用户名: 密码: 验证码:
文蛤种质资源的遗传基础及利用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帘蛤科(Veneridae)的文蛤属(Meretrix)贝类是我国重要的海产经济动物,属于广温、广盐性滩涂埋栖型双壳贝类。文蛤(Meretrix meretrix)在我国南北沿海均有分布,并以受淡水影响的内湾及河口近海,如辽宁辽河口海区、山东莱州湾海区、江苏吕泗海区、广西北海湾海区及台湾西海岸等一带资源最为丰富。由于我国海岸线漫长、地形复杂,因长期地理隔离和生境不同,导致不同海域的文蛤在壳表形态和颜色、花纹图案等外观特征上均存在显著差异;另外,从多年的养殖实践中也发现,我国文蛤不同地理群体在生长速度、壳肉重比率等重要经济性状上也存在着显著差异,而这些性状的稳定性差异必然依赖于其分子遗传结构的变异。此外有关文蛤属的种间分类问题,学术界一直争议较大。开展文蛤种质资源的遗传基础研究是文蛤健康养殖和永续开发利用的必然要求。本研究从表观性状和分子水平上探测我国文蛤种质资源的遗传基础和变异水平,旨在深入了解我国文蛤的种质状况并为其保护和可持续利用提供依据;在此基础上,通过杂交选择育种实践,分析和探讨文蛤由此获得杂种优势水平,为养殖文蛤的遗传改良和新品种培育提供理论指导。主要结果和结论如下:
     1文蛤不同群体的形态和性状的变异规律
     1.1文蛤不同群体的形态变异特征
     利用多变量形态度量学方法,对文蛤的辽宁(L)、山东(S)、江苏(J)、浙江(Z)、福建(F)、广西(G)、白壳(W)等7个自然群体和1个浙江养殖群体(Y)的形态变异进行研究。结果表明:8个群体在形态上既相似又有一定程度的差异;W的贝壳隆起程度高、“凸”形明显,F的贝壳较薄,S的贝壳较厚、壳顶位置相对居中明显,而Z的壳高(SH)/壳长(SL)比值最小,说明壳型较扁长,这些都是不同群体的明显的形态特征。聚类分析结果显示,J与G、L与Y形态差异最小,它们与S的形态较为接近;而W、F和Z与其它群体及彼此间趋异程度较高,表现为独立的类群;研究分析表明这些群体在形态上的变异与地理距离并没有明显关联。
     1.2文蛤主要育种目标性状的变异与相关分析
     文蛤的主要育种目标性状在群体间和群体内均存在较大变异,如壳色花纹性状上表现为山东群体(S)花纹较多、壳色呈褐色或黄褐色,江苏群体(J)花纹较少、壳色较浅,而浙江文蛤(Z)则无花纹;体尺指标与体重指标相关与回归分析显示,壳长、宽、高等3个体尺性状与湿壳重、湿肉重、失水总重、附水总重等4个体重性状的相关性尤为显著,相关系数大多在0.85以上;不同群体、不同的体重性状,由体尺性状建立的最优回归估计方程有很大差异,白壳文蛤(W)的湿肉重可以由长(X_1)、宽(X_2)两个性状估计,失水总重可以由长(X_1)、宽(X_2)、高(X_3)三个性状估计;而浙江文蛤(Z)更为特殊,湿肉重由单个壳长(X_1)性状估计,失水总重则由长(X_1)、宽(X_2)两个性状估计。
     2文蛤不同群体的同工酶酶谱特征
     采用聚丙烯酰胺垂直电泳技术对S、J、G、Y和W等群体的2种组织(消化腺、闭壳肌)的酯酶(EST)、苹果酸脱氢酶(MDH)、苹果酸酶(ME)、醇脱氢酶(ADH)、超氧化物歧化酶(SOD)、过氧化氢酶(CAT)和ɑ淀粉酶(AMY)等7种同工酶研究结果表明,7种同工酶的表型在文蛤不同群体之间已呈现出不同程度的变异,特别是W的多种同工酶酶谱与G、S、Z的明显不同,而G和S群体的酶谱较相似;不同群体存在特征性酶带,这些特征性酶带可以作为区别于文蛤不同群体的蛋白标记,用于文蛤种质资源的分析鉴定。
     3文蛤不同群体差异的分子遗传基础
     3.1 AFLP标记技术检测文蛤不同地理群体的遗传多样性利用筛选出的4对引物组合(E32M51、E33M51、E33M62、E35M55)对文蛤L群体、S群体、J群体和G群体进行了AFLP扩增,共得到236个位点,找到了14个特有位点,这些位点的出现频率为0.200~1.000,其中11个为G群体所特有,2个为L群体特有,1个为S群体特有,这些特征性位点可以作为群体间鉴别的AFLP分子标记。L、S、J和G群体的多态位点比例分别为72.02%、64.40%、74.65%、76.92,Nei’s基因多样性指数分别为0.2603、0.2308、0.2554、0.2636,Shannon’s多样性指数分别为0.3881、0.3462、0.3830、0.3961,总体表现为各群体的遗传多样性很丰富,其中G的遗传多样性最高,S最低。各群体间的遗传距离在0.0394~0.1586之间,L、S、J 3个群体间的遗传距离较近(0.0394~0.0578),G群体与其它3个群体间的遗传距离均较远(0.1271~0.1586)。
     3.2文蛤不同群体的遗传结构的fAFLP分析
     对W、Z、G和S群体的fAFLP分析结果发现,4个群体均存在特征性位点,在497个位点中找到了80个特有位点,其中13个为G群体所特有,25个为Z群体特有,10个为S群体特有,而W群体特有位点为32个;S、C、G、W多态位点比例依次为92.06%、86.72%、95.82%、80.30%;Nei’s基因多样性指数为0.2856、0.2759、0.2827、0.2401,Shannon’s多样性指数为0.4400、0.4213、0.4396、0.3709。S群体与G群体的遗传距离仅0.0390,在NJ法和UPGMA法构建的亲缘关系的树状图上均首先聚在一起;而Z与G、S和W的遗传距离分别为0.1641、0.1824和0.2231,W与S和G的遗传距离分别为0.2040、0.2089,远远超过S与G群体间的遗传距离(0.0390),说明Z和W是两个很独立的类群,从遗传距离反映出的亲缘关系已超出种内群体间的变异。
     4白壳文蛤(W)可能不是Meretrix meretrix的分子生物学证据
     4.1 fAFLP标记比较分析
     对山东文蛤(S)、广西文蛤(G)和白壳文蛤(W)的fAFLP分析结果表明,W、S、G群体内平均相似度分别为0.7446、0.6047和0.5693,说明W的均一性比较高,群体内个体间遗传差异较小。在457个总扩增位点中找出了53个W的特有位点,远多于S群体(14)和G(21)群体,而且在53个特有位点中有9个出现频率为100%的位点,这些位点可以作为区分其它2个群体的特征性标记;S– G群体特有的位点有112个,其中有4个位点出现频率为100%,可作为S– G群体区别于W群体的特征性标记。S群体和G群体间的遗传相似性系数为0.9585,遗传距离只有0.0424,在NJ和UPGMA法构建的亲缘关系的树状图上均首先聚在一起,说明二者的亲缘关系很近,应属于种内群体间的关系;而W与S和G的遗传相似性系数均较小(0.7939和0.7941),相对遗传距离很大而且十分相近(0.2308和0.2305),在亲缘关系树状图上单独分出一支,也表明W与S和G群体间的亲缘关系较远。
     4.2 ITS序列比较分析
     通过对白壳文蛤(W)、山东文蛤(S)和广西文蛤(G)的ITS序列扩增电泳、PCR-RFLP分析和ITS序列分析发现,W的ITS序列长度在1266-1269 bp,而S和与G的ITS序列总长度分别为1520 bp和1614 bp;从ITS1和ITS2长度来看,W分别为739-741 bp和316-317 bp,S为895 bp和414 bp,G为987 bp和416 bp;而从ITS碱基组成来看,W的GC含量在62.32-62.62%之间,而G群体为61.77%。W的3个壳色不同群体(B、C、H)间的遗传距离仅0.001、0.002和0.003,S与G群体间的遗传距离是0.010,说明W群体内变异很小,而S与G群体间已出现明显的遗传分化,但还均属于种内群体间的遗传变异;而W与G和S的遗传距离分别达到0.110、0.147,两个类群差异显著,已远超出种内群体间的遗传变异。用MEGA-3软件NJ法分别依据序列ITS1,ITS2以及ITS1+ITS2构建的三个进化树的分支结构基本一致,聚类分析结果与前述序列析相一致,W的3个壳色不同群体(B、C、H)相继聚一起,G和S聚为另一支,两个类群相距甚远。研究结果表明,山东文蛤和广西文蛤应该同属于Meretrix meretrix,而白壳文蛤肯定不是Meretrix meretrix;那么白壳文蛤(W)到底应该划归文蛤属(Meretrix)中的丽文蛤M. 1usoria或斧文蛤M. 1amarckii种之一或其它新种还有待于深入研究。
     5文蛤不同地理群体杂交后代早期生长性状的杂种优势及其分子遗传基础
     5.1山东群体与江苏群体杂交后代早期生长性状比较及杂交优势分析
     对文蛤S群体与J群体自繁及其正反杂交子代早期生长性状进行观察与分析发现,各组合生长性状在数值上总体表现为S(♀)×J(♂)>S(♀)×S(♂)>J(♀)×S(♂)>J(♀)×J(♂)组合;两个杂交组合均表现出一定的超中亲优势(优势率为6-168%),各杂交组主要生产性状的整齐度较高,其变异系数与S自繁组接近,而J自繁组合各性状变异系数较大,整齐度较差。S为母本的杂交F1具有良好的生长优势,且相对稳定(变异系数不大),是一个生产性能较好的育种亲本群体。
     5.2山东群体与江苏群体正反杂交子代及其亲本的遗传结构差异
     利用fAFLP标记技术对文蛤S群体和J群体及其正反杂交子代的分子遗传结构进行了分析,结果显示,文蛤J群体和S群体间的遗传差异较小,J♀×S♂杂交后代和J群体间的遗传相似性系数最大(0.9761),二者之间的相对遗传距离只有0.0242,在聚类系统树上首先聚在一起,而与S群体间的遗传距离为0.0642,说明杂种子代的遗传结构更偏向母本;而S♀×J♂杂交子代与S群体、J群体和J♀×S♂杂交子代间的遗传距离都较大,分别为0.0510、0.0775、0.0971,这可能是其表现较强杂交优势的分子遗传基础,与S群体的遗传距离较小的结果说明杂交后代接受父、母亲本的遗传物质并非均等,而以偏母本的方式遗传;S♀×J♂子代与J♀×S♂子代间的遗传距离最大,可见群体间杂交使文蛤的遗传变异增加,也是文蛤种质创新和遗传基础拓宽的有效技术方法。
Species of the genus Meretrix of the family Veneridae, are very important marine aquatic economic animals, which belong to the eurythermal and eurysaline benthic bivalves in intertidal zone. The species of Meretrix meretrix are widely distributed along the south-to-north coast of China, especially abundant in some inner bays and estuaries, such as the shallow water area of Liaohekou of Liaoning Province, Laizhou Bay of Shandong Province, Lusi of Jiangsu Province, Beihai Bay of Guangxi Province. The long curved coastline and intricate marine geographic forms have resulted in different habitat types and relatively geographical isolation for a long time. Therefore, Meretrix meretrix have demonstrated diversities in terms of shell shape, color and pattern in. Furthermore, the experiences of artificial breeding and farming showed that different geographical populations of Meretrix clam are also substantially different in growth rate and the ratio of shell weight to soft-body one. These consistent variances among populations certainly are determined by their genetic bases. In academia, there are still many controversies about the classification of the genus Meretrix. So it is very necessary to study variances of Chinese Meretrix meretrix germplasm resources and their molecular genetic bases for their lasting utilization,sustained and healthy development of aquaculture industry. In this study, the genetic bases and their variances of representative populations of Meretrix clam were investigated through phenotypic traits and on the molecular level by quantitative genetic methods and molecular marker analysis technique. Additionally, heterosis from cross breeding was analyzed and discussed. The major results and conclusions are presented as follows:
