用户名: 密码: 验证码:
船舶减摇鳍系统智能控制及其可视化仿真的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶减摇鳍是船舶与海洋工程中的一种重要系统,目前已在多种船舶中广泛应
    用。减摇鳍对于提高船舶耐波性,增加船舶使用寿命,改善设备与人员的工作条件,
    提高舰艇的战斗力具有重要作用。减小船舶横摇是目前船舶运动控制领域的重要课
    题之一。本文以船舶减摇鳍系统作为研究对象,对于船舶减摇鳍系统智能控制算法
    及其虚拟现实环境下的可视化仿真进行了系统深入的研究。
     减摇鳍系统目前大多采用基于力矩对抗原理的PID控制器。控制器的性能对船
    舶自然横摇周期和无因次横摇衰减系数有着很大的依赖关系。由于船舶横摇运动的
    复杂性、非线性、时变性和海况的不确定性,经典PID控制难以获得满意的控制效
    果。采用先进的控制策略是解决这一问题的有效方法。
     本文提出了基于逆模式小波神经网络的船舶减摇鳍系统自适应控制方法。由于
    小波神经网络结合了小波特有的多分辨特性和神经网络固有的自学习和自适应的能
    力,能够实现良好的动态非线性映射的特点,使得小波神经网络具有学习收敛速度
    快,逼近精度高、参数(隐层节点数和权重)的选取有理论指导,有效避免了局部最
    小值问题等优点。仿真实验表明减摇效果有较大的提高,能够克服传统PID控制器
    适应性差的缺点,具有较好的容错性和较强的适应非线性的能力。在仿真过程中引
    入一个常量信号乘以一个富含频率的信号、一个频率在期望输出附近的伪随机二
    元序列信号作为海浪作用于船舶的波倾角输入信号,目的是为了使所建横摇模型
    对各种不同的输入信号都具有很好的泛化能力。为了获取最佳的常量信号并能减
    少系统仿真量,增强系统适应性,针对不同海情依有义波高和风速不同可分为三
    个不同范围的特点,上述常量信号的大小只需取三个不同的值。仿真表明采用此
    方法后,对各种海况都能获得满意的效果。
     由于船舶减摇鳍系统是一个关系到船舶安全、适航的实际工程系统,它除了需
    要控制精度高以外,还需要保障系统运行的可靠性。尽管神经网络控制在理论研究
    上取得很大进展,但目前大部分工作还只是处于仿真阶段,完全基于神经网络的控
    制应用到实际船舶工程系统中还待时日。而常规PID控制在船舶减摇鳍系统实际应
    用中已非常成熟,所以选择二者的结合不失为一个能有效解决船舶减摇等实际控制
As an important system of marine engineering, ship stabilizing fins have been widely used in many different kinds of ships. Stabilizing fins have played an important role for improving ship behavior in waves, increasing operational life-span of ship, ameliorating work conditions of equipment and crew and advancing battle effectiveness of naval ship. Reducing ship roll motion is one of the important tasks of ship motion control. The researches on the purpose of intelligent control strategies and its visual simulation environment based virtual reality for ship stabilizing fin system are systemically investigated in the thesis.Generally, PID controller based anti-moment principle has been commonly adopted in ship stabilizing fin system. The performance of the controller depends mainly on natural period of ship roll motion and non-dimensional roll damping coefficient. Because of complexity, non-linearity, time-varying of ship roll motion and uncertainty of sea condition, satisfied control effect is very difficult to be obtained with conventional PID controller. The effective measure to solve the problem is that advanced control strategies should be introduced.The method of inverse mode wavelet neural network adaptive control based for ship stabilizing fin system is proposed in the thesis. Combining own multi-resolution characteristic of wavelet analysis and self-adaptation and self-learning ability and favorable dynamic nonlinear mapping characteristic of neural network, wavelet neural network possesses the advantages such as rapid learning convergence speed, high approximation accuracy, the choice of parameters (for instance, number of hidden nodes, value of net weights, etc.) based on theoretic guidance and effectively avoiding local minimum value. The simulation results show that the roll reducing effects are obviously improved, the method can overcome poor adaptability of conventional PID controller and provide better characteristics of fault tolerance and stronger nonlinear adapting ability. In the simulation studies, by introducing a signal consisting of a constant value multiplied by pseudo random binary signal as simulated input signal of wave slope angle, the built roll model gets better extensive ability for different input signals. In order to obtain the most optimal constant, avoid too heavy calculations and improve the system adaptability, the size of the constant signal can only be taken three different values since the different sea conditions can be divided into three different ranges according to the different wave height and wind speed. The simulation results indicate that satisfying effect is obtained for different sea conditions.
