用户名: 密码: 验证码:
复杂条件下海洋结构物地基承载力特性数值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以复杂条件下海洋结构物地基基础承载力问题为研究对象,通过有限元数值计算与理论分析,细致地探讨了地基承载力、失稳破坏模式与基础/地基间的不同接触条件、地基土体强度特性、荷载条件等影响因素之间的依赖关系;建立了复合加载条件下地基承载力的数值分析方法,通过变动参数计算,给出了复杂条件下地基承载力的计算图表和简化计算公式,为改进和完善海洋地基基础设计方法提供了理论依据;同时,根据次加载面理论对ALPHA模型进行了改进,建立了能够模拟土体屈服前复杂变形特性的本构模型,在此基础上开发了拟静力有限元计算模块,针对均质地基在循环荷载作用下的承载特性进行了计算与分析。主要研究工作包括:
     1、将完全隐式的本构积分算法与子增量技术结合,建立了误差控制的自适应本构积分算法,通过在屈服面角点应力区引入伪屈服面,基于关联流动法则建立了双向映射的应力更新算法;根据这两种算法编制的材料子程序,较好地解决了ABAQUS计算砂土地基承载力时较难收敛的困难。将双向映射的应力更新算法推广到非关联流动法则,基于二阶无厚度接触面单元开发了接触计算模块,避开了ABAQUS用二阶单元离散相互接触的物体时接触计算不收敛的问题,可预测更为清晰的地基破坏机制和精确的极限承载力。
     2、通过有限元计算与分析,探讨了均质地基上埋深基础的承载力系数、埋深修正系数与土体强度特性、基础/地基间不同的接触特性(光滑接触、粗糙或完全粗糙接触)等影响因素之间的关系,并给出了相应的计算图表;与已有研究成果的对比表明,有限元计算结果合理可信,可供工程设计参考。
     3、建立了复合加载下地基承载力的有限元数值分析方法,对均质地基、层状地基的承载力问题进行了系统的参数研究,分析了基础/地基间不同接触条件(完全粘结或竖向可分离)、地基土层强度特性、荷载组合等因素对地基承载力及破坏模式的影响规律,建立了层状地基临界层厚比及竖向承载力的简化计算公式,给出了复杂条件下地基的极限荷载包络面,为改进和完善海洋地基基础设计方法提供了理论依据。
     4、根据次加载面理论对ALPHA模型进行了改进,结合模型特点提出了半隐式本构积分算法,在ABAQUS平台上开发了循环承载力拟静力计算模块;利用建立的计算模块,对三轴试验进行了模拟。与已有研究成果对比表明,提出的本构积分算法可较好地实现复杂模型的数值实施;改进的本构模型能够描述土体屈服前的非线性和不可恢复性变形特征,模拟变形特性较为复杂的土体。在此基础上,以均质地基为例,分析了地基的循环承载特性。
The objective of this paper is to investigate bearing capacity behaviors of offshore foundations under complicated conditions. In the study, through numerical calculation and theoretical analysis, relationship between bearing capacity, failure mechanisms and footing/subsoil interactive behaviors, strength character of subsoil and loading conditions is investigated in details. Numerical analysis methods have been established for calculation of bearing capacity of foundations under combined loading. Based on the methods, parametric studies are performed, and diagrams and simplified formulae for bearing capacity of foundations are obtained, which can be used to develop and improve the design of offshore foundations. Meanwhile, according to subloading theory, ALPHA model is modified to be able to simulate complicated deformation behaviors of soil before yielding. Based on the model, pseudo-static finite element procedure for calculation cyclic bearing capacity is established. Using this analyzing procedure, case studies are performed for bearing capacity of homogeneous foundations under cyclic loading. The main investigations consist of the following parts.
