105]杨玲.不同低温处理对黄瓜子叶极性脂组成的影响[J].园艺学报,2001,28(1):36-40
    [106]Yamada M. Lipid transfer proteins in plants and microorganisms [J]. Plant Cell Physiology,1992, 33(1):462-471
    [107]Kodama H, Horiguchi G, NishiuchiT, et al. Fatty acid desaturation during chilling acclimation is one of the factors involved in conferring low-temperature tolerance to young tobacco leaves [J]. Plant Physiology,1995,107(4):1177-1185.
    [108]Mansour M M F, van Hasselt P R, Kuiper P J C. Plasma membrane lipid alterations induced by NaCl in winter wheat roots [J]. Physiologia Plantarum,1994,92:473-478
    [109]杨秀梅,刘训言,董新纯,等.类囊体膜脂不饱和度的增加对番茄耐盐性的影响[J].中国农业科学,2008,41(10):3177-3183
    [110]Vargas S R, Sanchez-GarciiA, Martinez-Rivas J M, et al. Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress [J]. Applied and Environmental Microbiology,2007,73:110-116
    [111]Zhang M, Barg R, Yin M, et al. Modulated fatty acid desaturation via overexpression of two distinct ω-3 desaturases differentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants [J]. Plant Journal,2005,44:361-371
    [112]孟亚利,王立国,周治国,等.麦棉套作复合根系群体对棉花根系生长的影响[J].中国农业科学,2006,39(11):2228-2236
    [113]Liu R X, Zhou Z G, Guo W Q, et al. Effects of nitrogen and soil water content on roots development of cotton (Gossypium hirsutum L.) [J]. Agricultural Water Management,2008,95: 1261-1270
    [114]陆卫平,张其龙,卢家栋,等.玉米群体根系活力与物质积累及产量的关系[J].作物学报,1999,25(6):718-723
    [115]段九菊,郭世荣,康云艳,等.盐胁迫对黄瓜幼苗根系生长和多胺代谢的影响[J].应用生态学报,2008
    [116]弋良朋,马健,李彦.盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响[J].中国科学D辑,2006,36(增刊11):86-94
    [117]Rodriguez P, Morales D. Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants [J]. Journal of Agriculture Science,1997,128:439-444
    [118]王素平,郭世荣,李璟,等.盐胁迫对黄瓜幼苗根系生长和水分利用的影响[J].应用生态学报,2006,17(10):1883-1888
    [119]Gregory P J. Root, rhizosphere and soil:the route to a batter understanding of soil science [J]. European Journal of Soil Science,2005,56:1-11
    [120]陈亚华,沈振国,刘友良,等.NaCl胁迫下棉花幼苗的离子平衡[J].棉花学报,2001,13(4):225-229
    [121]Demiral T, Turkan I. Comparative lipid peroxidation, antioxidant defense systems and proline content in roots of two rice cultivars differing in salt tolerance [J]. Environmental and Experimental Botany,2005,53:247-257
    [122]陈海燕,崔香菊,陈熙,等.盐胁迫及La3+对不同耐盐性水稻根中抗氧化酶及质膜H+-ATPase的影响[J].作物学报,2007,33(7):1086-1093
    [123]Sibole J V, Cabot C, Michalke W. Relationship between expression of the PM H+-ATPase, growth and ion partitioning in the leaves of salt treated Medicago species [J]. Planta,2005,221:557-566
    [124]Krishnamurthy P, Ranathunge K, Franke R, et al. The role of root apoplastic transport barriers in salt tolerance of rice (Oryza sativa L.) [J]. Planta,2009,230:119-1349
    [1]Munns R. Genes and salt tolerance:Bringing them together. New Phytologist,2005,167:645-663
    [2]关元秀,刘高焕,刘庆生.等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,5(1):46-52
    [3]Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annual Reviews of Plant Bioogyl 2008,59: 651-681
    [4]孙小芳,刘友良,陈沁.棉花耐盐性研究进展[J].棉花学报,1998,10(3):118-124
    [5]辛承松,董合忠,唐薇,等.棉花盐害与耐盐性的生理和分子机理研究进展[J].棉花学报,2005,17(5):309-313
    [6]Casenave E C, Degano C A, Toselli ME, et al. Statistical studies on anatomical modifications in the radicle and hypocotyl of cotton induced by NaCl [J]. Biological Research.1999,32 (4):289-295
    [7]Chachar Q I, Solangi A G, Verhoef A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L) [J]. Pakistan Journal of Botany,2008,40(1): 183-197
    [8]王俊娟,叶武威,周大云,等.盐胁迫下不同耐盐类型棉花的萌发特性[J].棉花学报,2007,19(4):315-317
    [9]Ahmad S, Khan N, Iqbal M Z, et al. Salt tolerance of Cotton (Gossypium hirsutum L.) [J], Asian journal of Plant Sciences,2002,1(6):715-719
    [10]Ashraf M. Salt tolerance of cotton:some new advances [J]. Critical Reviews in Plant Science.2002, 21(1):1-30
    [11]孙小芳,刘有良.棉花品种耐盐性鉴定指标可靠性的检验[J].作物学报,2001,27(6):794-802
    [12]沈法富,尹承倄,于元杰,等.棉花植株和花粉耐盐性的鉴定[J].作物学报,1997,23(5):620-625
    [13]Kao W Y, Tsai T T, Tsai H C, et al. Response of three Glyeine species to salt stress [J]. Environmental and Experimental Botany,2006,56:120-125
    [14]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:164-167
    [15]Walch-liu P, Neumann G, Bangerth F. Rapid effects of nitrogen form on leaf morphogenesis in tobacco [J]. Journal of Experimental Botany,2000,51(343):227-237
    [16]周广生,梅方竹,周竹青,等小麦不同品种耐湿性生理指标综合评价及其预测[J].中国农业科学,2003,36(1):1378-1382
    [17]马洪雨,王瑞军,王显生,等黄麻种质芽期和苗期耐盐性的鉴定与评价[J].植物遗传资源学报,2009,10(2):236-243
    [18]田伯红,王素英,李雅静,等.谷子地方品种发芽期和苗期对NaCl胁迫的反应和耐盐品种筛选[J].作物学报,2008,34(12):2218-2222
    [19]Dkhil B B, Denden M. Salt stress induced changes in germination, sugars, starch and enzyme of carbohydrate metabolism in Abelmoschus esculentus L. (Moench.) seeds [J]. African Journal of Agricultural Research,2010,5(12):1412-1418
    [20]Rubio-Casal A E, Castillo J M, Luque C J, et al. Influence of salinity on germination and seeds viability of two primary colonizers of Mediterranean salt pans [J]. Journal of Arid Environments, 2003,53:145-154
    [21]董志刚,程智慧.番茄品种资源芽苗期和幼苗期的耐盐性及耐盐指标评价[J].生态学报.2009,29(3):1348-1355
    [22]Chachar Q I, Solangi A G, Verhoef A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L.) [J]. Pakistan Journal of Botany,2008,40(1):183-197
    [23]柯玉琴,潘廷国.NaCl胁迫对甘薯苗期生长、IAA代谢的影响及其与耐盐性的关系[J].应用生态学报,2002,13(10):1303-1306