     1 Variances of shell shape and phenotypic traits among different stocks or populations of Meretrix clam
     1.1 The shell shapes of seven natural stocks(L、S、J、Z、F、G、W)and one cultured stocks(Y)showed certain differences as well as similarities. Of them, W stock’s shell obviously protruded due to its relatively high value of shell width to length (SW/SL); F stock’s shell was thinner; S stock’s shell was thicker, nearly symmetrical; and the value of shell height to length (SH/SL) of Z stock was lowest, resulting from its flat shape. The UPGMA cluster analysis indicated that the shape differences were least either between J and G or between L and Y, while W, F and Z were clustered as relatively isolated groups respectively. The analytical results implied no correlation between shape difference and their geographical distance and hinted that shellfish shapes were mainly affected by marine geology and food abundance level of their habitats.
     1.2 Many diversified variances of main objective traits for genetic breeding of Meretrix clam were found both between and within stocks or populations. On the traits of shell color and pattern, S population showed more diverse patterns and almost brown or tawny color, J population had a few pattern and light tawny and yellow colors, and no pattern was found in Z population. Correlation and regression analysis between shell size and body weight revealed highly significant positive correlations between three size traits (length, height and width) and four body weight traits (shell weight, wet soft-body weight, water-lost weight and water-attached weight) and most correlations were over 0.85. The best regression equations of body weight on body sizes were obviously different within different populations or measured with different body weight traits. The wet soft-body weight of W was mainly determined by body length and body width, its water-lost weight trait could be well evaluated by body length, body width and body height. Z was special in that single body length trait could be well accounted for the wet soft-body weight and main variances of its water-lost weight could be explained by body length and body width. The differences of these regression equations resulted from morphological variances among geographical populations and inconsistent degrees of correlation among the above traits.
     2 Isozyme patterns of different stocks of Meretrix clam
     The characteristics of isozyme patterns showed that the expressions of seven isozymes (EST、MDH、ME、ADH、SOD、CAT andɑ-AMY) differed among stocks ( W、G、Z、J、Y ) and tissues ( adductor muscles,digestive gland). Especially for W stock, its isozyme patterns could be distinguished from those of G, S, J and Z. But the isozyme patterns of G and S populations were very similar.
     3 Analysis of molecular genetic structure of different populations of Meretrix clam by AFLP & fAFLP marker
     3.1 Four pairs of AFLP primer combination (E32M51、E33M51、E33M62、E35M55) were applied to analyze genetic diversities and relationships among populations of L, S, J, and G. There were 14 special bands with loci frequency of 0.200~1.000 found in total 236 detected bands. Among of them, 11 special bands are from G population,two special bands from L population and one special band from S population. These may be applied as germplasm markers for classification within the above populations. For L, S, J and G population, the proportion of polymorphic loci were 72.02%, 67.43%, 74.65% and 76.92% respectively, and genetic similarity indexes within each population were 0.7818, 0.8114, 0.7792, and 0.7582 respectively, while Nei’s gene diversity indexes were 0.2603, 0.2308, 0.2554 and 0.2636 respectively, and Shannon’s information indexes were 0.3881, 0.3462, 0.3830, and 0.3961 respectively. The results showed that G population had highest genetic diversity, and genetic diversity of S was lowest. The genetic distance matrix showed that they were closer between L, S, and J populations (0.0394~0.0578) than those between G population and any other population (0.1271~0.1586). Based on genetic similarity indexes and distance matrixes between populations, the results of cluster analysis with NJ method showed that the L and S populations were clustered together firstly and subsequently clustered with J population, and the G population was an independent cluster.
     3.2 fAFLP marker analysis was carried out on four groups, S, Z, W and G. The results showed that each group had their own specific bands, and proportions of polymorphic loci were 92.06%, 86.72%, 95.82% and 80.30% respectively, while Nei’s gene diversity indexes were 0.2856, 0.2759, 0.2827 and 0.2401 respectively, and Shannon’s information indexes were 0.4400, 0.4213, 0.4396 and 0.3709 respectively. It could be found that genetic parameters were more approximate between S and G; and concerned parameters of Z and W groups were obviously different from those of other groups. The genetic distance matrix showed that the genetic distance between S and G was only 0.0390, but the genetic distances between Z or W group and any other were significantly different (0.1641~0.2231 and 0.2040~0.2231 respectively). The phylogenetic trees were constructed using the methods of UPGMA and NJ based on the genetic distances. The results of cluster analysis were identical, indicating again that S and G were more closely related, and Z and W groups were more independent clusters. The results of molecular genetic structure analysis revealed that the variances among the above four groups were beyond those within species. Furthermore, out of 497 fAFLP markers, 80 special bands (loci) were found to be able to distinguish the four groups from each other and may be applied for germplasm characterization and molecular assistant classification of Meretrix clam.