     1. Combining the fully backward Euler method and sub-incremental technique, an error-controlled implicit constitutive integration method is presented. By introducing pseudo yielding function for the apex stress area, a returning map scheme of two projection directions is established to remove the apex singularity and zero stress point in the yield surface, according to associated flow rule. Based on the two methods, a user material subroutine for ABAQUS is complied, which overcomes the difficulty of ABAQUS in analyzing cohesionless-frictional geomaterial. Furthermore, the returning map scheme of two projection directions is extended to constitutive model with non-associated flow rule, in order to account for different dilatation. Based on this algorithm, a user element subroutine is compiled in the framework of ABAQUS adopting second-order zero-thickness interface element. Cases study show that the user element subroutine can be used to simulate the interactive behaviors, in the case, the contact bodies are discretizd as second-order element, while the contact algorithm based on contact pair built in ABAQUS can not.
     2. For strip footing in homogeneous subsoil, the bearing capacity factors and embedment factors are obtained through finite element calculation. In the calculation, soil strength characters and footing/subsoil interactive behavior (smooth contact, frictional contact or fully coarse contact) is considered in details. The factors are presented in the form of calculation diagrams, and compared with the published results. Conclusion can be draw that the factors obtained by finite element method are more credible and can be used in foundation design.
     3. Finite element analysis methods are established for calculation of bearing capacity of foundations under combined loading. Based on themethods, the bearing capacity of strip footing on homogeneous and two-layered saturated clay is calculated. The effects of footing/soil interactive behavior, soil strength profile and combined loading on the failure envelopes and failure mechanism are analyzed. Simplified equations for critical thickness ratio of top layer and vertical bearing capacity are established for layered foundations. Failure loci in two or three dimensional load space are presented. The loci and formulae can be used to develop and improve the design of offshore foundations.
     4. The ALPHA model is modified according to subloading surface theory, and the initial anisotropy induced by consolidation is considered in the model. A semi-implicit constitutive integration algorithm for the modified model is proposed. And a subroutine embedded in ABAQUS for pseudo-static method is compiled based on the integration algorithm. Using the subroutine, simulations for triaxial tests are implemented, and the results have been compared to the rusults from modified Cam Clay model. The comparison shows that the modified ALPHA model can predict plastic deformation before yielding and other complicate deformation behavior than modified Cam Clay model. Finally, finite element analyses for homogeneous foundation are performed to investigate the cyclic bearing capacity behaviors.
引文
[1] 栾茂田, 金崇磐, 林皋. 非均质地基上浅基础的极限承载力[J]. 岩土工程学报, 1988, 10 (4): 14-27.
    [2] 栾茂田, 年廷凯, 赵少飞. 土工建筑物与边坡进展综述[A]. 中国土木工程学会第九届土力学及岩土工程学术会议论文集[C], 北京: 清华大学出版社, 2003.
    [3] Chen W F. Limit analysis and soil plasticity[M]. Amsterdam.: Elsevier, 1975.
    [4] Sokolovski V V. Statics of soil media[M]. London: Butterworth Scientific Publications, 1960.
    [5] Terzaghi K. Theoretical soil mechanics[M]. New York: John Wiley &Sons,Inc, 1943.
    [6] Meyerhof G G. The ultimate bearing capacity of foundations[J]. Geotechnique, 1951, 2: 301-331.
    [7] Meyerhof G G. The bearing capacity of foundations under eccentric and inclined loads [A]. Proc. 3rd Int. Conf. Soil Mechanics and Foundation Engineering[C], Zurich, 1953.
    [8] Meyerhof G G. Some recent research on bearing capacity of foundations[J]. Canadian Geotechnical Journal, 1963, 1: 16-26.
    [9] Meyerhof G G, Hanna A M. Ultimate bearing capacity of foundations on layered soils under inclined load[J]. Canadian Geotechnical Journal, 1978, 15: 565-572.
    [10] Hansen B. A revised and extended formula for bearing capacity. Copenhagen, Denmark:Danish Geotechnical Institute, Bulletin No. 28, 1970.
    [11] Hanna A M. Foundations on Strong Sand Overlying Weak Sand[J]. Journal of Geotechnical Engineering, ASCE, 1981, 107: 915-927.