    [24]Chang Y, Chen S L, Yin WL, et al. Growth, gas exchange, abscisic acid, and calmodulin response to salt stress in three poplars [J]. Journal of Integrative Plant Biology,2006,48 (3):286-293
    [25]杨晓英,章文华,王庆亚,等.江苏野生大豆的耐盐性和离子在体内的分布及选择性运输[J].应用生态学报,2003,14(12):2237-2240
    [26]Liu R X, Zhou Z G, Guo W Q, et al. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants [J]. Agricultural Water Management,2008, 95:1261-1270
    [27]Ashraf M, Foolad M R. Roles of glycine betaine and proline in improving plant abiotic stress resistance [J]. Environmental and Experimental Botany,2007,59:206-216
    [28]Ghas M A, Parre E, Debez A, et al. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and proline accumulation [J]. Journal of Plant Physiology,2008,165:588-599.
    [29]Munis M F H, Tu L L, Ziaf K, et al. Critical osmotic, ionic and physiological indicators of salinity tolerance in cotton (Gossypium hirsutum L.) for cultivar selection [J]. Pakistan Journal of Botany, 2010,42(3):1685-1694
    [30]Eraslan F, Inal A, Savasturk O, et al. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity [J]. Scientia Horticulturae,2007,114,5-10
    [1]Munns R. Genes and salt tolerance:Bringing them together [J]. New Phytologist,2005,167: 645-663
    [2]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地调查研究[J].2001,遥感学报,5(1):46-52
    [3]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845
    [4]Munns R. Comparative physiology of salt and water stress [J]. Plant, Cell and Environment,2002,25, 239-250
    [5]Zhu J K. Regulation of ion homeostasis under salt stress [J]. Current Opinion in Plant Biology,2003, 6:441-445
    [6]朱义,谭贵娥,何池全,崔心红,张群.盐胁迫对高羊茅(Festuca arundinacea)幼苗生长和离子分布的影响.生态学报[J],2008,27(12):5447-5453.
    [7]赵旭,王林权,周春菊,等.盐胁迫对四种基因型冬小麦幼苗Na+、K+吸收和累积的影响[J].生态学报,2007,27(1):205-213
    [8]李品芳,白文波,杨志成.NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响[J].中国农业科学,2005,38(、7):1458-1565
    [9]Yamaguchi T, Blumwald E. Developing salt-tolerant crop plants:challenges and opportunities [J]. Trend in Plant Science,2005,10(12):615-620
    [10]Lin H X, Zhu M Z, Yano M, et al. QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance [J]. Theoretical and Applied Genetics,2004,108:253-260.
    [11]Leonova T G, Goncharova E A, Khodorenko A V, et al. Characteristics of salt-tolerant and salt-susceptible cultivars of barley [J]. Russian Journal of Plant Physiology,2005,52:774-778
    [12]Li N, Chen S L, Zhou X Y, et al. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza [J]. Aquatic Botany,2008,88:303-310
    [13]Chachar Q I, Solangi A G, Verhoef A. Influence of sodium chloride on seed germination and seedling root growth of cotton (Gossypium hirsutum L) [J]. Pakistan Journal Botany,2008,40(1): 183-19
    [14]Meloni D A, Oliva M A, Martinez C A. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress [J]. Environment and Experiment Botany,2003,49:69-76
    [15]杨淑萍,危常州,梁永超.盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响[J].中国农业科学,2010,43(8):1585-1593
    [16]Garratt L C, Janagoudar B S, Lowe K C, et al. Salinity tolerance and antioxidant status in cotton cultures [J]. Free Radical Biology and Medicine,2002,33(4):502-511
    [17]Ashraf M, Ahmad S. Influences of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerances and salt-sensitive lines of cotton (Gossypium hirsutum L.) [J]. Field Crops Research,2000,66:115-127
    [18]孙小芳,刘友良.NaCl胁迫下棉花体内Na+、k+分布与耐盐性[J].西北植物学报.2000,20(6):1027-1033
    [19]Zheng YH, Wang ZL, Sun XZ, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage [J]. Environmental and Experimental Botany.2008,62:129-138
    [20]Liu J, Guo WQ, Shi DC. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions [J]. Photosynthetica,2010,48 (2):278-286
    [21]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2004:288-301
    [22]陈惠哲,Ladatko N,朱德峰,等.盐胁迫下水稻苗期Na+和K+吸收与分配规律的初步研究[J].植物生态学报,2007,31(5):937-945
    [23]Ahmad S, Khan N, Zaffarlqbal M, et al. Salt tolerance of Cotton(Gossypium hirsutum L.) [J]. Asian journal of Plant Sciences,2002,1(6):715-719
    [24]Chen S, Li J, Fritz E, Wang S, Huttermann A. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress [J]. Forest Ecology and Management,2002,168(1):217-230
    [25]李品芳,白文波,杨志成.NaCl胁迫对苇状羊茅离子吸收与运输及其生长的影响[J].中国农业科学,2005,38(7):1458-1565
    [26]Bonser A M, Lynch J P, Snapp S. Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris [J]. New Phytologist,1996,132:281-288
    [27]Reddy K R, Zhao D L. Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton [J]. Field Crops Research,2005,94: 201-213
    [28]Gopal R, Dube B K, Sinha P, Chatterjee C. Potassium stress changes in cotton metabolism [J]. Annual of Agricultural Research,2001,22:253-257
    [29]Chinnusamy V, Jagendorf A, Zhu J K. Understanding and improving salt tolerance in plants [J]. Crop Science,2005,45:437-448
    [30]He T, Cramer GR. Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity [J]. Plant and Soil,1992,139:285-294
    [31]Zhang Y, Wang L, Liu Y. Nitric oxide enhance salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast [J]. Planta,2006,224(3):545-555
    [32]李卫欣,陈贵林,任良玉,等.氯化钠胁迫对不同品种南瓜幼苗阳离子含量的影响[J].应用生态学报,2008,19(3):569-574
    [1]Zhu J K. Plant salt tolerance [J]. Trends in Plant Science,2001,6:66-71.