    As a practical engineering system closely related to navigation safety of ship, high control accuracy and reliability are necessarily required for ship stabilizing fin system. Although neural network control is made great progress in theoretical research, so far, most algorithms are still proved effective in simulation, the application of the control system to a practical ship completely based on neural network may take longer time. Since conventional PID control is widely adopted in the practical ship fin system, it is good choice to combine PID control with neural network to resolve the issues of practical ship fin system. Therefore, four intelligent control algorithms which integrate wavelet neural networks and PID control are presented in the thesis. In these control algorithms, neural networks are utilized in modeling of dynamic system, acted as process model or served as optimal calculation in traditional control system respectively, so choosing wavelet neural network can ensure the engineering requires such as high approximation precision, good real time characteristic, high reliability.Sea wave is the main cause of ship rolling, it is necessary to build an effective mathematic model to disturbing of sea wave for the research of ship roll reducing. Due to randomicity of sea wave, it is extraordinary difficulty to gain exact sea wave model. Thus a compositive prediction approach of sea wave based on wavelet decomposition and ANFIS model is presented in the thesis. Firstly, multilevel 1-D wavelet decomposition of irregular sea wave is completed to gain approximative regular period signals, thus, it can translate time series prediction of unregulated multi-period sea wave into time series prediction of relative simple and regular period signals. The movement trend and detail information of sea wave can be observed, the difficulty of predication can be reduced obviously. Next, the main regular period signals are predicated by using the ANFIS predication model, the final predication value can be gained by integrating the outputs of ANFIS. The simulation results illustrate the effectiveness of the method, high accuracy is acquired.Because of the complicated mechanical mechanism, serious non-linearity and time-varying of ship roll motion, precise model is hard to be obtained, the modeling and predicating methods of ship rolling time series prediction based on wavelet neural network is proposed in the thesis. Wavelet neural network combining wavelet transform time frequency localization with self-adaptation and self-learning ability and stronger robustness and generalization ability of neural network, it breakthroughs the spectrum analysis method of traditional singleness frequency. Comparing the experiment results with the simulation results based on RBF and Multi-layers Perceptron, it demonstrated that with the same network structure and the same number of hidden nodes and the same
    iterating times, wavelet network possesses the characteristics of faster training and convergence speed, especially stronger approximation ability in situation of curve saltation, better predication precision has been obtained.In order to obtain realistic dynamic effect for the simulation of control for ship stabilizing fin system and realize the natural interaction between users and environment, visual simulation environment for ship stabilizing fin system is developed by using MATLAB Virtual Reality Toolbox and Virtual Dials & Gauges Blockset. It includes: ? virtual reality visual simulation of ocean waves is completed on the basis of wave spectrum analysis; ? 3-D model of ship is established by using VRML language; (D realistic-looking instruments panel is designed by simulating instruments panel of a real ship; ? the integrated system of virtual waves, virtual ship model and virtual instruments panel is set up by using MATLAB Simulink control simulation environment, the triune simulation effect is realized.
