用户名: 密码: 验证码:
农田物种间相互作用的生态系统功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粮食安全已成为当前全球重要问题之一,世界农业面临如何持续生产出充足的粮食同时又不破坏资源环境的重大挑战。人们重新回顾世界农业的发展历程,分析优秀传统农业可持续的机理并应用于现代可持续农业的设计中。具有1200年历史的浙江南部稻鱼共作系统是传统农业的典范,2005年该系统被列入全球重要农业文化遗产项目。本论文通过农户调查和田间试验,研究“稻鱼系统”内在的运行机制,并回答以下问题:(1)系统生产力如何维持稳定?(2)系统对化肥农药的依赖程度如何?系统生产力维持的机理是什么?研究取得以下主要研究结果:
     1稻鱼系统的生产力稳定性及对化肥农药的依赖
     在农户尺度上,采用多样点定位观察和取样分析的方法,在全球重要农业文化遗产稻鱼系统分布地区(浙江南部丘陵山区),研究稻-鱼共作系统和水稻单作系统水稻产量稳定性(2006-2010)及其对农药化肥的依赖性。5年的研究结果揭示,稻-鱼共作系统与水稻单作系统的水稻产量及产量稳定性指数相似,但水稻单作系统需要施用农药14.85±1.50a.i. kg ha-1(5年平均)和肥料(氮磷钾)总投入282.27±26.53kg ha-1(5年平均)来维持水稻产量及稳定性,而稻-鱼系统仅需要施用农药6.75±0.75a.i. kg ha-1(5年平均)和肥料(氮磷钾)总投入216.20±19.30kg ha-1(5年平均)来维持。
     5年田间试验表明,无农药投入的稻-鱼系统水稻产量明显高于无农药的水稻单作系统,但与使用农药的水稻单作系统无显著差异。稻-鱼系统的水稻产量稳定性高于无农药的水稻单作系统,而略低于使用农药的水稻单作系统。2稻鱼系统有害生物的动态
     在全球重要农业文化遗产地及周边区域,通过长期(2006-2010)定点田间试验(完全随机区组),比较研究稻-鱼共作系统和水稻单作系统病虫草害的发生规律。6年的灯诱结果表明,稻鱼系统的稻飞虱发生量明显低于水稻单作系统,尤其是在稻飞虱高发生的年份。5年的田间试验研究结果揭示,与水稻单作无农药处理相比,稻-鱼共作无农药处理的杂草生物量降低93.57%(5年平均),纹枯病发生率降低54.35%(5年平均),稻飞虱密度降低44.74%(5年平均)。在纹枯病和稻飞虱低发生时段,稻鱼共作处理中鱼对纹枯病和稻飞虱的控制效果与水稻单作使用农药处理的效果相似。3稻鱼互惠关系的生态学效应
     稻鱼系统中水稻与鱼存在明显的互惠关系。一方面鱼直接取食稻飞虱或由于取食等活动碰撞水稻植株导致稻飞虱落入水面,在鱼密度为0.8尾/m~2的情况下,每丛水稻每天被碰撞26.82次,导致26.04%稻飞虱被控制。另一方面,水稻为鱼遮阴和改良水环境,即使在水稻生长的高温季节,鱼也保持旺盛的取食活动。与鱼单作系统相比,稻鱼共作系统水温降低2.56℃,光强降低1456.29μmolm2s-1(于12:00-14:00测定),鱼的活动频率增加57.6%。此外,稻鱼共作系统中水体的氨氮和土壤总氮积累都低于鱼单作系统,水稻为鱼创造了良好的水体环境。4稻鱼系统对氮素的互补利用
     稻鱼共作系统氮素的使用比水稻单作低36.51%,但水稻产量仍与水稻单作相似。稻鱼共作系统和鱼单作系统中,饲料中氮素只有11.10%-14.20%进入鱼的体内,大部分停留在环境中(水体、土壤和其他);稻鱼系统中水稻31.84%的氮素来自未被鱼利用的饲料,从而提高了饲料中氮素的利用效率。5稻鱼系统对传统水稻品种的保护
     以全球重要农业文化遗产地“龙现村”为研究基地,对延续种植的水稻传统品种的空间分布格局进行了研究,发现这些传统品种与杂交品种镶嵌分布。进一步调查了25个稻鱼系统自然村(以集水区为单元)传统品种的种植面积,发现传统品种种植面积约13%,意味着传统稻鱼共作系统对水稻农家品种有着重要保护作用。对传统品种糯稻、芒稻和红米与杂交水稻品种在稻鱼系统中的表现(产量、品质、病虫草发生)进行了比较研究,发现传统地方品种品质好,且在较低化肥、农药投入的情况下,传统地方品种产量与杂交稻无显著差异。
Modern agriculture has greatly increased global crop yields which mainly resulting from the greater inputs of chemical fertilizers and pesticides, new crop strains and other technologies of the "Green Revolution", but the continuous and heavy application of chemical fertilizers and pesticides has negatively affected the environment, induced pests resistant to pesticides and raised the costs of agriculture. The shortage of modern agriculture requires "rethinking agriculture" and learning back from traditional agricultural systems. Rice-fish co-culture system, practiced by local farmers for over1200years in south Zhejiang province, China, is one of the outstanding traditional agricultural systems in the world. In2005, this specific rice-fish co-culture was identified by FAO and UNDP as one of the five "globally important agricultural heritage systems, GIAHS". The main aim of our present study is to estimate the ecosystem stability of this rice-fish co-culture, and to examine how this co-culture system maintains the stability. We hypothesis that a co-evolutionary positive interaction between species (rice and fish, a nontrophic interaction) may generate multi-functioning of ecosystem and lead this ancient rice-fish co-culture still viable today with lower chemical application. The study was conducted at the GIAHS pilot site of the rice-fish system in China.