    [2]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地调查研究[J].遥感学报,2001,5(1):46-52
    [3]Munns R. Comparative physiology of salt and water stress [J]. Plant Cell and Environment,2002,25: 239-250.
    [4]Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism [J]. Nature,2009,458: 1131-1135
    [5]Leekumjorn s, Cho H J, Wu Y F, et al. The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes [J]. Biochimica et Biophysica Acta, 2009,1788:1508-1516
    [6]Guschina I A, Harwood J L. Mechanisms of temperature adaptation in poikilotherms [J]. FEBS,2006, 580:5477-5483
    [7]Liao F Y, Li H M, He P. Effect of high irradiance and high temperature on chloroplast composition and structure of Dioscorea zingiberensis [J]. Photosynthetica,2004,42(4):487-492
    [8]Khozin-Goldberg I, Cohen Z. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus [J]. Phytochemistry,2006, 67:696-701
    [9]Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annual Review of Plant Biology,2008,59: 651-681
    [10]Sofo A, Dichio B, Xiloyannis C, et al. Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress [J]. Physiologia Plantarum,2004,121:58-65.
    [11]Isamah G K. ATPase, peroxidase and lipoxygenase activity during post-harvest deterioration of cassava (Manihot esculenta Crantz) root tubers [J]. International Biodeterioration and Biodegradation,2004,54:319-323
    [12]由淑贞,杨洪强,张龙,等.镉胁迫对平邑茶脂肪酸构成及脂质过氧化的影响[J].应用生态学报,2009,20(8):2032-2037
    [13]Miyao M, Murata N. The mode of binding of three extrinsic proteins of 33kDa,23kDa and 18kDa in the photosystem Ⅱ complex of spinach [J]. Biochimeca et Biophysica Acta,1989,977:315-321.
    [14]Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem Ⅱ under environmental stress [J]. Biochimica et Biophysica Acta,2007,1767(6):414-421
    [15]Allakhverdiev S I, Kinoshita M, Inaba M, Suzuki I, Murata N. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt induced damage in Synechococcus [J]. Plant Physiology,2001,125:1842-1853.
    [16]Somerville C, Browse J. Plant lipids:Metabolism, mutants and membranes [J]. Science,1991,252: 80-87.
    [17]Falcone D, Ogas J P, Somerville C R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition [J]. BMC Plant Biology,2004.4(1):1-17
    [18]Li G, Wan SW, Zhou J, et al. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels [J]. Industrial Crops and Products,2010,31:13-19
    [19]Samala S, Yan J, Baird W V. Changes of polar lipid fatty acid composition during cold acclimation in "Midiron" and "U3" bermudagrass [J]. Crop Science,1998,38:188-195
    [20]苏维埃,王文英,李锦树.植物类脂及脂肪酸的分析技术[J].植物生理学通讯,1980,(3):54-60.
    [21]Sui N, Liu X Y, Wang N. et al. Response of xanthophylls cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene [J]. Photosynthetic,2007,45:447-454
    [22]Moloi M J, Westhuizen A J. The reaetive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid [J]. Journal of Plant Physiology,2006,163:1118-1125
    [23]Liu R X, Zhou Z G, Guo W Q, et al. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants [J]. Agricultural water management,2008, 95:1261-1270
    [24]Liavonchanka A, Feussner I. Lipoxygenases:Occurrence, functions and catalysis [J]. Journal of Plant Physiology,2006,163:348-57
    [25]Azevedo Neto A D, Prisco J T, Eneas-Filho J, et al. Effect of salt stress on antioxidative enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt sensitive maize genotypes [J]. Environmental and Experimental Botany,2006,56:87-94
    [26]Mansour M M F, van Hasselt P R, Kuiper P J C. Plasma membrane lipid alterations induced by NaCl in winter wheat roots [J]. Physiologia Plantarum,1994,92:473-478
    [27]Foryer C H, Noctor G. Oxygen processing in photosynthesis:regulation and signaling [J]. New Phytologist.2000,146,359-388.