引文
[1] 金鸿章,姚绪梁.船舶控制原理.第1版,2001,哈尔滨工程大学出版社
    [2] R 巴塔杳雅.海洋运载工具动力学.邬明川,戴仁元,陶尧森译.第1版,1982,海洋出版社
    [3] 李积德.船舶耐波性.第1版,1992,哈尔滨船舶工程学院出版社
    [4] 吴秀恒.船舶操纵性与耐波性.第2版,1999,人民交通出版社
    [5] 金鸿章,李国斌.船舶特种装置控制系统.第1版,1995,国防工业出版社
    [6] 陶尧森.船舶耐波性.第1版,1985,上海交通大学出版社
    [7] 冯铁城.船舶摇摆与操纵.第1版,1980,国防工业出版社
    [8] 刘应中.船舶在波浪上的运动理论.1987,上海交通大学出版社
    [9] 黄继起.自适应控制理论及其在船舶系统中的应用.第2版,1992,国防工业出版社
    [10] 王华羽.NJ系列减摇鳍技术手册.第1版,1997,哈尔滨工程大学出版社
    [11] 孟克勤.舰船减摇装置.机电设备,2000,第3期:11-14
    [12] 孟克勤.我国减摇鳍装置的发展和一些设计问题.机电设备,1995(5):1-6
    [13] 岳爱武,魏柏永,焦侬.减摇鳍系统仿真探讨.船舶工程,1990(2):31-36
    [14] 崔喜仲,王明星.减摇鳍控制系统分析.机电设备,1997(4):7-10
    [15] 金鸿章,谷云彪,汪滨琦,侯兴凯.减摇鳍变参数PID控制器的设计.船舶工程,1994(4):55-59
    [16] 金鸿章.减摇鳍变参数最优控制器及其设计.中国造船,1992(4):107-117
    [17] 焦侬.减摇鳍自适应控制系统的研究和仿真.船舶工程,1998(4):37-39
    [18] 刘胜,姚波.舰船横摇运动准最小方差控制.哈尔滨船舶工程学院学报,1993,14(4):25-30
    [19] L. Fortuna, G. Muscato. A roll stabilization system for a monohull ship: modeling. Identification and Adaptive Control, "IEEE Trans. on Control System Technology, 1996, 4(1): 18-28
    [20] 刘胜,荆兆寿.高海情下船舶减摇鳍控制系统的仿真.船舶工程,1995(2):38-41
    [21] 王科俊,苏闽,金鸿章.减摇鳍单神经元控制方法研究.船舶工程,1999(3):35-37
    [22] 徐培,王科俊,金鸿章.模糊控制在船舶减摇技术上的应用.自动化技术与应用,2001(1):55-59
    [23] 叶瑰昀,罗耀华,金鸿章.减摇鳍模糊参数自整定PH3控制器设计及仿真研究.船舶工程,2002(3):39-42
    [24] R. Sutton, G. N. Robert, S. R. Dearden. Design study of a fuzzy controller for ship roll Stabilization. Electronics and Communication Engineer Journal, 1989(8): 159-166
    [25] 孙静川,刘胜.船舶减摇鳍系统H∞控制器的设计.船舶工程,2000(1):41-44
    [26] N. A. Hickney, M. J. Grimble, M. Johnson, R. Katebi. H-infinity fin roll stabilization control system design. Proceedings, 3rd IFAC Workshop on Control Applications in Marine System, Trondheim, Norway, 1995:304-311
    [27] Chingyaw Zeng, Chungyi Wu. On the design and analysis of ship stabilizing fin controller. Journal of Marine Science and Technology, 2000, 8(2): 117-124
    [28] H. Z. Jin. Semi-simulation of ship roll reducing effectiveness by a fin stabilizer. Modeling, Simulation and Control, 1989, 124(4): 34-37
    [29] 赖志昌,金鸿章,李国斌,何义.随机海浪作用下的船舶横摇减摇预报方法.哈尔滨工程大学学报,2001,22(3):13-16
    [30] 王科俊,李国斌.DRNN神经网络用于船舶横摇运动的时间序列预报.哈尔滨工程大学学报,1997,18(1):39-44
    [31] 余滋红,於家鹏.船舶横摇非线性运动最大值预报.中国造船,1997(2):26-31
    [32] 管长龙.我国海浪理论及预报研究的回顾与展望.青岛海洋大学学报,2000,30(4):549-556
    [33] 金鸿章.长峰波随机海浪的实时仿真和频谱分析.船舶工程,1987(1):24-29
    [34] 荆兆寿,刘胜,杨文春.随机海浪信号仿真器的研究.信息与控制,1989(6):47-51
    [35] 马杰,田金文,彭复员.海浪的数值模拟及其仿真.华中理工大学学报,2000,28(4):63-65
    [36] 文圣常,余宙文.海浪理论与计算原理.1984,科学出版社
    [37] 邱宏安.随机海浪模型的建立及仿真分析.系统仿真学报.1999,12(3):226-228
    [38] 钱志春.海浪及其预报.第1版,1991,气象出版社
    [39] Shengchang Wen, et al. A hybrid model for numerical wave forecasting and its implementation, Ⅰ .The wind wave model. [J] Acta Oceanol Sinica, 1989, 8(1):1-14