    [12] Hanna A M. Bearing Capacity of Foundations on a Weak Sand Layer Overlying a Strong Deposit[J]. Canadian Geotechnical Journal, 1982, 19: 392-396.
    [13] Drucker D C, Greenberg H J, Prager W. Extended limit design theorems for continuous media[J]. Quarterly of Applied Mathematics 1952, 9: 381-389.
    [14] Maier G, Munro J. Mathematical programming applications to engineering plastic analysis[J]. Applied Mechanics Reviews, 1982, 35 (2): 1631-1643.
    [15] Lysmer J. Limit analysis of plane problems in soil mechanics[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96 (SM4): 1311-1334.
    [16] Sloan S W. Lower bound limit analysis using finite-elements and linear programming[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12 (1): 61-77.
    [17] Sloan S W, Kleeman P W. Upper bound limit analysis using discontinuous velocity fields[J]. Computer Methods in Applied Mechanics and Engineering, 1995, 127: 293-314.
    [18] 栾茂田, 赵少飞, 袁凡凡等. 复合加载模式作用下地基承载性能数值分析 [J]. 海洋工程, 2006, 24 (1): 34-40.
    [19] 袁凡凡, 栾茂田, 闫澍旺, 林源. 非均质介质破坏机制及承载力的有限元分析[J]. 岩石力学与工程学报, 2005, 24 (6): 929-933.
    [20] Vesic A. Bearing capacity of shallow foundations[A]. Foundation engineering handbook[C], NewYork: Van Nostrand Reinhold, 1975.
    [21] Ukritchon B, Whittle A J, Klangvijit C. Calculation of bearing capacity factor Nγ using numerical limit analyses[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 2003, 129 (6): 468-474.
    [22] 陈祖煜. 土力学经典问题的极限分析上、下限解[J]. 岩土工程学报, 2002, 24 (1): 1-11.
    [23] Button S J. The bearing capacity of footings on two-layer cohesive subsoil[A].Proceedings, 3rd International Conference on Soil Mechanics and Foundation Engineering[C], Zurich, 1953.
    [24] Reddy A S, Srinivason R J. Bearing capacity of footings on layered clays [J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1967, 93 (SM2): 87–93.
    [25] Brown J G, Myerhof G G. Experimental study of bearing capacity in layered clays[A]. Proceedings, 7th International Conference on Soil Mechanics and Foundation Engineering[C], Mexic, 1969.
    [26] Myerhof G G. Ultimate Bearing Capacity of Footings on Sand Layer Overlying Clay[J]. Canadian Geotechnical Journal, 1974, 11: 223-229.
    [27] Hanna A M, Meyerhof G G. Design Charts for Ultimate Bearing Capacity of Foundations on Sand Overlying Soft Clay[J]. Canadian Geotechnical Journal, 1980, 17: 300-303.
    [28] 袁凡凡. 非均质介质地基破坏机制及极限承载力分析研究[D]. 天津: 天津大学, 博士学位论文, 2003.
    [29] Shi L. Failure Loads on Layered Soils and Mechanisms of Collapse[D]. America: Johns Hopkins University, PhD thesis, 1996.
    [30] Burd H J, Frydman S. Discussion on bearing capacity of footings over two-layer foundation soils[J]. Journal of Geotechnical Engineering,ASCE, 1996, 122 (8): 699-700.
    [31] Burd H J, Frydman S. Bearing capacity of plane-strain footings on layered soils [J]. Canadian Geotechnical Journal, 1997, 34: 241-253.
    [32] Merifield R S, Sloan S W, Yu H S. Rigorous plasticity solutions for the bearing capacity of two-layered clays[J]. Geotechnique, 1999, 49 (4): 471-490.
    [33] 袁凡凡, 栾茂田, 闫澍旺, 林源. 倾斜荷载作用下层状非均质地基的极限承载力[J]. 岩土力学, 2003, 24 (增 2): 564-568.