     1Temporal stability of rice yield and pesticides use in rice-fish co-culture
     Through household assessments in farmer's field, we found that no significant difference of rice yield between rice monoculture (RM) and rice fish co-culture (RF), but annual pesticide utilization was significantly higher in RM than that in RF during the study. Temporal stability (S) of rice yield was the same in RF and in RM, but pesticides application was greater in RM than RF. Temporal stability (S) of rice yield among samples in RM but not in RF was significantly positively dependent on pesticides. In our experiment without pesticide application, both rice yield and temporal stability (S) of rice yield were higher in RF than in RM over the5field experimental years.
     2Occurrence of rice pests in rice-fish co-culture
     Data from light-trap survey showed that the population of rice planthoppers was higher in RM than that in RF, specifically in2006when rice planthoppers were outbreak. Field experiment showed that although density of some insect pests and diseases (e.g. rice case worm, rice false smut) did not reduce, the density of rice planthoppers, incidence of rice sheath blight and biomass of weeds significantly reduced by44.74%,54.35%and93.75%respectively due to fish presented in rice field.
     3Positive interactions between rice and fish
     Our field experiment showed that rice and fish can help each other in rice-fish co-culture system. On one hand, fishes create optimum environment for rice by removing insect pests, diseases and weeds. Active hitting behavior of fish on rice stem could explain26.04%reduction of rice planthopper. On the other hand, rice had a substantial positive impact on activities of fishes. First, rice creates an optimum environment for fish by providing shading and reducing field water temperature during the hot season. Compared to fish monoculture without rice (FM), water temperature and light intensity of water surface in RF reduced2.56℃and1456.29μmol m-2s-1around12:00-14:00. This ameliorated environment resulted in that the frequency of fish activity was57.6%higher in RF than that in FM. Second, rice acts as a nitrogen sink and helps reduce the ammonia (some of them excreted by the fish) in water and total N accumulated in soil, making the water cleaner for fish.
     4Nitrogen fertilizer application and Nitrogen use efficiency
     In our experiment, rice yield was significantly higher in rice-fish with feed input than that in rice-fish without feed applied and rice monoculture (RM) with36.51%higher N application. Fish feed input significantly increased fish yield in both fish monoculture and rice-fish co-culture. In RF and FM, only11.10%and14.20%contained N in fish feed was transferred into fish body respectively. In RF, however, rice plants can use the unconsumed N, resulting in less fish feed-N remaining in environment (e.g. soil or water). Compared to RF without fish feed application,31.84%N contained in rice grain and straw were from fish feed.
     5Traditional rice varieties conserved in rice-fish co-culture system
     Our survey showed that small areas of traditional rice varieties were planted with hybrid varities. Only19%of the farmers who practiced rice monoculture planted traditional varieties while52%of farmers who practiced rice-fish co-culture planted traditional varieties. Traditional varieties represented13%of the total land planted to rice in the rice-fish system but only2%in the rice monoculture system. Our field experiment showed that in the rice-fish system without pesticides, rice planthopper numbers and sheath blight incidence were lower from traditional varieties than the hybrid varieties; no significant difference of rice yield was found between the traditional varieties and the hybrid varieties. Our results suggested that traditional rice varieties can be preserved through conserving GIAHS rice-fish co-culture.