    [40] D. Zhang, et al. A hybrid model for numerical wave forecasting and its implementation, Ⅱ. The discrete part and implementation of the model. [J] Acta Oceanol Sinica, 1992, 11(2): 157-178
    [41] 汪成为,高文,王行仁.灵境(虚拟现实)技术的理论及应用.1996,清华大学出版社
    [42] 曾建超,俞志和.虚拟现实技术及其应用.1996,清华大学出版社
    [43] 汪兴谦,戴诗文,胡永辉.VRML虚拟造型实战演练.第1版,2002,中国水利水电出版社
    [44] 严子翔.VRML虚拟现实网页语言.第1版,2000,清华大学出版社
    [45] 张家祥,方凌江,毛全胜,基于MATLAB6.x的系统分析与设计—虚拟现实.第1版,2002,西安电子科技大学出版社
    [46] 郭晨,史成军,吴恒,叶榛.船舶轮机仿真器引入虚拟现实技术的研究.中国航海,1999(2):12-18
    [47] 薛定宇,陈阳泉.基于MATLAB/Simulink的系统仿真技术与应用.第1版,2002,清华大学出版社
    [48] 李人厚.张平安等译校.精通MATLAB综合辅导与指南.第1版,1998,西安交通大学出版社
    [49] 黄忠霖.控制系统MATLAB计算及其仿真.第1版,2001,国防工业出版社
    [50] 邓自立,郭一新.现代时间序列分析及其应用.第1版,1989,知识出版社
    [51] 王科俊,王克成.神经网络建模、预报与控制.1996,哈尔滨工程大学出版社
    [52] 李建平,唐远炎.小波分析方法的应用.1999,第1版,重庆大学出版社
    [53] 胡昌华,张军波,夏军,张伟.基于MATLAB的系统分析与设计—小波分析.1999,西安电子科技大学出版社
    [54] 徐长发,李国宽.实用小波分析.2001,第1版,华中科技大学出版社
    [55] 刘贵忠等,小波分析及其应用.1990,第1版,西安电子科技大学出版社
    [56] 赵凯,王宗花.小波变换极其在分析化学中的应用.第1版,2000,地质出版社
    [57] Y.Meyer,小波与算子1990,世界图书出版社
    [58] S.G. Mallat. Theory for multiresolution signal decomposition: wavelet representation. IEEE Trans. on Pattern Anal. and Mathchine Intell.,1989, 11(7): 674-693
    [59] I. Daubechies. The wavelet transforms, time-frequency localization and signal analysis. IEEE Trans. on Information Theory, 1990, 36(5): 961-1005
    [60] I. Daubechies. Orthonormal bases of compactly supported wavelets. Comm. in Pure & Applied Math, 1988, 41(8): 909-996
    [61] S. G. Mallat, Z. F. Zhang. Matching pursuits with time -frequency dictionaries. IEEE Trans. on Signal Processing, 1993, 41:3397-3451
    [62] Bakshi, G. Stephanopoulos. Wavelets as basis functions for localized learning in a multi- resolution hierarchy, Proc. IJCNN. MD, 1992, (2): 140-145
    [63] 陈哲,冯天谨.小波分析与神经网络结合的研究进展.电子科学学刊,2000,22(3):498-504
    [64] 虞和济,陈长征,张省,周建男.基于神经网络的智能诊断.第1版,2000,冶金工业出版社
    [65] 孙增圻等.智能控制理论与技术.1997,清华大学出版社
    [66] 李士勇.模糊控制·神经控制和智能控制论.1998,哈尔滨工业大学出版社
    [67] 丛爽.神经网络、模糊系统及其在运动控制中的应用.第1版,2001,中国科学技术大学出版社
    [68] 王士同.神经模糊系统及其应用.1998,北京航空航天大学出版社
    [69] 张良杰,李衍达.模糊神经网络技术的最近发展.信息与控制,1999,24(1):39-46
    [70] 易继谐,侯媛彬.智能控制技术.第1版,1999,北京工业大学出版社
    [71] 何克忠,李伟.计算机控制系统.第1版,1998,清华大学出版社
    [72] 王顺晃,舒迪前.智能控制系统及应用.1995,机械工业出版社
    [73] 王树青.先进控制技术及其应用.第1版,2001,化学工业出版社
    [74] 郭晨.智能控制原理及应用.1998,大连海事大学出版社
    [75] M. Madea, S. Murakami. A self-turning fuzzy controller. Fuzzy Sets System, 1992, 51: 29-40
    [76] Chinteng Lin. Neural-network-based fuzzy logical control and decision system. IEEE Trans. on Computers, 1991, 40(12): 1011-1016