    [28]Quartacci M F, Cosi E, Nacari-Izzo F. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots ofwheat grown under copper deficiency or excess [J]. Journal of Experimental Botany,2001,52:77-84
    [29]Garratt L C, Janagoudar B S, Lowe K C, et al. Salinity tolerance and antioxidant status in cotton cultures [J]. Free Radical Biology and Medicine,2002,33(4):502-511
    [30]Zhang M P, Zhang C J, Yu G H, et al. Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage [J]. Journal of Plant Physiology,2010, 167(4):277-285
    [31]Zhu S Q, Yu C M, Liu X Y, et al. Changes in unsaturated levels of fatty acids in thylakoid PSⅡ membrane lipids during chilling-induced resistance in rice [J]. Journal of Integrative Plant Biology, 2007,49 (4):463-471
    [32]Allakhverdiev S I, Kinoshita M, Inaba M, et al. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt induced damage in Synechococcus [J]. Plant Physiology, 2001,125:1842-1853
    [33]Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem Ⅱ under environmental stress [J]. Biochimica et Biophysica Acta,2007,1767(6):414-421
    [34]Vijayan P, Browse J. Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation [J]. Plant Physiology,2002.129:876-885
    [1]Munns R. Genes and salt tolerance:Bringing them together [J]. New Phytologist,2005,167: 645-663
    [2]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地调查研究[J].2001,遥感学报,5(1):46-52
    [3]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报,2008,45(5):837-845
    [4]Norbert F, Tchiadje T. Strategies to reduce the impact of salt on crops (rice, cotton and chili) production:A case study of the tsunami-affected area of India [J]. Desalination,2007,206:524-530
    [5]Brown C E, Pezeshki S R, Delaune R D. The effects of salinity and soil drying on nutrient uptake and growth of Spartina alterniflora in a simulated tidal system [J]. Environmental and Experimental Botany,2006,58:140-148
    [6]Ashraf M, Ahmad S. Influences of sodium chloride on ion accumulation, yield components and fibre characteristics in salt-tolerances and salt-sensitive lines of cotton (Gossypium hirsutum L.) [J]. Field Crops Research,2000,66:115-127
    [7]Li N, Chen S L, Zhou X Y, et al. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza. Aquatic Botany,2008,88:303-310
    [8]Kao W Y, Tsai T T, Tsai H C, et al. Response of three Glyeine species to salt stress [J]. Environmental and Experimental Botany,2006,56:120-125
    [9]Maricle B R, Cobos D R, Campbell C S. Biophysical and morphological leaf adaptations to drought and salinity in salt marsh grasses [J]. Environmental and Experimental Botany,2007,60:458-467
    [10]Wang R G, Chen S L, Deng L, et al. Leaf photosynthesis, fluorescence response to salinity and the relevance to chloroplast salt compartmentation and anti-oxidative stress in two poplars [J]. Trees, 2007,21:581-591
    [11]杨福,梁正伟,王志春,等.苏打盐碱胁迫下水稻净光合速率日变化与其影响因子的关系[J].中国水稻科学,2007,21(4):386-390
    [12]齐学礼,胡琳,董海滨,等.强光高温同时作用下不同小麦品种的光合特性[J].作物学报,2008,34(1):2196-3201
    [13]Monneveux P, Pastenes C, Reynolds M P. Limitations to photosynthesis under light and heat stress in three high-yielding wheat genotypes [J]. Journal of Plant Physiology,2003,160:657-666
    [14]Qiu N, Lu C. Enhanced tolerance of photosynthesis against high temperature damage in salt-adapted halophyte Atriplex centralasistica plants [J]. Plant, Cell and Environment,2003,26(7): 1137-1145
    [15]刘玉华,贾志宽,史纪安,等.早作条件下紫花苜蓿光合蒸腾日变化与影响因子关系[J].生态学报,2006,26(1):1468-1497
    [16]焦健,高庆荣,张爱民,等.不同小麦雄性不育类型光合、生理参数日变化研究[J].作物学报,2007,33(8):1267-1271
    [17]Liu M Z, Jiang G M, Li Y G, et al. Gas exchange, photochemical efficiency, and leaf water potential in three Salix species [J]. Photosynthetica,2003,41(3):393-398
    [18]姜卫兵,高光林,戴美松,等.盐胁迫对不同砧穗组合梨幼树光合日变化的影响[J].园艺学报,2003,30(6):653-657
    [19]王标,虞木奎,孙海菁,等.盐胁迫对不同品种麻栎叶片光合特征的影响[J].应用生态学报,2009,20(8):1817-1824
    [20]Li G, Wan S W, Zhou J, et al. Leaf chlorophyll fluorescence, hyperspectral reflectance, pigments content, malondialdehyde and proline accumulation responses of castor bean (Ricinus communis L.) seedlings to salt stress levels [J]. Industrial Crops and Products,2010,31:13-19
    [21]Zheng Y H, Wang Z L, Sun X Z, et al. Higher salinity tolerance cultivars of winter wheat relieved senescence at reproductive stage [J]. Environmental and Experimental Botany.2008,62:129-138
    [22]Liu J, Guo W Q, Shi D C. Seed germination, seedling survival, and physiological response of sunflowers under saline and alkaline conditions [J]. Photosynthetica,2010,48 (2):278-286
    [23]He T, Cramer G R. Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity [J]. Plant and Soil,1992,139:285-294
    [24]Wang R L, Hua C, Zhou F, et al. Effects of salt stress on fatty acid composition of thylakoid membrane of two rice cultivars differing in salt tolerance [J]. Agricultural Science & Technology. 2008,9(4):8-13
    [25]Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview [J]. Archives of Biochemistry and Biophysics,2005,444:139-158
    [26]Zhu JK. Regulation of ion homeostasis under salt stress [J]. Current Opinion in Plant Biology,2003, 6:441-445
    [27]张旺锋,勾玲,王振林,等.氮肥对新疆高产棉花叶片叶绿素荧光动力学参数的影响[J].中国农业科学,2003,36(8):893-898
    [28]刘瑞显,王友华,陈兵林,等.花铃期干旱胁迫下氮素水平对棉花光合作用与叶绿素荧光特性的影响[J].作物学报,2008,34(4):675-683
    [29]Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis [J]. Annual. Review of Plant Physiology,1982,33:317-345
    [30]张守仁.叶绿素荧光参数的意义及讨论.植物学通报[J],1999,16(4):444-448
    [31]Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem II under environmental stress [J]. Biochimica et Biophysica Acta,2007,1767(6):414-421
    [1]Zhu J K. Plant salt tolerance [J]. Trends in Plant Science,2001,6:66-71.