     4 Molecular classification of two species of Meretrix clam based on fAFLP and ITS sequences
     4.1 The results of fAFLP maker analysis of S, G and W showed that each group had their own specific loci among which there were 53 special loci in W group, much more than those of S group (14) and G group (21). Among the 53 loci, nine were all dominant loci. These unique loci could be taken as molecular markers to distinguish W from other groups. The genetic similarity indexes and distance matrix between S and G groups were 0.9585 and 0.0424 respectively, but the genetic similarity indexes and distance matrix between W group and S or G group was 0.7939 or 0.7941, and 0.2308 or 0.2305 respectively. The results revealed that significant difference existed between W and S or G groups in molecular genetic structure. The phylogenetic trees by the methods of UPGMA and NJ also indicated that S and G populations were very closely related, while W population was a relatively independent cluster, lying beyond the species which S and G belong to.
     4.2 The internal transcribed spacer (ITS) region of the rDNA from S group, G group and W group were PCR amplified and sequenced. The results showed that the size of ITS ranged between 1266-1269bp in W group, while those in G and S groups were 1614bp and 1520bp respectively. The GC content ranged 62.32-62.62% in W group while it was 61.77% in G group. The genetic distances between three populations (B, C, H) of W group were 0.001~0.003, but it was 0.110 or 0.147 respectively between W group and G group or S group. Phylogenetic trees by NJ method also showed that G group was very closely related to S group, while W group was a relatively independent cluster. The results fully revealed that G group belongs to Meretrix meretrix, and W group is an independent species. But we could not yet determine whether G group belongs to Meretrix lusoria, Meretrix larmarckii, or even a new species of genus Meretrix. Further research will be carried out in the future.
     5 Analysis of growth traits and molecular genetic bases of hybrids between two different populations of M. meretrix
     5.1 The growth traits in early period were analyzed on self-reproducing and hybridized stocks crossing with S and J populations of M. meretrix. The results indicated that the differences of body size among four combinations became steadier while the clams grew. The measured growth traits nearly took on the following trends in numerical values: S♀×J♂> S♀×S♂> J♀×S♂> J♀×J♂.Two hybridized combinations both had a certain mid-parent heterosis ( H=6~168% ). Main trait’s coefficients of variance (CV) of each hybridized combination were lower. Hybridized combination taken S population as female parent had greater heterosis, so S population of M. meretrix was a good parent for breeding.
     5.2 fAFLP marker was applied to analyze the genetic structure of self-reproducing and hybridized stocks crossing with S and J populations of M. meretrix. The results showed that genetic similarity index between hybridized combination of J♀×S♂and self-reproducing combination of J was largest (0.9662), their genetic distance was smallest (only 0.0344), and they were clustered together at the first stage in UPGMA cluster tree; but the genetic distance of J♀×S♂to S was 0.0642, which indicated the genetic structure of hybridized combination was partially similar to female parent. The genetic distances of S♀×J♂to other three combinations were larger (respectively 0.0890, 0.0642 and 0.1056), which could be the molecular genetic bases of its high heterosis. The genetic distance between S♀×J♂and J♀×S♂was largest, which suggested that crossbreeding between different populations could increase genetic variation and additionally that it was an effective method of germplasm innovation and genetic base broadening in M. meretrix.
引文
[1]包振民,万俊芬,王继业,等。海洋经济贝类育种研究进展[J].青岛海洋大学学报,2002,32(4):567-573
    [2]曹燕如,黄敏仁,王明庥。一种新的分子标记-单核苷酸多态(SNP)[J].南京林业大学学报,2003,27(3):84-88
    [3]柴雪良,吕振民,方军,等。泥蚶三倍体的诱导研究[J].浙江海洋学院学报(自然科学版),2002,21(1):16-19
    [4]常建波,魏利平,杨建敏,等。文蛤染色体核型及三倍体诱导初步研究[J].水产学报,1996,20(3):269-274
    [5]常亚青,刘小林,相建海,等。栉空扇贝中国种群与日本种群杂交子一代的早期生长发育[J].水产学报,2002,26(5):385-390
    [6]程量,王康乐。文蛤形态学及其亚显微结构的研究[J].动物学研究,1997,18(4):351-357
    [7]程汉良,夏德全,吴婷婷,等.帘蛤科贝类rDNA内转录间隔区序列的研究[J]遗传学报,2006,33(8):702-710
    [8]陈大鹏,沈怀舜,丁亚平,等。文蛤地理种群ISSR分子标记的初步研究[J].南京师范大学学报(自然科学版),2004,27(3):74-77
    [9]陈大鹏,沈怀舜,丁亚平,等。文蛤、青蛤和四角蛤蜊的随机扩增多态性DNA(RAPD)的比较分析[J].海洋通报,2004,23(6):84-87
    [10]陈省平,包振民,潘洁,等。4种养殖扇贝的群体遗传多样性及特异性AFLP标记研究[J].海洋学报,2005,27(2):160-164
    [11]陈远,陈冲。文蛤工厂化人工育苗技术研究[J].大连水产学院学报,1998,(2):73-78
    [12]窦昌贵,黄芳,黄罗生。文蛤多糖抗癌免疫药理作用的研究[J].中国海洋药物,1999,2:15-19
    [13]董迎辉,杨爱国,刘志鸿,等。人工诱导栉孔扇贝雌核发育二倍体的初步研究[J].海洋水产研究,2006,27(6)::75~79
    [14]杜晓东,李广丽,刘志刚,等。合浦珠母贝两个野生种群的遗传多样性[J].中国水产科学,2002,9(6):99-104