    [77] Jyh Shing, Roger Jang. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. on Systems, Men and Cybernetics, 1993, 23(3): 665-685
    [78] T. Takagi, M. Sugeno. Fuzzy identification and its application to modeling and control, IEEE Trans. on SMC, 1985, 15(1): 116-132
    [79] T. Yamaguchi. Self-organizing control using fuzzy neural networks. Int. J Control, 1992, 52(2): 415-439
    [80] B. Kosko, S.G. Adaptive fuzzy system for backing up a track-and trailer. IEEE Trans. on Neural Networks, 1992, 3(2): 211-233
    [81] K. S. Narendra, S. Mukhopadhyay, Intelligent control using networks. IEEE Control Systems Magazine, 1992, 2(2): 11-19
    [82] 焦李成.神经网络的应用与实现.第1版,1996,西安电子科技大学出版社
    [83] 石卓尔,焦李成,保铮.子波神经网络.中国神经网络1993年学术大会论文集,西安,1993:85-96
    [84] 李银国,张邦礼,曹长修.小波神经网络及其结构设计方法.模式识别与人工智能,1997,10(3):197-205
    [85] 何振亚,李文化,蔚承建.用于信号逼近的自适应时延小波神经网络.电子科学学刊,1998,20(5):604-610
    [86] 朱晓光,洪炳熔,王东木.基于小波神经网络的HRTFS逼近与声频仿真.计算机研究与发展,2000,37(6):703-709
    [87] 吴耀军,陶宝祺,袁慎芳.B样条小波神经网络.模式识别与人工智能,1996,9(3):228-233
    [88] 李金屏,何苗.提高BP小波神经网络收敛速度的研究,模式识别与人工智能, 2002,15(1):28-35
    [89] 刘明军,李金屏,何苗.基于BP算法的小波神经网络对于—维数据的有损压缩.南京大学学报,2000,36(11):103-108
    [90] 陈哲,冯天谨,陈刚.一种基于BP算法学习的小波神经网络.青岛海洋大学学报,2001,31(1):122-128
    [91] 黄凤岗,孙文彦,王莹.一种自适应小波神经网络.电子学报,1998,26(8):143-145
    [92] 徐晓霞,陈涛,王晓升.基于正交最小二乘法的小波神经网络.电子学报,1998,26(10):115-117
    [93] 钱峻,邵惠鹤.一种小波神经网络的在线建模和校正算法.模式识别与人工智能,2000,13(1):16-21
    [94] 何正友,钱清泉.小波神经网络改进结构及其学习算法.西南交通大学学报,1999,34(4):436-440
    [95] 方浩,薛培鼎,冯祖仁.一种基于小波神经网络的自适应控制方法.西安交通大学学报,2000,34(2):75-79
    [96] 吕柏权,李天铎,刘兆辉.一种用于函数学习的小波神经网络.自动化学报,1998,24(4):548-551
    [97] 谢美萍,赵希人.基于小波网的船舶运动极短期建模预报.船舶力学,2002,6(2):15-21
    [98] Q. Zhang, A. Benveniste. Wavelet networks. IEEE Trans. on Neural Network, 1992, 3(6): 889-898
    [99] J. Zhang, G. G. Walter, Y. Miao, W. N. W. Lee. Wavelet neural networks for function learning. IEEE Trans.on Signal Processing, 1995, 43(6): 1485-1497
    [100] Q. Zhang. Using wavelet networks in nonparametric estimation. IEEE Trans. on Neural Networks, 1997, 8(2): 227-236
    [101] Q. Zhang, A. Benveniste. Approximation by nonlinear wavelet networks, Proc. IEEE ICASSP, Toronto, Canada, 1991, 5:3417-3420
    [102] B. R Bakshi, et al. Wave-net: a multi-resolution, hierarchical neural networks with localized learning. AICHE 1993, 39(1): 91-94
    [103] T. Kugarajah, Q. Zhang. Multidimensional wavelet network frames. IEEE Trans. on Neural Network, 1995, 6(6): 1552-1556
    [104] Ying Jia, Licheng Jiao. Wavelet neural networks for functional optimization problems. Proc. ICONIP, Beijing, 1995, 1:359-362
    [105] Xiangyu Song, Feihu Qi. Fast convergence algorithm for wavelet neural network used for Signal or function approximation. Proceedings of ICSP'96, 1401-1404