    [34] 栾茂田, 金崇磐, 林皋. 非均质土体稳定性分析的广义极限平衡法及其应用[J]. 大连理工大学学报, 1991, 31 (4): 463-472.
    [35] Hanna A M. Experimental study on footings in layered soil [J]. Journal of Geotechnical Engineering, ASCE, 1981, 107 (8): 1113-1127.
    [36] Okamura M, Takmura J, Kimura J. Centrifuge model tests on bearing capacity and deformation of sand layer overlying clay [J]. Soils and Foundations, 1997, 37: 73-88.
    [37] Skempton A W. The bearing capacity of clays[A]. Proceedings of the Building Research Congress[C], London, 1951.
    [38] Peck R B, Hansen W E, Thornburn T H. Foundation Engineering[M]. John Wiley and Sons, 1953.
    [39] Davis E H, Booker J R. The effect of increasing strength with the depth on the bearing capacity of clays[J]. Geotechnique, 1973, 23 (4): 21-35.
    [40] 赵少飞, 栾茂田, 范庆来等. 非均质地基极限承载力及破坏模式的 FLAC 数值分析[J]. 岩土力学, 2006, 11: 1909-1914.
    [41] Bolton M D, A guide to soil mechanics[M]. London: Macmillan, 1979.
    [42] DNV. Norway. Classification notes, No. 30.4, Foundations[S]. Det Norske Veritas, 1992.
    [43] ISO. Petroleum and natural gas industries: Offshore structures:Part 4: Geotechnical and foundation design considerations[S]. International Organisation for Standardisation 19900, 2000.
    [44] Ukritchon B, Whittle A J, Sloan S W. Undrained limit analysis for combined loading of strip footings on clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, American Society of Civil Engineering, 1998, 124 (3): 265-276.
    [45] Gourvenec S. Bearing capacity under combined loading- a study of the effect of shearstrength heterogeneity[A]. Proc. 9th. Australia Australia New Zealand Conference on Geomechanics [C], New Zealand, 2004.
    [46] 栾茂田. 非均质土建筑物与地基动力稳定性研究[D]. 大连: 大连理工大学, 博士学位论文, 1989.
    [47] Butterfield R, Gottadi G. A complete three-dimensional failure envelope for shallow footings on sand[J]. Geotechnique, 1994, 44 (1): 181-184.
    [48] Martin C M. Physical and numerical modelling of offshore foundations under combined loads [D]. London: The University of Oxford, PhDthesis, 1994.
    [49] Murff J D. Limit analysis of multi-footing foundation systems[A]. Proceedings of International Conference on Computer Methods and Advances in Geomechanics [C], Balkema, 1994.
    [50] Bransby M F, Randolph M F. Combined loading of skirted foundations [J]. Geotechnique, 1998, 48: 637-655.
    [51] Taiebat H, Carter J P. Numerical studies of the bearing capacity of shallow footings on cohesive soil subjected to combined loading [J]. Geotechnique, 2000, 50 (4): 409-418.
    [52] Meyerhof G G. Rupture surfaces in sand under oblique loads(discussion)[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1956, 82 (SM3).
    [53] Butterfield R, Ticof J. Design parameters for granular soils(discussion contribution)[A]. Proc. 7th European Conference on Soil Mechanics and Foundation . Engineering[C], Brighton,U.K, 1979.
    [54] Butterfield R. A new approach to safety factors for shallow foundations: load combination factors as a basis for risk assessment[A]. ICE Conf. on risk and reliability in found engineering[C], London, 1993.
    [55] Bransby M F, Randolph M F. Combined loading of skirted foundations[J]. Geotechnique, 1998, 48 (5): 637-655.
    [56] Orborne J J, Trickey J C, Houlsby G T, James R G. Findings from a joint industry study on foundation fixity of jackup units [A]. Proceedings of 7th Offshore Technology Conference[C], 1991.
    [57] Taiebat H A, Carter J P. Bearing capacity of strip and circular foundations on undrained clay subjected to eccentric loads[J]. Geotechnique, 2002, 52 (1): 61-64.
