用户名: 密码: 验证码:
西昆仑山前冲断带晚新生代构造变形及2010玉树地震变形作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新生代以来,印度板块与欧亚板块碰撞的远程效应使得青藏高原及周边地区多条深大断裂复活,如阿尔金断裂、鲜水河断裂、塔拉斯费尔干纳断裂等,这些新生代复活断裂控制了周边地区的地质形成演化。帕米尔-西昆仑山、青海玉树地区就位于这些断裂附近,是青藏高原的重要组成部分,这些地区的构造变形强烈,构造样式丰富,活动构造大量分布,地震频发,记录了青藏高原新生代变形隆升重要地质信息。本文选择两个区域作为研究区,对西昆仑山前褶皱冲断带进行晚新生代构造变形研究,对青海玉树地区进行2010年地震变形作用研究,探讨青藏高原西北缘造山机制和2010年玉树地震对高原隆升的意义。
     首先通过对西昆仑山前冲断带的卫星影像解译、DEM数据处理、河流阶地分析和地球物理剖面解释,结合野外地质、地貌的观察与测量,对研究区的构造地貌和构造变形进行了定性和定量的研究。取得如下认识:
     (1)区域构造地貌研究表明帕米尔-西昆仑构造带与塔里木盆地之间为强烈的地形陡变带,高程剖面显示高程垂向上变化大,显示构造造山作用强烈。从区域高程分布推测帕米尔高原前缘与西昆仑山造山机制有所不同,前者由山脉隆升和断裂右旋作用同时造山,后者主要是构造抬升。区域内主夷平面在3600-5200m的高度发育。坡度分析表明区域上的坡角以中陡坡和陡坡为主,悬崖峭壁发育,地形强烈的起伏,构造活动性大。在山前冲断带及其前陆盆地内部,坡度休止角约为15°,在高原内部基岩裸露区,坡度休止角约为330。区域内水系的分布具有以下几个特征:水系总的呈丁字型或L型,显示河流被断裂错开,河流袭夺发育;冲断带内河流东侧支流水系多于西侧,可能暗示东侧翘起幅度较高。面积高程曲线积分显示研究区处于地貌发育幼年期,山体还在继续抬升。
     (2)河流阶地研究表明克里雅河与策勒河阶地均为构造成因,详细研究表明克里雅河第四纪以来的平均下切速率为0.15mm/a,自30.86ka以来的平均下切速率为0.76mm/a,自12.44ka以来的平均下切速率为1.34mm/a,表明第四纪以来研究区河流加速下切,西昆仑山山地隆升存在明显的加速过程。
     (3)英吉沙背斜褶皱向东倾伏,说明其生长不仅仅只受腹陆逆冲推覆控制,同时受到艾古斯背斜向东生长变形前缘的影响。英吉沙背斜的生长控制了区域上水系的分布,地貌上主要表现为河流在背斜南翼沿背斜走向向东流动。通过对英吉沙背斜野外调查、地表DEM剖面和地球物理剖面的分析,认定英吉沙背斜为一滑脱褶皱。在地球物理剖面上识别出英吉沙背斜发育Q1生长地层。通过多余面积法计算得出英吉沙背斜隆升以来缩短量约为720 m,以英吉沙背斜附近的磁性地层年龄1Ma做为Q1年龄,计算得出缩短速率约为0.72 mm/a。
     同时本文对2010年4月14日青海玉树Ms7.1级地震变形作用进行了研究.野外调查表明玉树地震同震地表破裂带长约65km,破裂带走向为310°,破裂面向NE陡倾,地表破裂带由两部分组成,其中西侧部分长约19km,东侧部分长约30km,两者之间存在约15km的无破裂区。玉树地震同震地表破裂以右阶雁行状破裂分布为主要特征,呈现左旋走滑性质,伴随有垂直位移。统计显示同震地表破裂垂直位移(dV)与水平位移(dh)的比值在0.13~0.53之间,地貌累积dV与累积dh比值为0.27-0.63。同震dv/dh与地貌dv/dh的相似显示玉树南山的形成和玉树地震具有同样的运动学和动力学性质,玉树南山的形成是地质历史上沿玉树断裂多次类似于玉树地震的地震活动的结果,计算出需要1800~2600次地震才能造成玉树南山的隆升。前人研究本段断层地震复发周期为120~200年,计算出断层开始活动时间不晚于20万~40万年以前。
Far field effect of collision between Indian plate and Euro-Asia plate since Cenozoic era reactivates some deep and huge faults around Qinghai-Tibet plateau and its margins, such as Alyth fault, Xianshuihe fault, Talas Fergana fault, et al. These faults control the geological evolution of margin area of Qinghai-Tibet plateau. Be important parts of plateau, Pamir-West Kunlun mountain and Yushu distribute around these faults. These area features with strong tectonic deformation, a sundry of structural styles, a lot of active tectonics and frequent earthquakes, having recorded the critical geological information in the process of Cenozoic plateau uplift. This dissertation heads to study on the late Cenozoic deformation of thrust-belt of West Kunlun mountain and do some analysis for coseismic deformation of 2010 Qinghai Yushu earthquake, looking forwars to exploring the uplift mechanism in northwestern plateau and the contribution of 2010 Yushu earthquake to plateau uplift.