引文
Achtak H; Ater M, Oukabli A, Santoni S, Kjellberg F, Khadari B. Traditional agroecosystems as conservatories and incubators of cultivated plant varietal diversity:the case of fig (Ficus carica L.) in Morocco[J]. BMC Plant Biology,2010,10: 1-12
    Altieri MA, Merrick LC. In situ conservation of crop genetic resources through maintenance of traditional farming system[J]. Economic Botany,1987,41:86-96
    Altieri MA. Linking ecologists and traditional farmers in the search for sustainable agriculture[J]. Frontiers in Ecology and the Environment,2004,2:35-42
    Awal MA, Koshi H, Ikeda T. Radiation interception and use by maize/peanut intercrop canopy[J]. Agricultural and Forest Meteorology,2006,139:74-83
    Bai YF, Han XG, Wu JG, Chen ZZ, Li LH. Ecosystem stability and compensatory effects in the Inner Mongolia grassland[J]. Nature,2004,431:181-184
    Bao SD. Organic matter. In:Bao S D, ed. Soil and Agricultural Chemistry Analysis. Beijing: China Agricultural Press,2002, pp35
    Barry MB, Pham JL, Courtois B, Billot C, Ahmadi N. Rice genetic diversity at farm and village levels and genetic structure of local varieties reveal need for in situ conservation[J]. Genetic Resources and Crop Evolution,2007,54:1675-1690
    Bellon MR, Brar DS, Lu BR, Pham JL. Rice genetic resources. In:Fischer K, (ed) Sustainability of rice in the global food system [M]. IRRI, Los banos, Philippines.1998, pp247-302
    Bellon MR, Pham JL, Jackson MT. Genetic conservation:a role for rice farmers. In: Hawkes J G, (ed) Plant conservation:the in situ approach[M]. Chapman & Hall, IPGRI, London.1997, pp25-34
    Bengtsson J, Ahnstrom J, Weibull AC. The effects of organic agriculture on biodiversity and abundance:a meta-analysis[J]. Journal of Applied Ecology,2005,42:261-269
    Bertness MD, Hacker SD. Physical stress and positive asssociations among marsh plants[J]. The American Naturalist,1994,144:363-372
    Bertness MD, Leonard G. The role of positive interactions in communities:lessons from the intertidal[J]. Ecology,1997,78:1978-1989
    Berzsenyi Z, Dang QL. Effect of N-Fertilisation on the growth characteristics of maize (Zea mays L.)[J]. Hybridscereal Resarch Communication,2008,36:211-214
    Bisht IS, Nehta PS, Bhandari DC. Traditional crop diversity and its conservation on-farm for sustainable agricultural production in Kumaon Himalaya of Uttaranchal State:A case study[J]. Genetic Resources and Crop Evolution,2007,54:345-357
    Bremmer JM, Mulvaney CS. Nitrogen total. In:Page A L, Miller R H, Keeney D R, eds. Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties[M]. Madison, WI:ASA and SSSA,1982,595-624
    Bromley DW. Food security:beyond technology[J]. Science,2010,328:169
    Brooker RW, Maestre FT, Callaway RM, Lortie CL, Cavieres LA, Kunstler G, Liancourt P, Tielborger K, Travis JMJ, Anthelme F, Armas C, Coll L, Corcket E, Delzon S, Forey E, Kikvidze Z, Olofsson J, Pugnaire F, Quiroz CL, Saccone P, Schiffers K, Seifan M, Touzard B, Michalet R. Facilitation in plant communities:the past, the present, and the future[J]. Journal of Ecology,2008,96:18-34
    Brown ME, Funk CC. Food security under climate change [J]. Science,2008,319:580-581
    Bruno JF, Stachowicz JJ, Bertness MD. Inclusion of facilitation into ecological theory [J]. Trends in ecology and evolution,2003,18:119-125.
    Brush SB. In situ conservation of landraces in centers of crop diversity [J]. Crop Science, 1995,35:346-354
    Bulleri F. Facilitation research in marine systems:state of the art, emerging patterns and insights for future developments [J]. Journal of Ecology,2009,97:1121-1130
    Bulter SJ, Vickery JA, Norris K. Farmland biodiversity and the footprint of agriculture [J]. Science,2007,315:381-384.