    [2]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地调查研究[J].遥感学报,2001,5(1):46-52
    [3]Munns R. Comparative physiology of salt and water stress [J]. Plant Cell and Environment,2002, 25:239-250.
    [4]Neill S, DesikanR, Haneoek J. Hydrogen Peroxide signaling [J]. Current Opinion in Plant Biology. 2002,5:388-395
    [5]Etehadnia M, Waterer D R, Tanino K K. The method of ABA application affects salt stress responses in resistant and sensitive potato lines [J]. Plant Growth Regulation,2008,27:331-341
    [6]Ullah I, Mehboob-ur-Rahman, Ashraf M, et al. Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.):Leaf gas exchange and productivity [J]. Floro,2008,203:105-115
    [7]Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annual Review of Plant Biology,2008, 59:651-681
    [8]Chaves M M, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell [J]. Annuals of Botany,2009,103,551-560
    [9]Else M A, Tiekstra E A, Croker J S, et al. Stomatal closure in flooded tomato plants involves abscisic acid and a chemically unidentified anti-transpirant in xylem sap [J]. Plant Physiology,1996, 112:239-247
    [10]Zhang J H, Jia W S, Yang J C, et al. Role of ABA in integrating plant responses to drought and salt stresses [J]. Field Crops Research,2006,97:111-119
    [11]刘瑞显,郭文琦,陈兵林,等.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J].作物学报,2008,34(9):1598-1607
    [12]Lin C C, Kao C H. Abscisic acid induced changes in cell wall poxidase activity and hydrogen peroxide level in roots of rice seedlings [J]. Plant Science,2001,160:323-329
    [13]Guinn G, Brummett D L. Leaf age, decline in photosynthesis, and changes in abscisic acid, indole-3-acetic acid, and cytokinin in cotton leaves [J]. Field Crop Research,1993,32:269-275
    [14]石松利,王迎春,周健华,等.盐分生境下长叶红砂和红砂内源激素含量及其生境差异性[J].应用生态学报,2011,22(2):350-356
    [15]周宣君,刘玉,赵丹华,等.盐胁迫下盐芥和拟南芥内源激素质量分数变化的研究[J].北京师范大学学报(自然科学版),2007,43(6):657-660
    [16]Kuiper D, Schuit J, Kuiper P J C. Actual cytokinin concentrations in plant tissues as an indicator for salt resistance in cereals [J]. Plant Soil,1990,123:243-250
    [17]Bair R, Jones J D G. Role of plant hormones in plant defence responses [J]. Plant Molecular Biology,2009,69:473-488
    [18]张敏,蔡瑞国,李慧芝,等.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J].生态学报,2008.28(1):310-320
    [19]Tan W, Liu J, Dai T. et al. Allerations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging [J]. Photosynthetica.2008,46:21-27
    [20]Liu R X, Zhou Z G, Guo W Q, et al. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants [J]. Agricultural water management,2008, 95:1261-1270
    [21]Sui N, Liu X Y, Wang N, et al. Response of xanthophylls cycle and chloroplastic antioxidant enzymes to chilling stress in tomato over-expressing glycerol-3-phosphate acyltransferase gene [J]. Photosynthetic,2007,45:447-454
    [22]Moloi M J, Westhuizen A J. The reaetive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid [J]. Journal of Plant Physiology,2006,163:1118-1125
    [23]李秉真.苹果梨叶片中IAA氧化酶的测定.光谱学与光谱分析[J],2001,21(6):837-839
    [24]谢君.高效液相色谱测定多种植物内源激素方法研究[J].四川农业大学学报.1997,15(3):297-299
    [25]Eraslan F, Inal A, Savasturk O, Gunes A. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity [J]. Scientia Horticulturae,2007,114,5-10
    [26]Koca H, Bor M, Ozdemir F, Tiirkan I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars [J]. Environmental and Experimental Botany, 2007,60:344-351
    [27]Neill S, DesikanR, Haneoek J. Hydrogen Peroxide signalling [J]. Current Opinion in Plant Biology. 2002,5:388-395
    [28]Mandhania S, Mandas S, Sawhney V. Antioxidant defense mechanism under salt stress in wheat seedlings [J]. Biologia Plantarum,2006,50(2):227-231
    [29]Popova L P, Stoinova Z G, Maslenkova L T. Involvement of abscisic acid in photosynthetic process in Hordeum vulgareL during salinity stress [J]. Plant Growth Regulation,1995,14:211-218
    [30]Hu X, Jiang M, Zhang A, et al. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves [J]. Planta,2005,223: 57-68
    [31]Parmar N G. Chand S V. Effects of mercury and chromium on peroxidase and IAA oxidase enzymes in the seedlings of Phaseolus vulgaris [J]. Turkish Journal of Biology,2005,29:15-21
    [32]Yuan C X. Ding J. Effects of water stress on the content of IAA and the activities of IAA oxidase and peroxidase in cotton leaves [J]. Acta Phytophysiologica Sinica,1990,16(2):179-184
    [33]Yakhin O I, Yakhin I A, Lubyanov A A, Vakhitov V A. Effect of cadmium on the content of phytohormones and free amino acids, its cytogenetic effect, and accumulation in cultivated plants [J]. Doklady Biological Sciences,2009,426:714-717.