    [106] Xiangyu Song, Feihu Qi. Adaptive wavelet neural network for pattern recognition. IEEE Conference on Neural Network and Signal Processing, Nanjing, 1995, Vol. 1: 386-389
    [107] Zhe Chen, Tianjin Feng. The application of wavelet neural network for time series predication and system modeling based on multi-resolution learning. [C]Tokyo, Japan, Proceedings of IEEE 1999 International Conference on System, Man and Cybernetics (IEEE SMC'99), 1999, 1:425-430
    [108] K.C. Kan, K. W. Wong. Self-construction algorithm for synthesis of wavelet networks, Electron. Lett., 1998, 34(20): 1953-1955
    [109] H. Szu, B. Teller, S. Kadambe. Neural network adaptive wavelet for signal representation and classification. Optical Engineering, 1992, 31(9): 1907-1916
    [110] Liangyue Cao, Yiguang Hong. Predicting chaotic time series with wavelet networks. J. Physica D85 (1995): 225-238
    [111] Yingxian Qiao, Fengqi Zhou. Time-frequency wavelet networks with structure adaptation. Proc. ICONIP, Beijing, 1995, Vol.1: 36-39
    [112] 汤笑笑,李介谷.基于小波神经网络的系统辨识方法.信息与控制,1998,27(4):277-281
    [113] 余勇,万德钧.一种基于小波神经网络故障检测方法的仿真研究.计算机仿真,2000,17(1):24-27
    [114] 曾凡锋,蔡自兴.基于小波神经网络的非线性动态系统辨识.中南工业大学学报,1998,29(3):280-283
    [115] 吕立华,宋执环,李平.用均匀分布样本训练多分辨小波神经网络的新方法.模 式识别与人工智能,2001,14(1):14-17
    [116] 刘泓,莫玉龙.小波神经网络逼近非线性函数算法.应用科学学报,1998,16(2):163-169
    [117] 吕朝霞,吴晓佩,胡维礼.用于函数逼近的小波神经网络.系统工程与电子技术,2000,22(5):43-45
    [118] 李向武,韦岗.小波神经网络的动态系统辨识方法及应用.控制理论与应用,1998,15(4):494-500
    [119] A. Sureshbabu, J. A. Farrell, Wavelet-based system identification for nonlinear control, IEEE Trans. on Automat. Contr., 1999, 44:412-417
    [120] Dexian Huang, Jingchun Wang, Yihui Jin. Application research of wavelet neural networks in process control. J Tsinghua Univ. (Sci & Tech), 1999, 39(1): 91~94
    [121] Dexian Huang, Yihui Jin. The application of wavelet neural networks to nonlinear predictive control, IEEE Trans. on Neural Network, 1997,8(2): 724-727
    [122] Paul Cristea, Rodica Tuduce, Alexandra Cristea. Time series prediction with wavelet neural networks, IEEE, 5th Seminar on NN Applications in Electrical Engineering, 2000, 9:5-10
    [123] Dusko Katie, Miomir Vukobratovie, Wavelet neural network approach for control of non- contact and contact robotic tasks, Proc.IEEE International Symposium on Intelligent Control, Istanbul, Turkey, 1997(7): 245-250
    [124] Xiaoheng Dang, Kejin Zhang, Xingsheng Gu. Measuring the viscosity of poly acrylonitrile by soft-sensing technique Based on wavelet network. Proceedings of the 3rd Asian Control Conference, Shanghai, 2000, 7: 1055-1058