    [15]杜晓东,邓岳文,叶富良,等。广东和广西地区野生文蛤的遗传多样性[J].中国水产科学, 2004,11(1):41-47
    [16]范可章,姚国兴,陈爱华,等。江苏海域文蛤周年性腺发育的初步研究[J].海洋科学,2006,30(7):26-32
    [17]冯建彬,王美珍,陈汉春,等。温度和规格对文蛤耗氧率的影响[J].上海水产大学学报,2004,13(2):126-129
    [18]冯建彬,李家乐,王美珍,等。我国四海区不同群体文蛤形态差异与判别分析[J].浙江海洋学院学报(自然科学版),2005,24(4):318-323
    [19]葛颂。遗传多样性[M].见:蒋志刚,马克平,韩兴国主编,保护生物学.杭州:浙江科学技术出版社,1997。
    [20]候振平,蒋思文。单核苷酸多态性的研究进展[J].中国畜牧杂志,2004,40(4):45-47
    [21]黄周英,王重刚,左正宏,等。三丁基锡对文蛤鳃的抗氧化酶活性及脂质过氧化的影响[J].环境科学学报,2005,25(10):1408-1413
    [22]黄周英,陈奕欣,左正宏,等。三丁基锡对文蛤外套膜代谢酶活性的影响[J].台湾海峡,2005,24(4):481-486
    [23]黄周英,陈奕欣,左正宏,等。三丁基锡对文蛤消化腺过氧化及抗病酶活性的影响[J].厦门大学学报(自然科学版),2006,45(1):102-105
    [24]黄晓春,刘慧慧,苏秀榕,等。7种经济贝类生殖腺脂肪酸含量的研究[J].水产科学,2005,24(8):20-22
    [25]季海峰。分子育种研究手段之标记辅助选择[J].动物科学与动物医学,2005,9:17-18
    [26]姜卫国,许国强,林岳光,等。合浦珠母贝三倍体和二倍体的生产比[J].热带海洋,1991,10(3):1-7
    [27]今井丈夫。浅海完全养殖[M].日本恒星社厚生阁版,1961
    [28]孔晓瑜,刘亚军,喻子牛,等。栉孔扇贝和海湾扇贝线粒体DNA 16S rRNA基因片段序列研究[A].贝类学论文集[C],2001,Ⅺ:59-63,北京:海洋出版社
    [29]李刚,金启增,姜卫国,等。合浦珠母贝和长耳珠母贝的生化遗传变异[J].遗传学报,1985,12(3):204-212
    [30]李刚,Hedgecock D.巴拿马珠母贝两个群体的生化遗传变异研究[J].热带海洋,1991,10(4):56-61
    [31]李慧芳,赵永高,王志跃,等。高邮鸭青色蛋壳性状荧光AFLP标记的建立[J].扬州大学学报(农业与生命科学版),2006,26(4):39-42
    [32]李红蕾,宋林生,刘保忠,等。栉孔扇贝不同群体的遗传结构及其杂种优势[J].海洋与湖沼,2002,33(2):188-195
    [33]李莉,郭希明。利用RAPD和AFLP标记初步构建太平洋牡蛎的遗传连锁图谱[J].海洋与湖沼,2003,34(5):541-550
    [34]李琪,杨青,于瑞海。栉孔扇贝雌核发育二倍体早期成活与生长发育的研究[J].中国海洋大学学报(自然科学版),2007,37(3):399-404
    [35]李庆彪,董景岳,房轼范,等。渤海湾潮间带文蛤群体组成、分布和移动习性[J].海洋学报,1997,19(6):116-120
    [36]李太武,孙修勤,刘燕,等。栉孔扇贝种群的遗传变异分析[J].高技术通讯,1999,2001,4:25-27
    [37]李太武,李成华,宋林生,等。5个泥蚶群体遗传结构及遗传多样性的RAPD分析[J].生物多样性,2003,11(2):118-124
    [38]李太武,苏秀榕,季延滨,等。不同发育阶段文蛤同工酶的表达研究[J].海洋学报,2006,28(5):162-166
    [39]李太武,张安国,苏秀榕,等.不同花纹文蛤的ITS2分析[J].海洋与湖沼,2006,37(2):132-137
    [40]林君卓,许振祖。文蛤幼体的摄食生态研究[J].厦门大学学报(自然科学版),1997,36(6):918-924
    [41]林志华,柴雪良,方军,等。文蛤工厂化育苗技术[J].上海水产大学学报,2002,11(3):242-247。
    [42]林志华,单乐州,柴雪良,等。文蛤的性腺发育和生殖周期[J].水产学报,2004,28(5):510-514。
    [43]刘保忠,董波,张涛,等。文蛤数量性状相关分析及选择育种策略[M].第一届海洋生物高技术论坛论文集,73-76,2005。
    [44]刘必谦,戴继勋,喻子牛。RAPD标记在大连湾牡蛎种群研究中的应用[J].青岛海洋大学学报,1998,28(1):82-88
    [45]刘仁沿,张喜昌,马成东,等。菲律宾蛤仔形态性状及与遗传变异的关系研究[J].海洋环境科学,1999,18(2):6-10
    [46]刘贤德。皱纹盘鲍遗传图谱构建及生长相关性状的QTL定位。博士论文。中科院海洋研究所,2006。
    [47]刘小林,常亚青,相建海,等。栉空扇贝壳尺寸性状对活体重的影响效果分析[J].海洋与湖沼,2002,33:673-678
    [48]刘小林,常亚青,相建海,等。栉空扇贝中国种群与日本种群杂交子一代的中期生长发育[J].水产学报,2003,27(3):193-199
    [49]刘小林,常亚青,相建海,等。栉空扇贝不同种群杂交效果的初步研究.Ⅰ.中国种群与俄罗斯种群的杂交[J].海洋学报,2003,25(1):93-99
    [50]刘小林,相建海。重要经济贝类选择育种及遗传力研究进展[J].海洋科学,2003,27(6):15-20
    [51]刘晓丹,邱凌,吴乔,等。文蛤抗癌活性多肽的生理活性研究[J].厦门大学(自然科学版),2004,43(4):433-445
    [52]刘馨,孙祥山,高悦勉。文蛤北方种群生化遗传结构与变异的研究[J].水产科学,2006,25(4):179-183
    [53]刘亚军,喻子牛,姜艳艳,等。栉孔扇贝16SrRNA基因片段序列的多态性研究[J].海洋与湖沼,2002,3(5):477-483
    [54]刘相全,包振民,胡景杰,等。几种帘蛤目rDNA ITS序列的比较[J]高技术通讯,2007,17(4):435-440
    [55]楼允东。鱼类育种学[M].北京:中国农业出版社,2001。
    [56]楼子康。花冠小月螺形态特征的地理变异[A].海洋科学集刊(XI)[C],1996,北京:科学出版社,315– 330
    [57]罗运满,吴冬明,倪大石。文蛤肉的药理作用[J].中国海洋药物,1996,2:14-17
    [58]吕振民,柴雪良,刘保忠,等。文蛤二倍体和三倍体染色体核型分析[J].中国水产科学,2003,10(6):520-523
    [59]潘宝平,吴琪,张素萍,等。文蛤属(Meretrix)16S rRNA基因及ITS1序列的系统学分析[J].海洋与湖沼,2006,37(4):342-347
    [60]潘洁,包振民,赵洋,等。栉孔扇贝不同地理群体的遗传多样性分析[J].高技术通讯,2002,12:78-82
    [61]任素莲,王德秀,绳秀珍,等。“红肉病”文蛤中发现的一种球型病毒的形态发生与细胞病理学[J].水产学报,2002,26(3):265-269
    [62]任素莲,张艳艳,宋微波。文蛤(Meretrix meretrix Linnaeus)外套膜的组织学与组织化学研究[J].青岛海洋大学学报,2003,33(5):701-706
    [63]沈怀舜,朱建一,丁亚平,等。我国沿海三个文蛤地理群的RAPD分析[J].海洋学报,2003,25(5):97-102
    [64]沈琪,Beaumont A R.欧洲牡蛎两个种群的遗传变异[J].热带海洋,1999,18(3):45-50
    [65]沈亦平,刘汀,江海波,等。近江牡蛎染色体核型的研究[J].武汉大学学报(自然科学版),1994,4:102-106
    [66]盛志廉,陈瑶生。数量遗传学[M].北京:科学出版社,1999。
    [67]宋林生,李俊强,李红蕾,等。用RAPD技术对我国栉孔扇贝野生种群与养殖群体遗传结构及其遗传分化的研究[J].高技术通讯,2002,7:83-86
    [68]孙博,刘晓,张国范,等。一个皱纹盘鲍人工群体内个体大小遗传变异的RAPD分析[J].海洋科学,2003,27(5):27-30
    [69]孙长森。栉空扇贝不同群体数量性状与遗传结构的分析及应用。博士论文,中国海洋大学,2006。
    [70]孙振兴,李诺,宋志乐,等。皱纹盘鲍三倍体诱导条件及其室内饲育试验[J].水产学报,1993,17(3):243-248
    [71]唐保军,刘保忠,王国栋,等。不同饵料种类和密度对文蛤能量收支的影响[C].第三届海洋生物高技术论坛论文集,400-407,厦门
    [72]唐伯平,周开亚,宋大祥.核rDNA ITS序列在无脊椎动物分子系统学研究中的应用[J].动物学杂志,2002,37(4):67-73.
    [73]万俊芬,汪小龙,潘洁,等。日本盘鲍×皱纹盘鲍子代杂种优势的RAPD分析[J].青岛海洋大学学报,2001,31(4):506-512
    [74]万俊芬,包振民,刘广绪,等。扇贝种间单对杂交一代幼虫ISSR标记的分离方式[J].高技术通讯,2004,5:82-87(2):107-113
    [75]王爱民,阎冰,叶力,等。马氏珠母贝不同地理群体内自繁和种群间杂交自一代主要性状的比较[J].水产学报,2003,27(3):200-206
    [76]王梅芳,叶富良,余祥勇。三种江珧同工酶遗传标记.[J]湛江海洋大学学报,2000,20(2):1-5
    [77]王如才,王昭萍,张建中。海水贝类养殖学[M].青岛:青岛海洋大学出版社,1993。
    [78]王伟继,岳志芹,孔杰,等。AFLP分子标记技术的发展及其在海洋生物中的应用[J].海洋水产研究,2005,26(1):80-85
    [79]王玲玲,宋林生,李红蕾,等。AFLP和RAPD标记技术在栉孔扇贝遗传多样性研究的应用比较[J].动物学杂志,2003,38(4):35-39
    [80]王笑月,陈冲,陈远,等。几种饵料对文蛤稚贝生长与成活的影响[J].1998,17(2):11-13
    [81]王中仁等。植物等位酶分析[C].北京:科学出版社,1996。
    [82]王昭萍,姜波,孔令峰,等。利用四倍体与二倍体杂交规模化培育全三倍体太平洋牡蛎苗种[J].中国海洋大学学报(自然科学版),2004,34(5):742-746
    [83]王子臣,毛连菊,陈来钊,等。温度休克诱导栉空扇贝和虾夷扇贝三倍体的初步研究[J].大连水产学院学报,1990,5(3-4):1-6
    [84]汪德耀,刘汉英。牡蛎人工杂交初步研究[J].动物学报,1959,11(3):283-295
    [85]韦蔓新,何本茂。广西文蛤的生态环境与资源分布的关系[J].南海研究与开发,2002,2:22-27
    [86]魏泓.医学实验动物学第二版[M].成都:四川科学出版社,2001.74-78.