    [34]袁祖丽,吴中红.镉胁迫对烟草根抗氧化能力和激素含量的影响[J].生态学报,2010,30(15):4109-4118
    [35]Wang Y Y, Zhou R, Zhou X. Endogenous levels of ABA and cytokinins and their relation to stomatal behavior in dayflower (Commelina communis L.) [J]. Journal of Plant Physiology,1994, 144:45.48
    [1]Zhu J K. Plant salt tolerance [J]. Trends in Plant Science,2001,6:66-71.
    [2]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地调查研究[J].遥感学报,2001,5(1):46-52
    [3]Munns R. Comparative physiology of salt and water stress [J]. Plant Cell and Environment,2002,25: 239-250.
    [4]Maggio A, De Pascale S, Ruggiero C, et al. Physiological response of field-grown cabbage to salinity and drought stress [J]. European Journal of Agronomy,2005,23:57-67
    [5]Wang W, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance [J]. Planta,2003,218:1-14
    [6]Astolfi S, Zuchi S, Passera C. Effect of cadmium on H+-ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants [J]. Plant Science, 2005,169:361-368
    [7]Singh R, Kaushik S, Wang Y, et al. Autophagy regulates lipid metabolism [J]. Nature,2009,458: 1131-1135
    [8]Leekumjorn s, Cho H J, Wu Y F, et al. The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes [J]. Biochimica et Biophysica Acta, 2009,1788:1508-1516
    [9]Liao F Y, Li H M, He P. Effect of high irradiance and high temperature on chloroplast composition and structure of Dioscorea zingiberensis [J]. Photosynthetica,2004,42(4):487-492
    [10]Sofo A, Dichio B, Xiloyannis C, et al. Lipoxygenase activity and proline accumulation in leaves and roots of olive trees in response to drought stress [J]. Physiologia Plantarum,2004,121:58-65.
    [11]Mansour M M F, van Hasselt P R, Kuiper P J C. Plasma membrane lipid alterations induced by NaCl in winter wheat roots [J]. Physiologia Plantarum,1994,92:473-478
    [12]Vargas S R, Sanchez-GarciiA, Martinez-Rivas J M, Prieto J A, Randez-Gil F. Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress [J]. Applied and Environmental Microbiology,2007,73:110-116
    [12]Sondergaard T E, Schulz A, Palmgren M G. Energization of Transport Processes in Plants. Roles of the Plasma Membrane H+-ATPase [J]. Plant Physiology,2004,136:2475-2482
    [13]Toyoshima C. How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane [J]. Biochimica et Biophysica Acta,2009,1793:941-946
    [14]Vitart V, Baxter I, Doerner P, et al. Evidence for a role in growth and salt resistance of a plasma membrane H+-ATPase in the root endodermis. Plant Journal,2001,27:191-201
    [15]Rodriguez-Rosales M P, Kerkeb L, Bueno P, et al. Changes induced by NaCl in lipid content and composition, lipoxygenase, plasma membrane H+-ATPase and antioxidant enzyme activities of tomato (Lycopersicon esculentum. Mill) calli [J]. Plant Science,1999,143:143-150
    [16]Zhao Z Q, Zhang H L, Zhu Y G. Changes of plasma membrane ATPase activity, membrane potential and transmembrane proton gradient in Kandelia candel and Avicennia marina seedling with various salinities [J]. Journal of Environmental Sciences,2004,16(5):742-745
    [17]Munns R, Tester M. Mechanisms of salinity tolerance [J]. Annual Review of Plant Biology,2008, 59:651-681
    [18]Isamah G K. ATPase, peroxidase and lipoxygenase activity during post-harvest deterioration of cassava(Manihot esculenta Crantz) root tubers [J]. International Biodeterioration and Biodegradation,2004,54:319-323
    [19]Katerji N, Mastrorilli M, Van Hoorn J W, et al. Durum wheat and barley productivity in saline-drought environments [J]. European Journal of Agronomy,2009,31:1-9
    [20]Zhao K F, Fan H, Zhou S, et al. Study on the salt and drought tolerance of Suaeda salsa and Kalanchoe claigremontiana under iso-osmotic salt and water stress [J]. Plant Science,2003,165: 837-844
    [21]Mansour M M F, van Hasselt P R, Kuiper P J C. NaCl effects on root plasma membrane ATPase of salt tolerant wheat [J]. Biologia Plantarum,2000,43(1):61-66
    [22]Liu R X, Zhou Z G, Guo W Q, et al. Effects of N fertilization on root development and activity of water-stressed cotton (Gossypium hirsutum L.) plants [J]. Agricultural water management,2008, 95:1261-1270
    [23]Rubio G, Casasola G, Lavado R S. Adaptations and biomass production of two grasses in response to waterlogging and soil nutrient enrichment [J]. Oecologia,1995,102:102-105
    [24]Qiu Q S. Characterization of p-nitrophenyl phosphate hydrolysis by plasma membrane H+-ATPase from soybean hypocotyls [J]. Journal of Plant Physiology.1999,154:628-633.
    [25]何龙飞,刘友良,沈振国,等.铝对小麦根细胞质膜ATP酶活性和膜脂组成的影响[J].中国农业科学,2001,34(5):526-531.
    [26]Brown D J, Du Pont F M. Lipid composition of plasma membranes and endomembranes prepared from roots of barley(Hordeum vulgare L.):Effect of salt [J]. Plant Physiology,1989,90:955-961
    [27]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72:248-254
    [27]苏维埃,王文英,李锦树.植物类脂及脂肪酸的分析技术[J].植物生理学通讯,1980,(3):54-60.