    Butterfield BJ. Effects of facilitation on community stability and dynamics:synthesis and future directions [J]. Journal of Ecology,2009,97:1192-1201
    Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Paolini L, Pugnaire FI, Newingham B, Aschehoug ET, Armas C, Kikodze D, Cook BJ. Positive interactions among alpine plants increase with stress[J]. Nature,2002,417:844-848
    Callaway RM. Positive interactions among plants[J]. Botanical Review,1995,61:306-349
    Cardinale BJ, Palmer MA, Collins SL. Species diversity enhances ecosystem functioning through interspecific facilitation[J]. Nature,2002,415:426-429
    Chakraborty SC, Chakraborty S. Effect of dietary protein level on excretion of ammonia in Indian major carp, Labeo rohita, fingerlings[J]. Aquaculture Nutrition,1998,4:47-51
    Crowder DW, Northfield TD, Strand MR, Snyder WE. Organic agriculture promotes evenness and natural pest control [J]. Nature,2010,466:109-123
    Daleo P, Fanjul E, Casariego AM, Silliman BR, Bertness MD, Iribarne O. Ecosystem engineers activate mycorrhizal mutualism in salt marshes [J]. Ecology letters,2007,10: 902-908
    Datta A, Nayak DR, Sinhababu DP, Adhya TK. Methane and nitrous oxide emissions from an integrated rainfed rice-fish farming system of Eastern India[J]. Agriculture Ecosystems and Environment,2009,129:228-237
    Dhillon BS, Dua RP, Brahmi P, Bisht IS. On-farm conservation of plant genetic resources for food and agriculture [J]. Current Science,2004,87:557-559
    Due G., Bao SY, Baum M, Redden B, Sadiki M, Suso MJ, Vishniakova M, Zong XX. Diversity maintenance and use of Vicia faba L. genetic resources [J]. Field Crops Research,2010,115:270-278
    Egerova J, Proffitt CE, Travis SE. Facilitation of survival and growth of Baccharis halimifolia L. by Spartina alterniflora Loisel in a created louisiana salt marsh[J]. Wetlands,2003,23:250-256
    Esquinas-Alcazar J. Protecting crop genetic diversity for food security:political, ethical and technical challenges [J]. Nature Reviews Genetics,2005,6:946-953
    FAO. http://www.fao.org/nr/giahs/giahs-systems/zh/
    Fernando CH. Rice field ecology and fish culture-an overview [J]. Hydrobiologia,1993, 259:91-113
    Flombaum P, Sala OE. Higher effect of plant species diversity on productivity in natural than artificial ecosystems [J]. PNAS,2008,105:6087-6090
    Frei M, Becker K. Integrated rice-fish culture:coupled production saves resources[J]. Natural Resources Forum,2005,29:135-143
    Gao Y, Duan AW, Qiu XQ, Sun JS, Zhang JP, Liu H, Wang HZ. Distribution and use efficiency of photosynthetically active radiation in strip intercropping of maize and soybean[J]. Agronomy Journal,2010,102:1149-1157
    Gebbers R, Adamchuk VI. Precision agriculture and food security[J]. Science,2010,327: 828-831
    Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C. Food security:the challenge of feeding 9 Billion people[J]. Science,2010,327:812-818
    Gomez-Aparicio L, Zamora R, Gomez JM, Hodar JA, Castro J, Baraza E. Applying plant facilitation to forest restoration:A meta-analysis of the use of shrubs as nurse plants[J]. Ecological Applications,2004,14:1128-1138
    Goudard A, Loreau M. Nontrophic interactions, biodiversity, and ecosystem functioning: An interaction web model[J]. The American Naturalist,2008,171:91-106
    Graver KK, Karsten HD, Roth GW. Corn grain yields and yield stability in four long-term cropping systems [J]. Agronomy Journal,2009,101:940-946
    Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS. Significant acidification in major Chinese croplands[J]. Science,2010,327:1008-1010
    Halwart M. Biodiversity and nutrition in rice-based aquatic ecosystems[J]. Journal of Food Composition and Analysis,2006,19:747-751
    Halwart M, Gupta MV. Culture of Fish in Rice Fields[M]. FAO and The World Fish Center, 2004, p.83
    Hector A, Bazeley-White E, Loreau M, Otway S, Schmid B. Overyielding in grassland communities:Testing the sampling effect hypothesis with replicated biodiversity experiments[J]. Ecology Letters,2002,5:502-511
    Hector A, Schmid B, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Joshi J, Jumpponen A, Korner C, Leadley PW, Loreau M, Minns A, Mulder CPH, O'Donovan G, Otway SJ, Pereira JS, Prinz A, Read DJ, Scherer-Lorenzen M, Schulze ED, Siamantziouras ASD, Spehn EM, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH. Plant diversity and productivity experiments in European grasslands[J]. Science,1999,286:1123-1127
    Herrero M, Thornton PK, Notenbaert AM, Wood S, Msangi S, Freeman HA, Bossio D, Dixon J, Peters M, van de Steeg J, Lynam J, Rao PP, Macmillan S, Gerard B, McDermott J, Sere C, Rosegrant M. Smart investments in sustainable food production:revisiting mixed crop-livestock systems[J]. Science,2010,327:822-825
    Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setala H, Symstad AJ, Vandermeer J, Wardle DA. Effects of biodiversity on ecosystem functioning:a consensus of current knowledge[J]. Ecological Monographs,2005,75:3-35
    Hopper SD, Gioia P. The southwest Australian floristic region:evolution and conservation of a global hot spot of biodiversity[J]. Annual Review of Ecology Evolution and Systematics,2004,35:623-650
    Isbell FI, Polley HW, Wilsey BJ. Species interaction mechanisms maintain grassland plant species diversity[J]. Ecology,2009,90:1821-1830
    James FC, Hess CA, Kicklighter BC, Thum RA. Ecosystem management and the niche gestalt of the red-cockaded Woodpecker in longleaf pine forests[J]. Ecological Application,2001,11:854-870
    Jarvis DI, Brown AHD, Cuong PH, Collado-Panduro L, Latournerie-Moreno L, Gyawali S, Tanto T, Sawadogo M, Mar I, Sadiki M, Hue NTN, Arias-Reyes L, Balma D, Bajracharya J, Castillo F, Rijal D, Belqadi L, Ranag R, Saidi S, Ouedraogo J, Zangre R, Rhrib K, Chavez JL, Schoen DJ, Sthapit B, De Santis P, Fadda C, Hodgkin T. A global perspective of the richness and evenness of traditional crop-variety diversity maintained by farming communities[J]. PNAS,2008,105:5326-5331
    Jiang L, Pu ZC. Different effects of species diversity on temporal stability in single-trophic and multitrophic communities[J]. The American naturalist,2009,174: 651-659.