    [87]魏利平,徐宗法。文蛤人工育苗技术研究[J].齐鲁渔业,1996,4:15-17
    [88]魏贻尧,姜卫国,李刚。合浦珠母贝、长耳珠母贝和大珠母贝种间人工杂交的研究.Ⅰ-Ⅲ.人工杂交和杂交后代的观察[J].热带海洋,1983(2):309-328
    [89]吴萍,董建萍,倪建国,等。文蛤染色体的研究[J].上海水产大学学报,2002,11(2):106-109
    [90]吴仲庆。水产生物遗传育种学[M].厦门:厦门大学出版社,1991。
    [91]相建海主编。国家攀登计划B(5):海洋动物细胞和种群生化遗传学[M].济南:山东科学技术出版社,1999。
    [92]邢晶晶。分子遗传标记及其技术在水产生物中的研究与应用[J].水产学杂志,2002,14(2): 61-70
    [93]熊全沫。同工酶电泳数据的分析及其在种群遗传中的应用[J].遗传,1986,8(1):1-5
    [94]许国强,林岳光,李刚,等。人工诱导合浦珠母贝雌核发育二倍体发生及“Hertwig”效应的初步研究[J].热带海洋,1990,9(2):1-7
    [95]徐秀兰,李泰明,张传儒。文蛤水解液降糖及降脂作用的实验研究[J].中国生化药物杂志,1999,20(6):298-299
    [96]薛明,杜晓东,黄荣莲,等。文蛤三个野生种群的生化遗传变异[J].海洋通报,2006,25(1):38-43
    [97]薛钦照,Sheila S,张福绥,等。海湾扇贝不同种群在磷酸葡萄糖变位酶基因位点的遗传结构与性状[J].海洋与湖沼,1999,30(4):381-390
    [98]阎冰,邓岳文,杜晓东,等。广西地区文蛤的遗传多样性研究[J].海洋科学,2002,26(5):5-8
    [99]阎喜武,张国范,杨风,等。菲律宾蛤仔莆田群体两个壳色品系生长发育的比较[J].大连水产学院学报,2005,20(4):266-269
    [100]杨锐,喻子牛,陈再忠,等。山东沿海褶牡蛎与太平洋牡蛎等位基因酶的遗传变异.[J]水产学报,2000,24(2):130-133
    [101]杨若林,王洪钟,郑桂兰,等。文蛤Meretrix meretrix化学成分研究[J].中国海洋药物,2003,2:31-32
    [102]杨建敏,郑小东,王如才,等。3种鲍16S rRNA基因片段的初步研究[J].青岛海洋大学学报(自然科学版),2003,33(1):36-40
    [103]杨星星,柴雪良,余海,等。文蛤苗种中间暂养技术研究[J].水产学报,2002,26(Suppl):36-41
    [104]姚国兴,宋晓村,于志华,等。环境因子对文蛤幼苗生长的影响[J].水产养殖,2000,1:17-18
    [105]应雪萍,张永普,宋晓东,等。文蛤消化系统的形态学研究[J].海洋与湖沼通报,2001,2:60-67
    [106]应雪萍。文蛤卵母细胞卵黄发生过程细胞器的变化[J].中国水产科学,2002,9(2):125-128
    [107]喻达辉,李有宁,吴开畅。中国、日本和澳大利亚珍珠贝的ITS2序列特征分析[J].南方水产,2005,1(2):1-6
    [108]喻达辉,朱嘉濠。珠母贝属6个种的ITS1分子标记研究[J].南方水产,2005,1(4):6-12
    [109]喻达辉,朱嘉濠,贾晓平。我国珠母贝属(Pinctada)主要种类亲缘关系的初步分析[J].海洋与湖沼,2006,37(3):211-217
    [110]余先觉,周墩,李渝成,等。中国淡水鱼类染色体[M].北京:科学出版社,1989。
    [111]余祥勇,王梅芳,杨书婷,等。有棘和无棘两种表型栉江珧同工酶差异的比较[J].湛江海洋大学学报,1999,19(2):6-8
    [112]喻子牛,孔晓喻。泥蚶等位基因酶遗传变异研究[J].中国水产科学,1997,4(5):15-21
    [113]喻子牛,孔晓喻。魁蚶(Scapharca broughtonii)等位基因酶遗传变异研究[J].青岛海洋大学学报,1998,28(1):51-58
    [114]张安国,李太武,苏秀榕。不同地理群体文蛤的营养成分研究[J].水产科学,2006,25(2):79-81
    [115]张福绥,李淑英,刘祥生,等。胶州湾贻贝肥满度的研究[A].见:中国贝类学会,贝类学论文集(Ⅱ)[C].北京:科学出版社,1986:80-87
    [116]张福绥,马江虎,何义朝,等。胶州湾海湾扇贝肥满度的研究[J].海洋与湖沼,1991,22:97-103
    [117]张国范。中国近海栉孔扇贝遗传结构及遗传变异与生长的关系[D].青岛:中国科学院海洋研究所,1992。
    [118]张国范。皱纹盘鲍人工诱导雌核发育精子遗传失活的初步研究[J].海洋科学,2001,25(10):37-39
    [119]张国范,张福绥。贝类遗传多样性及其永续利用(1)[J].海洋科学,1993,5:17-21
    [120]张国范,常亚青,赵艳。海洋动物线粒体DNA研究进展[J].海洋科学,1997,1:25-28
    [121]张国范,刘晓,阙华勇。贝类杂交及杂交优势理论和技术研究进展[J].海洋科学,2004,28(7):54-60
    [122]张国范,王继红,赵洪恩,等。皱纹盘鲍中国群体和日本群体的自交与杂交F1的RAPD标记[J].海洋与湖沼,2002,33(5):483-491
    [123]张国范。海洋贝类遗传育种研究20年[J].厦门大学学报(自然版),2006,4(增2):190-194
    [124]张广钦,禹志领,赵厚长。文蛤水解液降血脂作用的实验研究[J].中国海洋药物,1997,2:21-24
    [125]张万隆。我国文蛤Meretrix meretrix Linnaeus增养殖技术现状及其发展前景[J].现代渔业信息,1993,8(6):18-24
    [126]张留所,孔晓瑜,喻子牛,等. AFLP技术在水生动物遗传学研究中的应用及前景展望[J]高技术通讯,2003,4:95-98
    [127]张永普,林志华,应雪萍。不同地理种群泥蚶的形态差异与判别分析[J].水产学报,2004,28(3):339-342.
    [128]郑国兴,李何,黄宁宇,等。文蛤病原菌(溶藻弧菌)的分离与性状及病文蛤组织的电镜观察[J].水产学报,1991,15(2):85-95
    [129]郑怀平,张国范,刘晓,等。2003.不同贝壳颜色海湾扇贝(Argopecten irradians)家系的建立及生长发育研究[J].海洋与湖沼,34(6):632-639
    [130]郑小东,王如才,刘维青。华南沿海曼氏无针乌贼Sepiella maindroni表型变异研究[J].青岛海洋大学学报,2002,32(5):713– 719.
    [131]周茂德,高允田,吴融,等。太平洋牡蛎与近江牡蛎、褶牡蛎人工杂交的初步研究[J].水产学报,1982,6(3):235-241
    [132]庄启谦。中国动物志。软体动物门、双壳纲、帘蛤科[M].171-182,北京:科学出版社,2001.