    [58] 栾茂田, 赵少飞, 袁凡凡等. 复合加载模式作用下地基承载性能数值分析[J]. 海洋工程, 2006, 24 (1): 34-40.
    [59] Gourvenec S. Shape effects on the capacity of rectangular footings under general loading[J]. Geotechnique, 2007, 57 (8): 637-646.
    [60] Gourvenec S. Failure envelopes for offshore shallow foundations under general loading[J]. Geotechnique, 2007, 57 (9): 715-728.
    [61] 中华人民共和国建设部. 建筑地基基础设计规范[S]. 北京:中国建筑工业出版社, 2000.
    [62] 中华人民共和国交通部. 港口工程地基规范[S]. 北京:人民交通出版社, 1998.
    [63] 欧洲地基基础规范[S]. 北京:建设部综合勘查研究院, 1988.
    [64] Pastor M, Mira P, Merodo J A F. Practical Aspects of the Finite element Method[A]. Numerical Modelling in Geomechanics[C], 2002.
    [65] Potts D M, Gens A. A critical assessment of methods of correcting for drift from the yield surface in elastoplastic finite element analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1985, 9: 149-159.
    [66] Sloan S W. Substepping schemes for the numerical integration of elastoplastic stress-strain relations[J]. International journal for numerical methods in engineering, 1987, 24 (5): 893-911.
    [67] Sloan S W, Booker J R. Integration of Tresca and Mohr-Coulomb constitutiverelations in plane strain elastoplasticity[J]. International journal for numerical methods in engineering, 1992, 33 (1): 163-196.
    [68] Simo J C, R.L.Taylor. Consistent tangent operator for rate independent elasto-plasticity[J]. Computer Methods in Applied Mechanics and Engineering, 1985, 48: 79-16.
    [69] Hjiaj M, Fortin J, Saxcé. G d. A complete stress update algorithm for the non-associated Drucker-Prager model including treatment of the apex[J]. International Journal of Engineering Science, 2003,, 41: 1109-1143.
    [70] 杨强, 陈新, 周维垣. 基于 D-P 准则的三维弹塑性有限元增量计算的有效算法[J]. 岩土工程学报, 2002, 24 (1): 16-20.
    [71] 杨强, 杨晓君, 陈新. 基于 D-P 准则的理想弹塑性本构关系积分研究[J]. 工程力学, 2005, 22 (4): 15-19.
    [72] Belytschko T, Liu W K, Moran B. Nonlinear Finite Element for Continua and Structures[M]. 北京: 清华大学出版社, 2002.
    [73] Yin J H, Wang Y J, Selvadurai A P S. Influence of nonassociativity on the bearing capacity of a strip footing , (): .[J]. Journal of Geotechnical and Geoenvironmental Engineering , ASCE, 2001, 127 (11): 985-989.
    [74] 钱家欢, 殷宗泽. 土工原理与计算[M]. 北京: 中国水利水电出版社, 1996.
    [75] Desai C S, Zaman M M, Lightner J G, Siriwardane H J. Thin-layer element for interfaces and joints[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1984, 8 (1): 19-43.
    [76] Boulon M, Nova R. Modelling of soil-structure interface behaviour,a comparison between elasto-plastic and rate type laws[J]. Computers and Geotechnics, 1990, 9: 21-46.
    [77] Shahour I, Rezaie F. An elastoplastic constitutive relation for soil-structure interface under cyclic loading[J]. Computers and Geotechnics, 1997, 21: 21-39.
    [78] Day R A, Potts D M. Zero thickness interface elements: numerical stability and application[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18 (10): 689-708.
    [79] Desai C S, Fishman K L. Plasticity-based constitutive model with associated testing joints[J]. Int. J. Rock Mech. Min. Sci. and Geomech Abstr, 1991, 28 (1).
    [80] Mortara G, Boulon M, Ghionna V N. A 2-D constitutive model for cyclic interface behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 1071-1096.