    [29]Samala S, Yan J, Baird W V. Changes of polar lipid fatty acid composition during cold acclimation in "Midiron" and "U3" bermudagrass [J]. Crop Science,1998,38:188-195
    [30]Pinheiro C, Passarinho J A, Ricardo C P. Effects of drought and rewatering on the metabolism of Lupinus albus organs [J]. Journal of Plant Physiology,2004,161:1203-1210
    [31]Somerville C, Browse J. Plant lipids:Metabolism, mutants and membranes [J]. Science,1991,252: 80-87
    [32]何龙飞,沈振国,刘有良.铝胁迫下钙对小麦根系细胞质膜ATP酶活性和膜脂组成的效应[J].中国农业科学,2003,36(10):1139-1142
    [33]Lindberg S, Griffiths G. Aluminium effects on ATPase activity and lipid composition of plasma membranes in sugar beet roots [J]. Journal of Experimental Botony.1993,267:1543-1550
    [34]Matsumoto H, Chung G C. Repression of asolectin dependent activation of partially lipid depleted ATPase prepared from the plasma membrane-enriched fraction of cucumber roots due to Ca2+strarvation [J]. Plant Cell Physiology.1988,29:1279-1287.
    [1]Munns R. Comparative physiology of salt and water stress [J]. Plant Cell and Environment,2002,25: 239-250.
    [2]Zhu J K. Regulation of ion homeostasis under salt stress [J]. Current Opinion in Plant Biology,2003, 6,441-445
    [3]He T, Cramer GR. Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity [J]. Plant and Soil,1992,139:285-294
    [4]Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview [J]. Archives of Biochemistry and Biophysics,2005,444:139-158
    [5]张敏,王校常,严蔚东,等.盐胁迫下转基因棉的K+、Na+转运SOD活性的变化[J].土壤学报.2005,42(3):460-467
    [6]王宝山,邹琦.NaCl胁迫对高粱根、叶鞘和叶片液泡膜ATP酶和焦磷酸酶活性的影响[J].植物生理学报,2000,26(3):181-188
    [7]Li N, Chen S L, Zhou X Y, et al. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza [J]. Aquatic Botany 2008,88:303-310
    [8]Munns R. Genes and salt tolerance:bringing them together. New Phytologist,2005,167:645-663
    [9]Fukuda A, Chiba K, Maeda M, et al. Effect of salt and osmotic stresses on the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+ antiport from barly [J]. Journal of Experimental Botany,2004,55(397):585-594
    [10]Guo S L, Yin H B, Zhang X, et al. Molecular Cloning and characterization of a vacuolar H+-pyrophosphatase gene, SsVP, from the halophyte tolerance of Arobidopsis [J]. Plant Molecular Biology,2006,60:41-50
    [11]Reddy K R, Zhao D L. Interactive effects of elevated CO2 and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton [J]. Field Crops Research,2005,94: 201-213
    [12]Gopal R, Dube B K, Sinha P, Chatterjee C. Potassium stress changes in cotton metabolism [J]. Annual of Agricultural Research,2001,22:253-257
    [13]Kao WY, Tsai TT, Tsai HC, et al. Response of three Glyeine species to salt stress [J]. Environmental and Experimental Botany,2006,56:120-125
    [14]梁洁,严重玲,李裕红,等.Ca(NO3)2对NaCl胁迫下木麻黄扦插苗生理特征的调控.生态学报,2004,24(5):1073-1077.
    [15]Yang C M, Yang L Z, Yang Y X, et al. Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils [J]. Agriculture Water Management, 2004,70:67-81
    [16]Ahsan N, Lee D G, Lee S H, et al. A proteomic screen and identification of waterlogging-regulated proteins in tomato roots [J]. Plant and Soil,2007,295:37-51
    [17]弋良朋,马健,李彦.盐胁迫对3种荒漠盐生植物苗期根系特征及活力的影响[J].中国科学D辑,2006,36(增刊11):86-94
    [18]Liu R X, Zhou Z G, Guo W Q, et al. Effects of nitrogen and soil water content on roots development of cotton (Gossypium hirsutum L.) [J]. Agricultural Water Management,2008,95:1261-1270
    [19]於丙军,罗庆云,刘有良.盐胁迫对盐生野大豆生长和离子分布的影响[J].作物学报,2007,27(6):776-780
    [20]Fukuda A, Chiba K, Maeda M, et al. Effect of salt and osmotic stresses on the vacuolar H+-pyrophosphatase, H+-ATPase subunit A, and Na+/H+antiport from barly [J]. Journal of Experimental Botany,2004,55(397):585-594
    [21]Astolfi S, Zuchi S, Passera C. Effect of cadmium on H+-ATPase activity of plasma membrane vesicles isolated from roots of different S-supplied maize (Zea mays L.) plants [J]. Plant Science, 2005,169:361-368
    [22]Maeshima M. Tonoplast transporters:organization and function. Annual Review of Plant Physiology,2001,52:469497
    [23]Mansour M M F, van Hasselt P R, Kuiper P J C. NaCl effects on root plasma membrane ATPase of salt tolerant wheat [J]. Biologia Plantarum,2000,43(1):61-66
    [24]Toyoshima C. How Ca2+-ATPase pumps ions across the sarcoplasmic reticulum membrane [J]. Biochimica et Biophysica Acta,2009,1793:941-946
    [25]Zhao Z Q, Zhang H L, Zhu Y G. Changes of plasma membrane ATPase activity, membrane potential and transmembrane proton gradient in Kandelia candel and Avicennia marina seedling with various salinities [J]. Journal of Environmental Sciences,2004,16(5):742-745
    [26]Maggio A, De Pascale S, Ruggiero C, et al. Physiological response of field-grown cabbage to salinity and drought stress [J]. European Journal of Agronomy,2005,23:57-67
    [27]何龙飞,沈振国,刘有良.铝胁迫下钙对小麦根系细胞质膜ATP酶活性和膜脂组成的效应[J].中国农业科学,2003,36(10):1139-1142
    [28]Lindberg S, Griffiths G. Aluminium effects on ATPase activity and lipid composition of plasma membranes in sugar beet roots [J]. Jouenal of Experimental Botony.1993,267:1543-1550
    [29]Matsumoto H, Chung G C. Repression of asolectin dependent activation of partially lipid depleted ATPase prepared from the plasma membrane-enriched fraction of cucumber roots due to Ca2+strarvation [J]. Plant Cell Physiology.1988,29:1279-1287.