    [133] Adamkewicz L, Castagna M. Genetics of shell color and pattern in the bay scallop Argopecten irradians. J. Heredity, 1988, 79: 14-17
    [134] Adamkewicz L, Harasawych G. Use of random amplified polymorphic DNA (RAPD) makers to assess relationship among beach clams of the genus Donax. [J] Mol Tech and Moll Phyl. 1994, 108: 51-60
    [135] Alfonsi C, Perez J E. Growth and survival in the scallop Nodipecten nodosus as related to self-fertilization and shell colour[J]. Bol Inst Oceanogr Venez, 1998, 37 (1):69-73
    [136] Allen S K, Busheck D. Large scale production of triploid oyster, Crassostrea virginica (Gemlin), using“stripped”gametes[J]. Aquaculture, 1992, 103:241-251
    [137] Annette W C, Victor D V. Exploring the phylogenetic utility of ITS sequences for animals: a test case for abalone ( Haliotis)[J]. Journal of Molecular Evolution, 2002, 54: 246—257
    [138] Antonio C, Marines B, Mariangela C. et al. Development of genetic maps of the citrus varieties‘Murcott’tangor and‘Pera’sweet orange by using fluorescent AFLP markers[J]. J Appl Genet, 2007, 48 (3): 219–231
    [139] Bayne B L, Hedgecock D, Megoldrick D,et al. Feeding and metabolic efficiency contribute to growth heterosis in Pacific oyster (Crassostrea gigas Thunberg) [J]. J Mol. Stud., 1999, 233: 115-130
    [140] Beaumont, A R, Beveridge, C M, Barnet E. A, et al. Genetics studies of laboratoryreared Mytilus edulis.Ⅲ. Scored loci act as marker for enotype-specific mortalities which are unrelated to temperature. [J] Mar. Biol, 1990, 106: 227-233
    [141] Beaumont, A R, Morvan C, Huelvan S, et al. Genetics of indigenous and transplanted populations of Pecten maximus: no evidence for the existence of separate stocks. [J]J. Exp. Mar. Biol. Ecol, 1993, 169: 77-88
    [142] Beukema J J, Meehan B W. Latitudinal variation in linear growth and other shell characteristics of Macoma balthica.[J]. Mar Biol, 198590: 27-33
    [143] Blake S G. Mitochondrial DNA variation in the bay scallop, Argopecten irradians and the calico scallop, Argopecten gibbus[J]. J Shellf. Res. 1994, 13 (1): 277
    [144] Borsa P, Thiriot- Quievreux C. Karyogical and allozymic characterization of Ruditapes philippinarum, R. aureus and R. decussates ( Bivalvia, Veneridae )[J]. Aquaculture, 1990, 90: 209-227
    [145] Bower S M, Blackbourn J, Meyer G R. A new and unusual species of Perkinsus pathogenic to cultured Japanese scallops, Patinopecten yessoensis, in British Columbia, Canada[J]. J Shellf Res, 1997, 16 (1):333
    [146] Brenden S. Holland. Invasion without a bottleneck: Microsatellite variation in natural an invasion populations of the Brown Mussel Perna perna (L)[J].Mar. Biotechnol, 2001, 3: 407-415
    [147] Bricelj V M, Krause M. Resource allocation and population genetics on the bay scallop, Argopecten irradians: effects of age and allozyme heterozygosity on reproductive output. [J] Marine Biol, 1992, 113: 253-261
    [148] Buroker, N. E. Population genetics of the American oyster Crassostrea virginmica along the Atlantic coast and the Gulf of mexico[J]. Mar Biol, 1983, (75): 99-112
    [149] Canapa A, Barucca M, Marinelli A, et al. Molecular data from the 16S rRNA gene for the phylogeny of Pectinidae (Mollusca:Bivalvia) [J]. Mol. Evol., 2000, 50: 93-97
    [150] Cain A J. The colours of marine bivalve shells with special reference to Macoma baltica[J].Malacologia, 1988, 28 (1-2): 289-318
    [151] Chanley P E. Inheritance of shell marking and growth in the hard clam, Mercenaria mercenaria [C]. Proc Ad Shellf Assoc., 1961, 50:163-169
    [152] Cheng H L, Xia D, Wu T, et al. Study on sequences of ribosomal DNA internal transcribed spacers of clam belonging to the Veneridae family (Mollusca: Bivalvia)[J]. ActaGenetica Sinica, 2006, 33 (8): 702-710
    [153] Chu K H, Li C P, Ho H Y. The first internal transcribed spacer (ITS1) of ribosomal DNA as molecular marker for phylogenetic and population analysis in crustacea[J]. Marine Biotechnology, 3 (4): 355-361
    [154] Clabby C, Goswami U, Flavin F, et al. Cloning, characterization and chromosomal location of a satellite DNA from the Pacific oyster Crassostrea gigas[J]. Gene, 1996, 168: 205-209
    [155] Dautzenberg P. 1906. Contributoin a la faune malacologique de I’Indo-Chine. Journ Conchyliol, 54: 215-219
    [156] Eizadora Y T,Ma A J,Monie V D. Sequence variation in the ribosomal DNA internal transcribed spacer of Tridacna crocea[J].Mar Biotech, 2000, 2 (6): 511—516.
    [157] Elek J A, Anamkewicz S L. Polymorphism for shell color in the Atlantic bay scallop Argopecten irradians irradians (Lamarck) (Mollusca;bivalvia) on Martha’s Vineyard Island[J].Am Malac Bull, 1990, 7 (2): 117-126
    [158] English L J, Maguire G B, Ward R D. Genetic variation of wild and hatchery populations of the Pacific oyster, Crassostrea gigas (Thunberg), in Australia [J]. Aquaculture, 2000, 187: 283~298
    [159] Esterenet A. L., Martin P. R. Shell interpopulation variation and its origin in Pomacea canaliculata (Gastropoda: Ampullariidae) from southern Pampas, Argentina[J]. Moll. Stud. 2003, 69: 301-310.
    [160] Evans B, J. Bartlett, N. Sweij D, et al. Loss of genetic variation at microsatellite loci in hatchery produced abalone in Australia (Haliotis rubra) and south Africa (Haliotis midae)[J]. Aquaculture, 2004, 233: 109-127
    [161] Fairbrother J E, Viable gynogenetic diploid Mytilus edulis (Linnaeue) larvae produced by ultraviolet light irradiation and cytochalasin B shock[J]. Aquaculture, 1994, 126: 25-34
    [162] Falconer D S. Inroduction to quantitative genetics[C]. Longman, Inc.,New York, 1981.
    [163] Fernandez A, Garca T, Asensio L, et a1. PCR—RFLP analysis of the internal transcribed spacer (ITS) region for identification of 3 clam species[J]. Food Sci, 2001, 66 (5): 657—661
    [164] Fischer-Piette E. Revision des vivanuts de Meretrix s.s du museum national of histoirenaturelle[J]. J Conchyliol, 1941, 84: 315-344
    [165] Fischer-Piette E. 1976. Les Veneridae indeterminees das collection de Calcutta. RecZool Surv India, 70: 235-257
    [166] Ford S, Figueras A J, Haskin H. Influence of selective breeding, geographic origin and disease on gametogenesis and sex ratio of oyster, Crassostrea virginica, exposed to the parasite haplosporidium nelsoni (MSX).[J].Aquaculture, 1990,88-285-301
    [167] Freire R.Analysis de secuencias de ADX ribosomico en beherechos ymejillones de la costa curopea[D]. Coruna: Universidade da Coruna, 2002
    [168] Fujio Y. A correlation of heterozygosity with growth rate in the Pacific oyster, Grassostrea gigas. [J]Tohoku J. Agri. Res. 1982, 33: 66-75
    [169] Fujino, K. Genetic studies on the pacific abalone.Ⅲ.Difference in electrophretic patterns between Halitis discus Reeve and H. Discus Hannai[J]. Bull. Jap. Soc. Sci. Fish, 1980, 46 (5): 543-548
    [170] Fujino, K, Arai A, Iwadare K, et al. Induction of gynogenetic diploid by inhibiting second meiosis in the Pacific abalone[J]. Nippon Suisan Gakkaishi, 1990, 56 (11): 1755-1763
    [171] Garton D W, Koehn R K, Scott T M. Multiple locus heterozygosity and the physiological energetics of growth in the coot clam, Mulinia lateralis, from a natural population[J] Genetics, 1984, 108: 445-455
    [172] Gonzales-Tizon A, Martinez-Lage, Marinas L, et al. Cytogenetic characterization of Dona trumculus (Mollusca, Bivalvia)[M]. Proc 13’International Chromosome Conference, 1998, Abstract: 109
    [173] Graves J E, MacDowell J R et al. Genetic differentiation among strains of disease challenged oysters[J]. J Shellf. Res. 1993, 12(1): 128-129
    [174] Guo X,Allen S K,Gaffney P M. Alltriploid Pacific oyster produced by mating tetraploids and diploids[J]. Aquaculture, 1996, 142:149~162
    [175] Guo X, Hershberger W, Cooper K, et al. Tetriploid induction with mitosisⅠinhibition and cell fusion in the Pacific oyster (Crassostrea gigas Thunberg)[J]. J Shellf. Res. 1994, 13:193-198
    [176] Guo X, William K, Hershberger K. Artificial gynogenesis with ultraviolet light irradiated sperm in the Pacific oyster Crassostrae gigas. I. Induction and Survival[J]. Aquaculture , 1993, 113: 201-214
    [177] Habe T. Systematics of Mollusca in Japan. Bivalvia and Scaphopoda (in Japanese)[M].1977, Hokyoryukan, Tokyo, 147-270
    [178] Hall, T.A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT.Nucl. Acids. Symp. Ser. 1999. 41: 95-98.
    [179] Hara M, Kikuchi S. Increasing the growth rate of abalone,Haliotis discus hannai,using selection techniques. NOAA Techl Rep NMFS, 1992, 106:21—26
    [180] Harris D J, Crandall K A. Intragenomic variation within ITS1and ITS2 of freshwater crayfishes (Decapoda:Cambaridae):implications for phylogenetic an d microsatellite studies[J]. Mol Biol Evol, 2000, 17 (2): 284—291.