    Jimenez MIG, Poveda K. Synergistic effects of repellents and attractants in potato tuber moth control[J]. Basic and Applied Ecology,2009,10:763-769
    Jones CG, Lawton JH, Shachak M. Positive and negative effects of organisms as physical ecosystem engineers[J]. Ecology,1997,78:1946-1957
    Kleijn D, Baquero RA, Clough Y, Diaz M, De Esteban J, Fernandez F, Gabriel D, Herzog F, Holzschuh A, Johl R, Knop E, Kruess A, Marshall EJP, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL. Mixed biodiversity benefits of agri-environment schemes in five European countries[J]. Ecology Letters,2006,9: 243-254
    Kleijn D, Berendse F, Smit R, Gilissen N. Agri-environment schemes do not effectively protect biodiversity in Dutch agricultural landscapes[J]. Nature,2001,413:723-725
    Kumar S, Bisht IS, Bhat KV. Population structure of rice (Oryza sativa) landraces under farmer management[J]. Annals of Applied Biology,2010,156:137-146
    Kyaw KM, Toyota K, Okazaki M, Motobayashi T, Tanaka H. Nitrogen balance in a paddy field planted with whole crop rice{Oryza sativa cv. Kusahonami) during two rice-growing seasons[J]. Biology and Fertility of Soils,2005,42:72-82
    Lazzari R, Baldisserotto B. Nitrogen and phosphorus waste in fish farming[J]. Boletim do Institute de Pesca Sao Paulo,2008,34:591-600
    Li CY, He XH, Zhu SS, Zhou HP, Wang YY, Li Y, Yang J, Fan JX, Yang JC, Wang GB, Long YF, Xu JY, Tang YS, Zhao GH, Yang JR; Liu L, Sun Y, Xie Y, Wang HN, Zhu YY. Crop diversity for yield increase[J]. PLoS ONE,2009,4:1-6
    Li L, Li SM, Sun JH, Zhou LL, Bao XG, Zhang HG, Zhang FS. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus deficient soils[J]. PNAS,2007,104:11192-11196
    Lortie CJ, Callaway RM. Re-analysis of meta-analysis:support for the stress-gradient hypothesis[J]. Journal of Ecology,2006,94:7-16
    Love B, Spaner D. Agrobiodiversity:Its value, measurement, and conservation in the context of sustainable agriculture[J]. Journal of Sustainable Agriculture,2007,31:53-82
    MacDonald GM. Water, climate change, and sustainability in the southwest[J]. PNAS, 2010,107:21256-21262
    Mader P, Flie(3bach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming[J]. Science,2002,296:1694-1697
    Maestre FT, Bautista S, Cortina J. Positive, negative, and net effects in grass-shrub interactions in mediterranean semiarid grasslands[J]. Ecology,2003,84:3186-3197
    Malezieux E, Crozat Y, Dupraz C, Laurans M, Makowski D, Ozier-Lafontaine H, Rapidel B, de Tourdonnet S, Valantin-Morison M. Mixing plant species in cropping systems: concepts, tools and models. Areview[J]. Agronomy for Sustainable Development,2009, 29:43-62
    Maxted N, Guarino L, Myer L, Chiwona EA. Towards a methodology for on-farm conservation of plant genetic resources[J]. Genetic Resources Crop Evolution,2002,49: 31-46
    McCann KS. The diversity-stability debate[J]. Nature,2000,405:228-233
    Moonen AC, Barberi P. Functional biodiversity:An agroecosystem approach[J]. Agriculture Ecosystems and Enviroment,2008,127:7-21
    Morris RA, Garrity DP. Resource capture and utilization in intercropping-water[J]. Field-Crops Research,1993,34:303-317
    Morris RA, Villegas AN, Polthanee A, Centeno HS. Water use by monocropped and intercropped cowpea and sorghum grown after rice[J]. Agronomy Journal,1990,82: 664-668
    Mulder CPH, Uliassi DD, Doak DF. Physical stress and diversity-productivity relationships:The role of positive interactions[J]. PNAS,2001,98:6704-6708
    Naeem S, Hakenson K, Lawton JH, Crawley MJ, Thompson LJ. Biodiversity and plant productivity in a model assemblage of plant species[J]. Oikos,1996,76:259-264