    [81] Surajit Pal G W W. Disturbed state model for sand-geosynthetic interfaces and application to pull-out tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23 (15): 1873-1892.
    [82] Beer G. An isoparametric joint/interface element for finite element analysis[J]. International journal of numerical method in engineering, 1985, 21: 585-600.
    [83] Plesha M E, Ballarini R, Parulekar A. Constitutive model and finite element procedure for dilatant contact problem[J]. Journal of Engineering Mechanics, 1989, 115 (12): 2649-2688.
    [84] Zeghal M, Edil T B. Soil structure interaction analysis: modeling the interface[J]. Canada Geotechnic Journal, 2002, 39: 620-628.
    [85] Langen H V, Vermeer P A. Interface elements for singular plasticity points[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1991, 15 (5): 301-315.
    [86] Sharma K G, Desai C S. Analysis and implementation of thin-layer element for interfaces and joints[J]. Journal of Engineering Mechanics, 1992, 118 (12):2442-2462.
    [87] Brocklehurst C J. Finite element studies of reinforced and unreinforced two-layer soil systems[D]. London: University of Oxford, [D], 1993.
    [88] Chaudhry A R. Static pile-soil-pile interaction in offshore pile groups[D]. London: London: University of Oxford, [D], 1994.
    [89] Vesic A S. Analysis of ultimate loads of shallow foundation[J]. J. Soil Mech. Found. Div., 1973, 99 (1): 45-73.
    [90] Zhu D Y, Lee C F, Jiang H D. A numerical study of the bearing capacity factor Nγ[J]. Can. Geotech. J., 2001, 38: 1090-1096.
    [91] Silvestri V. A limit equilibrium solution for bearing capacity of strip foundations on sand[J]. Can. Geotech. J., 2003, 40: 351-361.
    [92] Bolton M D, C.K.Lau. Vertical bearing capacity factors for circular and strip footings on Mohr-Coulomb soil[J]. Can. Geotech. J., 1993, 30: 1024-1033.
    [93] Kumar J. Nγ for rough strip footing using the method of characteristics[J]. Can. Geotech. J., 2003, 40: 669-674.
    [94] Michalowski R L. An estimate of the influence of soil weight on bearing capacity using limit analysis[J]. Soils and Foundations, 1997, 37 (4): 57-64.
    [95] Salgado R, Lyamin A V, Sloan S W, Yu H S. Two and three-dimensional bearing capacity of foundations in clay[J]. Geotechnique, 2004, 54 (5): 297-306.
    [96] Griffiths D V. Computations of bearing capacity factors using finite elements[J]. Geotechnique, 1982, 32 (3): 195-202.
    [97] Frydman S, Burd H J. Numerical studies of bearing capacity factor Nγ.[J]. Journal of Geotechnical and Geoenvironmental Enginnering, ASCE, 1997, 123 (1): 20-29.
    [98] Woodward P K, Griffiths D V. Observations on the computation of the bearing capacity factor Nγ by finite elements[J]. Geotechnique, 1998, 48 (1): 137-141.
    [99] Edwards D H, Zdravkovic L, Potts D M. Depth factors for undrained bearing capacity[J]. Geotechnique, 2005, 55 (10): 755-758.
    [100] 赵少飞. 复合加载条件下海洋地基承载特性数值分析方法研究[D]. 大连: 大连理工大学, 博士学位论文, 2005.
    [101] Butterfield R H G, Gottardi G. . Standard sign conventions and notation for generally loaded foundations[J]. Geotechnique, 1997, 47 (5): 1051-1054.
    [102] Gottardi G, Butterfield R. On the bearing capacity of surface footing on sand under general planar loads[J]. Soils and Foundations, 1993, 33 (1): 68-79.
    [103] Martin C M. Physical and numerical modelling of offshore foundations under combined loads [D]. Oxford: University of Oxford, PhD thesis, 1994.