    [181] Heath W A. Development in shellfish culture in British Columbia. Annual Meeting of National Shellfish Association, 1995, 14:228
    [182] Heath D D, Rawson P D, Hilbish T J. PCR-based nuclear markers identify alien blue mussel (Myilus spp.) genotypes on the west coast of Canada[J].Can J Fish Aquat Sc, 1995, 52:2621-2627
    [183] Heath D D,Hatcher D R,Hilbish T J.Ecological interaction between sympatric Mytilus species on the west coast of Canada investigated using PCR rnarkers[J]. Mol Eeol, 1996, 5 (3): 443-447
    [184] Hedgcock D, MaGoldrick D J, Bayne B L. Hybird vigor in Pacific oyster: an experimental approach using crosses among inbred lines[J]. Aquaculture, 1995, 137:285-298
    [185] Hedgcock D, MaGoldrick D J, Manahan D T. Quantitative and molecular genetic analysis of heterosis in bivalve mollusks[J]. J. Exp. Mar. Biol. Ecol, 1996, 203: 49-59
    [186] Hedgcock D, Li G, Banks M A, et al. Occurrence of the Kumamoto oyster Crassostrea sikamea in the Ariake Sea Japan[J]. Mar Biol, 1998, 133:65-68
    [187] Heffernan P B, Walker R L, Crenshaw J W Jr. Negative larval response to selection for increased growth rate in northern quahogs Mercenaria mercenaria Linnaeus,1758[J]. J Shellf Res., 1991,10: 199-202
    [188] Heffernan P B, Walker R L, Crenshaw J W Jr. Embryonic and larval responses to selection for increased rate of growth in adult bay scallops, Argopecten irradians concentricus Say, 1822[J]. J Shellf Res., 1992, 11: 21-25
    [189] Heipel D A, Bishop J D D, Brand A R et al. Population genetic differentiation of the great scallop Pecten maxmius in Western Britain investigated by random amplified polymorphicDNA. [J]Mar. Ecol. Prog Ser. 1998, 162: 163-171
    [190] Hirschfeld B M, Dhar A K, Rask K et al. Genetic diversity in the eastern oyster (Crassostrea virginica) from Massachusetts using the RAPD technique. [J] J shellf Res. 1999, 18: 121-125
    [191] Huang B X, Peakall R, Hanna P J. Analysis of genetic structure of blacklip abalone (Haliotis rubra) populations using RAPD, minisatellite and microsatellite markers[J]. Marine Biology. 2000, 136: 207-216
    [192] Hubert S, Hedgecock D. Linkage maps of microsatellite DNA markers for the Pacific oyster Crassostrea gigas[J]. Genetics, 2004, 168: 351-362
    [193] Ibarra A M. Correlated responses at age 5 months and 1 year for a number of growth traits to selection for total weight and shell width in catarina scallop (Argopecten ventricosus)[J]. Aquaculture, 1999, 175:243-254
    [194] Innes D J, Bates J A. Morphological variation of Mytilus edulis and Mytilus trossulus in eastern Newfoundland[J]. Marine Biology, 1999,133: 691-699
    [195] Insua A, López-Pi?ón M J, Mendez J. Characterization of Aequipecten opercularis (Bivalvia: Pectinidae) chromosomes by different staining techniques and fluorescent in situ hybridization[J]. Genes Genet Syst, 1998,73 (2):193-200
    [196] Insua A, López-Pi?ón M J, Freire R et al. Sequence analysis of the ribosomal DNA internal transcribed spacer region in some scallop species (Mollusca: Bivalvia: Pectinidae). Genome, 2003, 46: 595
    [197] Jiang L, Wu W L. The mitochondrial DNA of Taiwan abalone Haliotis diversicolor Reeve.1846 (Gastropoda: Archaeogastropoda: Haliotidae). [J]. Mol. Mar. Biol. Biotechnol. 1995, 4(4): 353-364
    [198] Jonasson J,Stefansson S E,Gudnason A,et al.Genetic variation for survival and shell length of cultured red abalone (Haliotis rufescens) in Iceland.[J]. J Shellf Res, 1999, 18 (2): 621~625
    [199] Jordaens K, Wolf H, Williams T. et al. Loss of genetic variation in a strongly isolated Azorean population of the edible clam, Tapes decussates[J] J Shellfish Res. 2000, 19(1):29-34
    [200] Kenchington E, Bird C J, Osborn J, et al. Novel repeat elements in the nuclear ribosomal RNA operon of the flat oyster Ostrea edulis Linnaeus and O. anasi Sowerby[J]. J Shellfish Res,2002, 21:696-705
    [201] Kraeuter J, Adamkewick L, Castagna M, et al. Rib number and shell color in hybridized subspecies of the Atlantic bay scallop, Argopecten irradians[J]. The Nautilus, 1984, 98 (1): 17-20
    [202] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment.[J]Briefings in Bioinformatics, 2004,5:150-163.
    [203] Lamkey K R, Edwards J W. Heterosis: Theory and Estimation[A]. Proceedings 34th Illinois Corn Breeders’School, Urbana, 2 - 3 Mar.1998[C]. Urbana: University of Illinois, 62-77
    [204] Leighton D L, Lewis C A. Experimental hybridization in ablones[J]. Int J Inverteber Reprod, 1982, 5(5): 273-282
    [205] Li L, Guo X. Genetic linkage maps of the Pacific oyster Crassostrea gigas Tunberg[J]. Mar Biotechnol, 2004,6:26-36
    [206] Li Q, Park C, Endo T, et al. Loss of genetic variation at microsatellite loci in hatchery strains of the Pacific abalone (Haliotis discus hannai)[J].Aquaculture, 2004, (235): 207-222
    [207] Liu B Z, Dong B, Tang B J, et al. Effect of stocking density on growth, settlement and survival of clam larvae, Meretrix meretrix[J]. Aquaculture, 2006, 258: 344-349
    [208] López-Pi?ón M J, Insua A, Mendez J. Identification of four scallop species using PCR and restriction analysis of the ribosomal DNA internal transcribed spacer region[J]. Mar Biotechnol, 2002, 4 (5): 495—502.
    [209] Macaranas J M, Ablan C A, Pante M J R, et al. Genetic structure of giant clam (Tridacna derasa) populations from reefs in the Indo–Pacific [J]. Mar Biol. 1992. 113: 231-238
    [210] Macleod J A. A biochemical genetic study of population structure in queen scallop (Chlamys opercularis) stocks in the Northern Irish Sea [J]. Mar Biol. 1985, 82: 77-82
    [211] Maria J, Selvamani P, et al. Microsatellite genotyping of individual abalone larvae: Parentage assignment in aquaculture[J]. Mar. Biotechnol. 2001.3: 478-485
    [212] Martin A G, Gerand A, Cochennec N, et al. Selecting flat oyster, Ostrea edulis, for survival against the parasite bonamia odtreae: assessment of the resistance of a first selected generation [C]. In Production, Enviroment and Quality, Bordeaux Aquaculture’92, Ghent Belgium, Euro Aquac Soc Spec Publ, 1992,18:547-554
    [213] Michelle M G, Manoel V, Pedro M. et al. Fluorescent amplified fragment length polymorphism (fAFLP) analyses and genetic diversity in Litopenaeus vannamei (Penaeidae)[J].Genetics and Molecular Biology, 2005, 28 (2): 267-270
    [214] Mitton J B,. Shell color and pattern variation in Mytilus edulis and its adaptive significance. Chesapeaker Sci, 1977,18:387-390
    [215] Naciri Y, et al. Identification and inheretance of ( AC/TC )n and ( AC/GT )n repeats in the European flat oyster Ostrea edulis[J] Mol Mar Biol Biotechnol, 1995, 4: 83-89
    [216] Nakamur K H. A review of molluscan cytogenetic information based on the CISMOCH-computerized index system for molluscan chromosomes. Bivalvia, Polyplacophore and cephalopada[J]. Venus. 1985, 44(3): 193-225
    [217] Nei M. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. USA, 1973, 70: 3321-3323
    [218] Nei M. The theory of genetic distance and evolution of human races [J].Journal of Human Genetics, 1978, 23(4):341-369
    [219] Nei M, Li W H. Mathematical model for studying genetic variation in terms of restriction endonucleasea[J]. Pro Natl Acad Sci USA, 1979, 76: 5273-5296
    [220] Newkirk G F. Genetics of shell color in Mytilus edulis and the association of growth rate with shell color. J Exp Mar Biol Ecol, 1980, 46 (1): 89-94
    [221] Nicolas Bierne et al. Early effect of inbreeding as revealed by microsatellite analyses on Ostrea edulis larvae[J].Genetics. 1998, 148: 1893-1906
    [222] Odorico D M,Miller D J.Variation in the ribosomal internal transcribed spacers and 5.8S rDNA among five species of Acropora (Cnidaria;Scleractinia):patterns of variation consistent with reticulate evolution[J]. Mol Bio Evol, 1997, 14 (5):465—473.