    [30]何龙飞,刘友良,沈振国,等.铝对小麦根细胞质膜ATP酶活性和膜脂组成的影响[J].中国 农业科学,2001,34(5):526-531.
    [31]Mansour M M F, van Hasselt P R, Kuiper P J C. Plasma membrane lipid alterations induced by NaCl in winter wheat roots [J]. Physiologia Plantarum,1994,92:473-478
    [32]Vargas S R, Sanchez-GarciiA, Martinez-Rivas J M, Prieto J A, Randez-Gil F. Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress [J]. Applied and Environmental Microbiology,2007,73:110-116
    [33]He T, Cramer GR. Growth and mineral nutrition of six rapid-cycling Brassica species in response to seawater salinity [J]. Plant and Soil,1992,139:285-294
    [34]Wang RL, Hua C, Zhou F, et al. Effects of salt stress on fatty acid composition of thylakoid membrane of two rice cultivars differing in salt tolerance [J]. Agricultural Science & Technology. 2008,9(4):8-13
    [35]Mahajan S, Tuteja N. Cold, salinity and drought stresses:an overview [J]. Archives of Biochemistry and Biophysics,2005,444:139-158
    [36]Eraslan F, Inal A, Savasturk O, Gunes A. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity [J]. Scientia Horticulturae,2007,114,5-10
    [37]Koca H, Bor M, Ozdemir F, Turkan I. The effect of salt stress on lipid peroxidation, antioxidative enzymes and proline content of sesame cultivars [J]. Environmental and Experimental Botany,2007, 60:344-351
    [38]Neill S, DesikanR, Haneoek J. Hydrogen Peroxide signalling [J]. Current Opinion in Plant Biology. 2002,5:388-395
    [39]Mandhania S, Mandas S, Sawhney V. Antioxidant defense mechanism under salt stress in wheat seedlings [J]. Biologia Plantarum,2006,50(2):227-231
    [40]Tan W, Liu J, Dai T, et al. Allerations in photosynthesis and antioxidant enzyme activity in winter wheat subjected to post-anthesis water-logging [J]. Photosynthetica.2008,46:21-27
    [41]Popova L P, Stoinova Z G, Maslenkova L T. Involvement of abscisic acid in photosynthetic process in Hordeum vulgareL during salinity stress [J]. Plant Growth Regulation,1995,14:211-218
    [42]Zhang J H, Jia W S, Yang J C, et al. Role of ABA in integrating plant responses to drought and salt stresses [J]. Field Crops Research,2006,97:111-119
    [43]Hu X, Jiang M, Zhang A, et al. Abscisic acid-induced apoplastic H2O2 accumulation up-regulates the activities of chloroplastic and cytosolic antioxidant enzymes in maize leaves [J]. Planta,2005,223: 57-68
    [44]张敏,蔡瑞国,李慧芝,等.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J].生态学报,2008.28(1):310-320
    [45]Yuan C X, Ding J. Effects of water stress on the content of IAA and the activities of IAA oxidase and peroxidase in cotton leaves [J]. Acta Phytophysiologica Sinica,1990,16(2):179-184
    [46]Bair R, Jones J D G. Role of plant hormones in plant defence responses [J]. Plant Molecular Biology, 2009,69:473-488
    [48]Yakhin O I, Yakhin I A, Lubyanov A A, Vakhitov V A. Effect of cadmium on the content of phytohormones and free amino acids, its cytogenetic effect, and accumulation in cultivated plants [J]. Doklady Biological Sciences.2009,426:714-717.
    [49]刘瑞显,郭文琦,陈兵林,等.氮素对花铃期干旱及复水后棉花叶片保护酶活性和内源激素含量的影响[J].作物学报,2008,34(9):1598-1607
    [50]Foryer C H, Noctor G. Oxygen processing in photosynthesis:regulation and signaling [J]. New Phytologist.2000,146,359-388.
    [51]Somerville C, Browse J. Plant lipids:Metabolism, mutants and membranes [J]. Science,1991,252: 80-87.
    [52]Quartacci M F, Cosi E, Nacari-Izzo F. Lipids and NADPH-dependent superoxide production in plasma membrane vesicles from roots ofwheat grown under copper deficiency or excess [J]. Journal of Experimental Botany,2001,52:77-84
    [53]Zhang M P, Zhang C J, Yu G H, et al. Changes in chloroplast ultrastructure, fatty acid components of thylakoid membrane and chlorophyll a fluorescence transient in flag leaves of a super-high-yield hybrid rice and its parents during the reproductive stage [J]. Journal of Plant Physiology,2010, 167(4):277-285
    [54]Zhu S Q, Yu C M, Liu X Y, et al. Changes in unsaturated levels of fatty acids in thylakoid PSII membrane lipids during chilling-induced resistance in rice [J]. Journal of Integrative Plant Biology, 2007,49 (4):463-471
    [55]Allakhverdiev S 1, Kinoshita M, Inaba M, et al. Unsaturated fatty acids in membrane lipids protect the photosynthetic machinery against salt induced damage in Synechococcus [J]. Plant Physiology, 2001,125:1842-1853
    [56]Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem Ⅱ under environmental stress [J]. Biochimica et Biophysica Acta,2007,1767(6):414-421
    [57]Vijayan P, Browse J. Photoinhibition in mutants of Arabidopsis deficient in thylakoid unsaturation [J]. Plant Physiology,2002.129:876-885

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700