    Naeem S, Li SB. Biodiversity enhances ecosystem reliability[J]. Nature,1997,390:507-509
    Naeem S, Thompson LJ, Lawler SP, Lawton JH, Woodfin RM. Declining biodiversity can alter the performance of ecosystems[J]. Nature,1994,368:734-737
    Nazarko OM, Van Acker RC, Entz MH. Strategies and tactics for herbicide use reduction in field crops in Canada:A review[J]. Canadian Journal of Plant Science,2005,85: 457-479
    Nyfeler D, Huguenin-Elie O, Suter M, Frossard E, Connolly J, Luscher A. Strong mixture effects among four species in fertilized agricultural grassland led to persistent and consistent transgressive overyielding[J]. Journal of Applied Ecology,2009,46:683-691
    Ookawa T, Hobo T, Yano M, Murata K, Ando T, Miura H, Asano K, Ochiai Y, Ikeda M, Nishitani R, Ebitani T, Ozaki H, Angeles ER, Hirasawa T, Matsuoka M. New approach for rice improvement using a pleiotropic QTL gene for lodging resistance and yield[J]. Nature Communications,2010,1:132
    Pfisterer AB, Schmid B. Diversity-dependent production can decrease the stability of ecosystem functioning[J]. Nature,2002,416:84-86
    Poggio SL. Structure of weed communities occurring in monoculture and intercropping of field pea and barley[J]. Agriculture Ecosystems and Environment,2005,109:4-58
    Proulx R, Wirth C, Voigt W, Weigelt A, Roscher C, Attinger S, Baade J, Barnard RL, Buchmann N, Buscot F, Eisenhauer N, Fischer M, Gleixner G, Halle S, Hildebrandt A, Kowalski E, Kuu A, Lange M, Milcu A, Niklaus PA, Oelmann Y, Rosenkranz S, Sabais A, Scherber C, Scherer-Lorenzen M, Scheu S, Schulze ED, Schumacher J, Schwichtenberg G, Soussana JF, Temperton VM, Weisser WW, Wilcke W, Schmid B. Diversity promotes temporal stability across levels of ecosystem organization in experimental grasslands[J]. PLoS ONE,2010,5:e13382
    Reganold JP, Glover JD, Andrews PK, Hinman HR. Sustainability of three apple production systems[J]. Nature,2001,410:926-930
    Roschewitz I, Gabriel D, Tscharntke T, Thies C. The effects of landscape complexity on arable weed species diversity in organic and conventional farming[J]. Journal of Applied Ecology,2005,42:873-882
    Ruddle K. Traditional integrated farming systems and rural development:the example of rice field fisheries in southeast Asia[J]. Agricultural Administration,1982,10:1-11
    Singh RK. Genetic resource and the role international collaboration in rice breeding[J]. Genome,1999,42:635-641
    Singleton GR, Sudarmaji, Brown PR. Comparison of different sizes of physical barriers for controlling the impact of the rice field rat, Rattus argentiventer, in rice crops in Indonesia[J]. Crop Protection,2003,22:7-13
    Smith RG, Gross KL, Robertson GP. Effects of crop diversity on agroecosystem function: Crop yield response[J]. Ecosystems,2008,11:355-366
    Smith RG, Gross KL. Weed community and corn yield variability in diverse management systems[J]. Weed Science,2006,54:106-113.
    Smith RG, Menalled FD, Robertson GP. Temporal yield variability under conventional and alternative management systems[J]. Agronomy Journal,2007,99:1629-1634
    Smukler SM, Sanchez-Moreno S, Fonte SJ Ferris H, Klonsky K, O'Geen AT, Scow KM, Steenwerth KL, Jackson LE. Biodiversity and multiple ecosystem functions in an organic farmscape[J]. Agriculture Ecosystems and Environment,2010,139:80-97
    Snapp SS, Gentry LE, Harwood R. Management intensity-not biodiversity-the driver of ecosystem services in a long-term row crop experiment[J]. Agriculture Ecosystems and Enviroment,2010,138:242-248