    [104] NGO-TRAN C L. The Analysis of Offshore Foundations Subjected to Combined Loading[D]. Oxford: University of Oxford, PhD thesis, 1996.
    [105] Houlsby G T, Puzrin A M. The Bearing capacity of a strip footing on clay under combined loading[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1999, 455 (1983): 893-916.
    [106] SNAME. New Jersey. Guidelines for site specific assessment of mobile jack-up units[S]. Society of Naval Architects and Marine Engineers, 1997.
    [107] Vesic A S. Test of Instrumented Piles-Ogeechee River Site [J]. Journal of the Soil Mechanics and Foundations Division, ASTM,, 1970, 96 (SM2): 561-584.
    [108] Lee K L, Focht J A. Strength of clay subjected to cyclic loading[J]. Marine Geotechnology, 1975, 3: 165-185.
    [109] Yasuhara K. Post cyclic undrained strength for cohesive soils[J]. Journal of Geotechnical Engineering, ASCE, 1994, 120 (11): 1961-1979
    [110] Andersen K H, Pool J H, Brown S F, Rosenbrand W F. Cyclic and static laboratory tests on Drammen clay[J]. Journal of the Geotechnical Engineering Division, ASCE,,1980, 106 (5): 499-529
    [111] Cao Y L, Law K T. Energy dissipation and dynamic behavior of clay under cyc1ic loading[J]. Canadian Geotechnical Journal, 1992, 29: 103-111
    [112] Matasovic N, Vucetic M. A pore pressure model for cyclic straining clay[J]. soil and foundations JSSMFE, 1992, 32 (3): 156-173.
    [113] Hyodo M, Hyde A F L, Yamamoto Y, Fuji T. Cyclic shear strength of undisturbed and remoulded marine clays[J]. Soil and Foundations, JGS,, 1999, 39 (2): 45-58
    [114] 周建, 龚晓南. 循环荷载作用下饱和软黏土应变软化研究[J]. 土木工程学报, 2000, 33 (5): 75-78.
    [115] 王淑云, 楼志刚. 海洋粉质黏土在波浪荷载作用后的不排水抗剪强度衰化特性[J]. 海洋工程, 2000, 18 (1): 38-43
    [116] 闫澍旺, 杨昌民, 范期锦, 谢世楞. 波浪荷载作用下防波堤地基软化特性的试验研究 [J]. 港工技术, 2005, 2: 46-47.
    [117] 李驰. 软土地基桶形基础循环承载力研究[D]. 天津: 天津大学, 博士学位论文, 2006
    [118] 陈颖平. ,循环荷载作用下结构性软黏土特性的试验研究 [D]. 浙江: 浙江大学, 博士学位论文, 2007.
    [119] Monismith C L. Rutting Prediction in asphalt concrete Pavements[A]. Meeting of the TRB, Transportation Research Board[C], Washington, DC 1976.
    [120] Li D, Selig E T. Cumulative plastic deformation for fine-grained subgrade soils [J]. ournal of Geotechnical Engineering, 1996, 122 (12): 1006-1013
    [121] 黄茂松, 李进军, 李兴照. 饱和软黏土的不排水循环累积变形特性 [J]. 岩土工程学报, 2006, 28 (7): 891-895.
    [122] Carter J P, Booker J R, Wroth C P. A Critical State Soil Model for Cyclic Loading [A]. Soil Mechanics-Transient and Cyclic Loads: John Wiley & Sons Ltd, 1982.
    [123] Ghaboussi J, Momen H. Plasticity model for cyclic behavior of sand [A]. Third International Conference on Numerical Methods in Geomechanics[C], Aachen, 1979.
    [124] Mroz Z. On the description of anisotropic hardening [J]. Journal of Mechanical Physics. Solids, 1967, 15: 163-175.
    [125] Iwan W D. On a class o models for the yielding behavior of continuous and composite systems[J]. Journal of Applied Mechanics, ASME, 1967, 34: 612-617.