    [223] Oniwa K, Kijima A, Fujio Y. Relationship between genetic variability and quantitative traits in Japanese scallop, Patinopecten yessoensis [J]. Tohoku J.Agri Res, 1994, 25: 583-59
    [224] Orbace E A, Wilbur A E, Wakefield J R, et al. RFLP analysis of genetic diversity in a Siberian population of the Japanese scallop (Patinopecten yessoensis)[J]. J Shellf Res, 1996, 15 (2): 529
    [225] Pan Y, Li Q, Yu R, et al. Induction of gynogenetic diploids and cytological studies in the Zhikong Scallop, Chlamys farreri[J]. Aquat Living Resour., 2004, 17: 201-206
    [226] Patwary M U, Kenchiuton E L, Bird C J, et al. The use of random amplified polymorphic DNA markers in genetic studies of the sea scallop Placopecten magellaiicus (Gmelin,1791). [J] J Shellf Res 1994, 13: 547-553
    [227] Peignon J M, Geraed A. Naciri Y, et al.. Analysis of shell colour determinism in the Manila clam Ruditapes philippinam [J].Aquat Living Resour Vivantes, 1995, 8 (2): 181-189
    [228] Prashad B. The Lamellibranchia of the Siboga Expedition. Sysmatic part. Siboga-Expenditie, 1932, 212-264
    [229] Raffaelli D. Colour polymorphism in the intertidal snail Littorina rudis [J]. Maton. Zool Anzeiger, 1979, 202 :65-73
    [230] Sanjuars A, Comesuna A S, DeCarlos A. Macrogeographic differentiation by mtDNA restriction site analysis in the S.W. European Mydtilus galloprevincialis Lamarkii[J]. J Exp Mar Biol Ecol, 1996, 198: 89-100
    [231] Scarpa J, Bolton E T. Experimental production of gynogenesis and parthenogentic Mulinia laterlis (Say)[J]. J Shellfish Res., 1988, 7(1): 132
    [232] Scarpa J, Komaru A, Wada K T. Gynogenetic induction in the mussel Mytilus galloprovincialis[J]. Bull Natl Res Inst Aquac, 1994, 23:33-41
    [233] Schaal B A, Leverich W J, Rogstad S H. Comparison of methods for assessing genetic variation in plant conservation biology. In:Genetics and Conservation of Rare Plants (co-edited by Falk DA, Holsinger KE), Oxford University Press, New York, 1991, 123-134
    [234] Singh S. M. and E. Zouros. Genetic variation associated with growth rate in the American oyster (Crassostrea virginica). [J]Evolution, 1978, 32: 342-353
    [235] Smith O S, Smith J S C. Similarties among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, hererosis, and RFLPs[J]. Theroetical and Applied Genetics, 1990, 80: 833-840
    [236] Sokolova I M, Berger V Ja, Physiological variation related to shell colour polymorphism in White Sea Littorina saxatilis.[J]..J Exp Mar Biol Ecol, 2000.245:1-23
    [237] Stanley J G, Allen S K, Hidu H jr. Polyploidy induced in the American oyster, Crassostrea virginica, with cytochalasin B[J]. Aquaculture, 1981, 23 (124): 1-10
    [238] Tang B J, Liu B Z, Wang G D, et al. Effects of various algal diets and starvation on larval growth and survival of Meretrix meretrix[J]. Aquaculture, 2006, 254: 526-533
    [239] Thompson J D,Gibson T J, Plewniak F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools[J].Nucl Acids Res, 1997,24:4876-4882
    [240] Toro J E, Newkirk G F. Divergent selection for growth rate in the European oyster Ostrea edulis: Response to selection and estimation of genetic parameters[C]. Marine ecology progress series. MAR ECU, 1990, 62 (3): 219-227
    [241] Toro J E, Aguila P, Vergara A M, et al. Realized heritability estimates for growth from data on tagged Chilean native oyster (Ostrea chileansis)[J]. World Aquaculture,1994, 25 (2):29-30
    [242] Toro J E, Aguila P R, Vergara A M. Spatial variation in response to selection for live weight and shell length from data on individually tagged Chilean native oyster Ostrea Chilensis Philippi,1845[J]. Aquaculture, 1996, 146:27-36
    [243] Vidigal T H,Kissinger J C,Caldeira R L, et a1.Phylogenetic relationships among Brazilian Biomphalaria species (Mollusca:Planorbidae) based upon analysis of ribosomal ITS2 sequences[J]. Parasitology, 2000, 121 (6): 611--620.
    [244] Volkaert F, Zouros E. Allozyme and physiological variation in the scallop Placopecten magellanicus and a general model for the effects of heterozygosity on fitness in marine molliscs. [J]Mar. Biol., 1989, 103: 51-61
    [245] Wada K T. Genetic selection for shell traits in the Japanese pearl oyster, Pinctada fucata Martensii [J]. Aquaculture. 1986. 57: 171~176
    [246] Wada K T. Genetic variability at four polymorphic loci in Japenese pearl oysters, Pinctada fucata martensii, selected for six generations.[J]. Aquaculture, 1986, 59: 139-146
    [247] Wada K T, Komaru A. 1991. Estimation of genetic variation in shell traits of the Japanese pearl oyster [J]. Bull Natl Res Aqua, 20: 19– 24.
    [248] Wang S, Bao Z M, Pan J et al. AFLP Linkage Map of an Intraspecific Cross in Chalamys farreri[J].J Shellf Rese, 2004, 23 (2): 491-499
    [249] Wang Y, Xu Z, Guo X. Chromosomal location of some repetitive DNA in Crassostrea virginica as determined with FISH[J]. J Shellf Res. 2000, 19(1): 618
    [250] Wang Y, Xu Z, Guo X. Centromeric location of a satellite sequence in the Pacific oyster (Crassostrea gigas Thunberg) determined by fluorescence in situ hybridization[J]. Biotechnology, 2001, 3 (5): 486-492
    [251] Welsh J, Mclell M. Fingerprinting genomes using PCR with arbitrary primers[J]. Nucleic Acids Res, 1990, 18: 7213-7218
    [252] Wilding C S, Beaumont A R, Latchford W. Mitochondrial DNA variation in the scollop Pecten maximum (L.) assessed by a PCR-RFLP method. [J]Heredity, 1997, 79:178-189
    [253] Williams J G K, Kvbelik K J, Rafalski J A, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990,18: 6531-6535
    [254] Wilbur A E, Gaffney P M. A genetic basis for geographic variation in shell morphology in the bay scallop, Argopecten irradians. Mar Biol, 1997, 128: 97-105
    [255] Wolf H D, Backeljau T, Dongen S V, et al. Large-scale patterns of shell variation in Littorina striata, a planktonic developing periwinkle from Macaronesia (Mollusca: Prosobranchia)[J]. Marine Biology, 1998, 131: 309 - 317.
    [256] Wolff M, Garrido J. Comparative study of growth and survival of two color morphs of the Chilean scallop Argopecten purpuratus (Lamarck) in suspended culture. J Shellfish Res, 1991, 10 (1) : 47-53
    [257] Wright S.Evolution and the genetics of population,variability with and among natural population [M].Chicago:University of Chicago Press,1978
    [258] Yokogawa K. Morphological variability and genetic features in Japaneses common clam Ruditapes philippinarum [J]. Venus, 1998, 57: 121– 131.
    [259] Yu Z, Guo X. Genetic linkage map of the eastern oyster Crassostrea virginica Gemlin[J]. Biol Bull, 2003, 204: 327-338
    [260] Zane L, Bargelloni L, Patarnello T. Strategies for microsatellites isolation: a review [J], Mol Ecol, 2002, 11: 1-6
    [261] Zebeau M, Vos P. Selective restriction fragment amplification: A general method for DNA fingerprinting [P]. European Patent Application Number: 94202629.7 (Publication No.0534858a1). Paris: European Patent Office,1993
    [262] Zhang G, Wang Z, Chang Y, et al. Tetriploid induction in the Pacific ablone Haliotis discus hannai Ino with 6-DMAP and CB[J]. J Shellf Res., 2000, 19 (1): 540-541
    [263] Zheng X D, Wang R C, Wang X F, et al. Genetic variation in population of the common Chinese cuttlefish Sepiella maindroni using allozyme and mitochondrial DNA sequences analysis.. [J] J Shellf Res, 2001, 20 (3): 1159-1165
    [264] Zouros E, Singh S M, Miles H E. Growth rate in oysters: an overdominant phenotype and its possible explanations [J]. Evolution, 1980, 34: 856~867

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700