    Spehn EM, Hector A, Joshi J, Scherer-Lorenzen M, Schmid B, Bazeley-White E, Beierkuhnlein C, Caldeira MC, Diemer M, Dimitrakopoulos PG, Finn JA, Freitas H, Giller PS, Good J, Harris R, Hogberg P, Huss-Danell K, Jumpponen A, Koricheva J, Leadley PW, Loreau M, Minns A, Mulder CPH, O'Donovan G, Otway SJ, Palmborg C, Pereira JS, Pfisterer AB, Prinz A, Read DJ, Schulze ED, Siamantziouras ASD, Terry AC, Troumbis AY, Woodward FI, Yachi S, Lawton JH. Ecosystem effects of biodiversity manipulations in European grasslands[J]. Ecological Monographs,2005, 75:37-63
    Stachowicz JJ. Mutualism, facilitation, and the structure of ecological communities[J]. Bioscience,2001,51:235-246
    Tang Jianjun, Xie Jian, Chen Xin, Yu Liuqing. Can rice genetic diversity reduce Echinochloa crus-galli infestation? [J]. Weed Research,2009,49:47-54
    Taylor ME, Morecroft MD. Effects of agri-environment schemes in a long-term ecological time series[J]. Agriculture Ecosystems and Environment,2009,130:9-15
    Tester M, Langridge P. Breeding technologies to increase crop production in a changing world[J]. Science,2010,327:818-822
    Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S. Agricultural sustainability and intensive production practices[J]. Nature,2002,418:671-677
    Tilman D, Downing JA. Biodiversity and stability in grassland[J]. Nature,1994,367: 363-365
    Tilman D, Naeem S, Knops J, Reich P, Siemann E, Wedin D, Ritchie M, Lawton J. Biodiversity and ecosystem properties[J]. Science,1997,278:1866-1867
    Tilman D, Reich PB, Knops J, Wedin D, Mielke T, Lehman C. Diversity and productivity in a long-term grassland experiment[J]. Science,2001,294:843-845
    Tilman D, Reich PB, Knops JMH. Biodiversity and ecosystem stability in a decade-long grassland experiment[J]. Nature,2006,441:629-632
    Tilman D, Wedin D, Knops J. Productivity and sustainability influenced by biodiversity in grassland ecosystems[J]. Nature,1996,379:718-720
    Tilman D. Ecology-Diversity and production in European grasslands[J]. Science,1999,286: 1099-1100
    Tin HQ, Berg T, Bjornstad A. Diversity and adaptation in rice varieties under static (ex situ) and dynamic (in situ) management[J]. Euphytica,2001,122:491-502
    Tirado R, Pugnaire FI. Community structure and positive interactions in constraining environments[J]. Oikos,2005,111:437-444
    Tollenaar M, Lee EA. Yield potential, yield stability and stress tolerance in maize[J]. Field Crops Research,2002,75:161-169
    Tsubo M, Walker S. A model of radiation interception and use by a maize-bean intercrop canopy[J]. Agricultural and Forest Meteorology,2002,110:203-215
    Vanelslander B, De Wever A, Van Oostende N, Kaewnuratchadasorn P, Vanormelingen P, Hendrickx F, Sabbe K, Vyverman W. Complementarity effects drive positive diversity effects on biomass production in experimental benthic diatom biofilms[J]. Journal of Ecology,2009,97:1075-1082
    Varvel GE. Crop rotation and nitrogen effects on normalized grain yields in a long-term study[J]. Agronomy Journal,2000,92:938-941
    Vien TD, Leisz SJ, Lam NT, Rambo AT. Using traditional swidden agriculture to enhance rural livelihoods in Vietnam's uplands[J]. Mountain Research and Development,2006, 26:192-196
    Vromant N, Nhan DK, Chau NTH, Ollevier F. Can Fish Control Planthopper and Leafhopper Populations in Intensive Rice Culture?[J]. Biocontrol Science and Technology,2002,12:695-703
    Vromant N, Nhan DK, Chau NTH, Ollevier F. Effect of stocked fish on rice leaf folder Cnaphalocrocis medinalis and rice caseworm Nymphula depunctalis populations in intensive rice culture[J]. Biocontrol Science and Technology,2003,13:285-297