    [125] Eric A. Rying, Gfiff L. Bilbro, Jye-Chyi Lu. Focused Local Learning with wavelet neural networks. IEEE Trans. on Neural Network, 2002, 13(2): 304-319
    [126] 徐丽娜.神经网络控制.第1版,1999,哈尔滨工业大学出版社
    [127] 倪先锋,陈宗基.基于神经网络的非线性学习控制研究.自动化学报,1993,19(3):307-314
    [128] R. C. Dorf, R.H.Bishop.Modern control systems.邹逢兴等译.第8版,2001,高等教育出版社
    [129] 丛爽.面向MATLAB工具箱的神经网络理论与应用.1998,中国科学技术大学出版社
    [130] Martin T. Hagan, Howard B. Demuth, Mark H. Beale, Neural network design,戴葵等译,第1版,2002,机械工业出版社
    [131] K. S. Narendra, K. Parthasarthy, Identification and control of dynamic system using neural network, IEEE Trans. on Neural Networks, 1990, 1(1): 211-233
    [132] F. C. Chen. Back-Propagation neural network for nonlinear self-tuning adaptive. IEEE Control Systems Magazine, 1990, 10(3): 44-48
    [133] Z. Yao, S. Pratyush, E. H. Grant. An on-line trained adaptive neural control, IEEE Contr. Syst. Mag., 1995, 15(5): 67-75
    [134] J. Sjoberg, et al. Nonlinear black-box modeling in system identification: a unified overview. Automatic, 1995, 31(12): 1691-1724
    [135] A. Juditsky, H. Hjalmarson. Nonlinear black-box models in system identification. Mathematical Foundations, Automatic, 1995, 31 (12): 1725-1750
    [136] Weirong Chen, Qingquan Qian, Xiaoru Wang. Wavelet neural network based transient fault signal detection and identification. International Conference on Information, Communications and signal processing ICICS'97 1997, Singapore: 1377-1381
    [137] X. Li, Z. Wang, L. Xu, L. Liu. Combined construction of wavelet neural networks for nonlinear system modeling, in Proc. 14th IFAC, Beijing, 1999, 6:451-456
    [138] 袁曾任.人工神经元网络及其应用.1999,清华大学出版社
    [139] 王永骥,涂健.神经元网络控制.第1版,1998,机械工业出版社
    [140] 王宁,涂健,陈景江.自适应神经元控制系统的理论仿真.华中理工大学学报,1993,21(4)
    [141] 裴海龙,周其节,梁天培.机械臂神经网络变结构控制器.控制理论与应用,1996, 13(2):198-203
    [142] 廖铭声.减摇鳍的水动力学设计基础.机电设备,1997,第4期,17-19
    [143] V. Kreinovich, O. Sirisaengtaksin, S. Cabren. Wavelet neural networks are asymptotically optimal approximators for functions of one variable. Proc. Of IEEE ICNN, Orlando, fl, USA, 1994, Vol. 1:299-304
    [144] B. Delyon, A. Juditsky, A. Benveniste. Accuracy analysis for wavelet approximations, IEEE Trans. on Neural Network, 1995, 6(2): 332-348
    [145] Daniel Clancy, et al. Wavelet neural network: a design perspective. 1994 IEEE International Symposium on Intelligent Control, Columbus, Ohio, USA: 376-381
    [146] Y.C. Pati, P. S. Krishnaprasad. Analysis and synthesis of feed-forward neural networks using discrete affine wavelet transformation. IEEE Trans. on Neural Network, 1993, 4:73-85

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700