    [126] Prevest J H. Mathematical modeling of monotonic and cyclic undrained clay behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1977, 1: 195-216.
    [127] Krieg R D. A practical two surface plasticity theory [J]. Journal of Applied Mechanics, ASME, 1975, 28: 641-646.
    [128] Dafalias Y F, Herrmann L R. Bounding surface formulation of soil plasticity[A]. Soil Mechnics-Transient and Cyclic Loads[C], Chichester: John Wiley & Sons, 1982.
    [129] Stallebrass S E, Taylor R N. The development and. evaluation of a constitutive model for the prediction of ground movements in overconsolidated clay[J]. Geotechnique, 1997, 47 (2): 235-253.
    [130] 范期锦, 李乃扬. 长江口二期工程北导堤局部破坏的原因及对策[J]. 中国港湾建设, 2004, 2.
    [131] 刘海笑, 王仲捷, 唐云等. 随机波作用下沉入式大圆筒结构的动土压力及结构失稳机理研究[J]. 中国港湾建设, 2002, 6: 21-25.
    [132] Andersen K H, Kleven A, Heien D. Cyclic soil data for design of gravity structures [J]. Journal of Geotechnical Engineering, ASCE, 1988, 114 ( 5): 517-539.
    [133] Andersen K H. Bearing Capacity for Foundations with Cyclic Loads[J]. Journal ofGeotechnical Engineering, ASCE, 1988, 114 ( 5): 540-555.
    [134] Wang J H, Liu Y F, Xing Y. Estimation of undrained bearing capacity for offshore soft foundation with cyclic loads [J]. China Ocean Engineering, 1998, 12 (5): 213-222.
    [135] 刘振纹, 秦崇仁, 王建华. 软黏土地基上循环承载力的计算模型研究[J]. 岩土力学, 2004, 25 (增 2): 405-408.
    [136] 范庆来. 软土地基上深埋式大圆筒结构稳定性研究[D]. 大连: 大连理工大学, 博士学位论文, 2006.
    [137] Potts D M, Zdravkovic L. Finite element analysis in geotechnical engineering: Theory[M]. London: Thomas Tlford, 1999.
    [138] Shibata T. On the volume changes of normally consolidated clays:Kyoto University, 6, 1963.
    [139] Ohta H, Hata S. A theoretical study of the stress-strain relations for clays[J]. Soils and Foundations, 1971, 11: 765-789.
    [140] Sekiguchi H, Ohta H. Induced anisotropy and time dependency in clays[A]. Proc. Speciality Session 9,9th Int. Conf. on soil mechanics and foundation engineering[C], 1977.
    [141] Hashiguchi K, Ueno M. Elastoplastic constitutive laws of soils[A]. Constitutive Equations of soils:Proc 9th ICSMFE[C], Rotterdam, 1977.
    [142] Collins I F, Kelly P A. A thermomechanical analysis of a family of soil models[J]. Geotechnique, 2002, 52 (7): 507-518.
    [143] Collins I F, Tamsyn H. A theoretical framework for constructing elastic/plastic constitutive models of triaxial tests[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26: 1313-1347.
    [144] Hashiguchi K. On the linear relations of V-lnp and lnv-lnp for isotropic consolidation soil[J]. International Journal of Numerical and Analytical Method in Geomechnics, 1995, 19: 367-376.
    [145] Hashiguchi K. Subloading surface model in unconventional plasticity[J]. International Journal of Solid Structures, 1989, 25 (8): 917-945.
    [146] Sheng D, Sloan S W, Yu H S. Aspects of finite element implementation of critical state models[J]. Computational mechanics, 2000, 26: 185-196.
    [147] Wood D M. Soil behavior and critical state soil mechanics[M]. London: Cambridge University Press, 1990.
    [148] Andersen K H, Dyvik R, Schroder K, Bysveen S. Field Tests of Anchors in Clay. II: Predictions and Interpretation[J]. Journal of Geotechnical Engineering, ASCE, 1993, 119 (10): 1532-1549.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700