    Wang CH, Li SF, Xiang SP, Wang J, Liu ZG, Pang ZY, Duan JP, Xu ZB. Genetic parameter estimates for growth-related traits in Oujiang color common carp (Cyprinus carpio var. color) [J]. Aquaculture,2006,259:103-107
    Wang CH, Li SF. Phylogenetic relationships of ornamental (koi) carp, Oujiang color carp and Long-fin carp revealed by mitochondrial DNA COII gene sequences and RAPD analysis[J]. Aquaculture,2004,231:83-91
    Wang ZB. Chronicles of Agriculture of Yongjia County. Beijing:Ocean Press[M].1997,11,631
    Williams CL, Liebman M, Edwards JW, James DE, Singer JW, Arritt R, Herzmann D. Patterns of regional yield stability in association with regional environmental characteristics[J]. Crop Science,2008,48:1545-1559
    Xie J, Wu X, Tang JJ, Zhang JE, Luo SM, Chen X. Conservation of traditional rice varieties in a Globally Important Agricultural Heritage System (GIAHS):rice-fish co-culture [J]. Agricultural Sciences in China,2011,10:101-105
    Yamagishi J, Nemoto K, Mu C. Diversity of the rachis-branching system in a panicle in Japonica rice[J]. Plant Production Science,2003,6:59-64
    Yuan WL, Cao CG, Li CF, Zhang M, Cai ML, Wang JP. Methane and nitrous oxide emissions from rice-duck and rice-fish complex ecosystems and the evaluation of their economic significance[J]. Agricultural Sciences in China,2009,8:1246-1255
    Zhang FS, Li L. Using competitive and facilitative interactions in intercropping systems enhances crop productivity and nutrient-use efficiency[J]. Plant and Soil,2003,248: 305-312
    Zhu YY, Chen HR, Fan JH, Wang YY, Li Y, Chen JB, Fan JX, Yang SS, Hu LP, Leung H, Mew TW, Teng PS, Wang ZH, Mundt CC. Genetic diversity and disease control in rice[J]. Nature,2000,406:718-722
    Zhu YY, Wang YY, Chen HR, Lu BR. Conserving traditional rice varieties through management for crop diversity[J]. Bioscience,2003,53:158-162
    房增国,左元梅,李隆,张福锁.玉米-花生混作对系统内氮营养的影响研究[J].中国生态农业学报,2005,13(3):63-64
    桂富荣,李亚红,严乃胜,张永贵.马铃薯与玉米不同套种模式对马铃薯青枯病的防治作用 [J].中国植保导刊,2004,24(12):6-8
    黄毅斌,翁伯奇,唐建阳,刘中柱.稻-萍-鱼体系对稻田土壤环境的影响[J].中国生态农业学报,2001,(9):74-76
    李隆,李淑敏,孙建好,周丽莉,包兴国,张红刚,张福锁.多样性增加生产力的一种机制—蚕豆和玉米间套作对根际磷吸收的促进[J].中国基础科学,2007,22(4):22
    廖庆民.稻田养鱼的经济与生态价值[J].黑龙江水产,2001,(2):17
    刘小燕,杨治平,黄璜,戴振炎,胡立冬,刘大志,丁朝晖.稻鸭复合生态系统中二化螟发生规律的研究[J].湖南师范大学自然科学学报,2005,28(1):70-74
    刘小燕,杨治平,黄璜.湿地稻-鸭复合系统中水稻纹枯病的变化规律[J].生态学报,2004,24(11):2579-2583
    刘玉华,张立峰.不同作物种植方式产出效果的定量评价[J].中国农业科学,2005,38(4):709-713
    卢宝荣,朱有勇,王云月.农作物遗传多样性农家保护的现状及前景[J].生物多样性,2002,10(4):409-415
    路海东,贾志宽,杨宝平,李永平,刘世新.宁南旱区坡地不同粮草间作模式下产量和土壤水分利用效应[J].草地学报,2010,18(2):242-246
    骆世明.农业生物多样性利用的原理与技术[M].北京:化学工业出版社.2010,PP 3-58
    沈其荣,褚贵新,曹金留.从氮素营养的角度分析旱作水稻与花生间作系统的产量优势[J].中国农业科学,2004,37(8):1177-1182
    孙儒泳.基础生态学[M].北京:高等教育出版社.2002,PP291-303
    童泽霞,王文光,宋兴良.从生态学观点再析稻鸭生态种养中鸭子的作用[J].湖南农业科学,2007,(1):96-98
    王成豹,马成武,陈海星.稻鸭共作生产有机稻的效果[J].浙江农业科学,2003,(4):194-196
    王寒,唐建军,谢坚,陈欣.稻田生态系统多个物种共存对病虫草害的控制[J].应用生态学报,2007,18(5):1132-1136
    王华弟,蒋学辉,汪恩国.粮食作物病虫害测报与防治[M].北京:中国科学技术出版社,2005,pp9-21
    王树起,沈其荣,褚贵新,茆泽圣.种间竞争对旱作水稻与花生间作系统根系分布和氮素吸收积累的影响[J].土壤学报,2006,43(5):860-863
    肖靖秀,周桂夙,汤利,郑毅,李永梅,李隆.小麦/蚕豆间作条件下小麦的氮、钾营养对小 麦白粉病的影响[J].植物营养与肥料学报,2006,12(4):517-522
    肖筱成,谌学珑,刘永华,邹正华.稻田主养彭泽鲫防治水稻病虫草害的效果观测[J].江西农业科技,2001,(4):45-46
    肖焱波,李隆,张福锁.小麦//蚕豆间作中的种间氮营养差异比较研究[J].植物营养与肥料学报,2003,9(4):396-440
    谢坚,刘领,陈欣,陈坚,杨星星,唐建军.传统稻鱼系统病虫草害控制[J].科技通报,2009,25(6):801-805
    杨治平,刘小燕,黄璜.稻田养鸭对稻鸭复合系统中病、虫、草害及蜘蛛的影响[J].生态学报,2004,24(12):2756-2760
    叶优良,李隆,孙建好.三种豆科作物与玉米间作对水分利用的影响[J].灌溉排水学报,2008,27(4):33-36
    游修龄.稻田养鱼—传统农业可持续发展的典型之一[J].农业考古,2006,(4):222-224
    禹盛苗,金千瑜,欧阳由男,许德海.稻鸭共育对稻田杂草和病虫害的生物防治效应[J].中国生物防治,2004,20(2):99-102
    章家恩,骆世明.经济全球化背景下中国农业生态学面临的新问题与新任务[J].农村生态环境,2003,19(3):45-48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700