     At first, based on the interpretation of satellite images, processing of DEM data, analysis of river terraces, interpretation of geophysical profiles, as well as field morphotectonic and geological investigations and observations, a qualitative and quantitative morphotectonic and deformed features of thrust-belt of West Kunlun moutain was investigated. Some cognition are got:
     Spatial geomorphology analyses find that a very abrupt landform zone distributed between Pamier-West Kunlun tectonic zone and Tarim Basin. Swath DEM profiles across this zone suggest huge vertical elevation change, indicating strong structural activity. Different mean elevation plane suggests the Pamir Plateau has an uplifting mechanism of thrusting with a right lateral component which is different from West Kunlun mountain's nearly pure thrusting. Main planation surfaces appear at 3600-5200 meters high. Slope analyses find that slope angle is rather abrupt and big roughness suggests a strong tectonic activity. Also slope analyses suggest that the slope angle is ca.15°in the basin and ca.33°in the inner plateau. Rivers tend to be offset by fault, making local drainage pattern become L-like. Tributaries tend to occurred on the east side of the river, suggesting east basin's warping. Hyposometric curve indicates study area is in the geomorphic infancy phase and the mountain is still uplifting.
     River geomorphic study finds that Keliya he terraces and Cele he terraces are tectonic terraces, which can arguably reflect mountain uplifting. Keliya he terraces research suggest Keliya he River has a Quaternary mean incision rate of 0.15mm/a, a mean incision rate of 0.76mm/a since 30.86ka,1.34mm/a since 12.44ka, these datum reflect an accelerated uplift past of West Kunlun mountain.
     Yingjisha anticline plunges east, this pheonomenoum only makes sense in the case of Yingjisha anticline's growth ont only controlled by main thrust fault in hinterland but also influenced by Aigusi anticline's lateral-propagation. Yingjisha growth anticline decided the drainage pattern, making river flow along its strike on the south flank of it. Field investigation, as well as analyses about DEM and geophysical profiles across Yingjisha anticline, finds Yingjisha anticline is a detachment anticline, identifying Q1 growth fold developed on the flank of anticline from geophysical profiles. Fit with excess area model we find Yingjisha anticline has a shortening magnitude of ca.722km and a mean shorten rate of ca.0.72mm/a since 1Ma.
     At the same time, this dissertation also focus on the coseismic deformation of Qinghai Yushu earthquake(Ms7.1) attacked on April 14,2010. Field investigation found that Qinghai Yushu Ms7.1 Earthquake produced a~65 km long co-seismic surface rupture zone which strikes 310°and dips NE. The entire zone is composed of two parts:the western section is about 19 km-long and the eastern section 30 km. Between these two sections, a 15 km-long zone surface rupture gap is observed. Surface ruptures display common sinistral lines mainly featuring right stepping en-echelon ruptures, while vertical offsets developed. The ratio between co-seismic vertical offset (dv) and horizontal offset (dh) ranges from 0.13 to 0.53, while the geomorphic dv/dh rate of 0.27~0.63 is close to co-seismic dv/dh (0.13~0.53), indicating that the Yushu NanShan uplift probably shows the same kinematic and dynamic characteristics. In other words, the Yushu Nan Shan uplift is resulting from the cumulative vertical offsets produced by many earthquakes similar to Yushu earthquake along Yushu fault in the geological history. We conclude that we need 1800-2600 earthquakes similar to Yushu earthquake to form Yushu Nan Shan. Former research reckon the recurrence period of the Yushu section of Ganzi-Yushu fault zone to be 120-200 years, which would then make us believe that this fault section's activity started 200-400 ka ago.
引文
Allmendinger R, Shaw J H. Estimation of fault-propagation distance from fold shape:Implications for earthquake hazards assessment [J]. Geology,2000,28(12):1099~1102.
    and geomorphic records of deformation [J]. Journal of Geophysical Research,112, B03S13:1~19.
    Arnaud N O., Vidal Ph., Tapponnier P., et al. The high K2O volcanism of northwestern Tibet:Geochemistry and tectonic implications [J]. Earth and Planetary Science Letters,1992,111:351~367.
    Avouac J P. and Tapponnier P. Kinematic model of active deformation in Central Asia [J]. Geophysic Research letters,1993,20(10):895~898.
    Barka A, Akyuz H S, Altunel E, et al. The Surface Rupture and Slip Distribution of the 17 August 1999 Izmit Earthquake (M7.4), North Anatolian Fault [J]. Bulletin of the Seismological Society of America, 2002,92(1):43-60.
    Brookfield M E. The evolution of the Great River Systems of Southern Asia During the Cenozoic India-Asia Collision:Rivers Draining Southwards [J]. Geomorphology,22(3-4):285~312.
    Burbank D W., R. S. Anderson. Tectonic Geomorphology [M]. Blackwell Science.2000.
    Carena S., Suppe J., Kao H.. The active detachment of Taiwan illuminated by small earthquakes and its control on first-order topography [J]. Geology,2002,30:935-938.
    Chen J., Burbank D W., Scharer K M., et al. Magnetchronology of the Upper Cenozoic strata in the Southwestern Chianese Tian Shan:rates of Pleistocene folding and thrusting [J]. Earth and Planetary Science Letters,2002,195:113~130.
    Chen Yenchieh, Sung Quocheng, Cheng Kuangyu. Along-strike Variations of Morphotectonic Features in the Western Foothills of Taiwan:Tectonic Implication Based on Stream-Gradient and Hypsometric Analysis [J]. Geomorphology,2003,56(1-2):109~137.
    Chung S L., Lo C H., Lee T Y. Diachronous uplift of the Tibetan plateau starting 40Myr ago [J]. Nature, 1998,394:769~773.
    Clark M K., Schoembohm M L., Royden L H., et al, Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainge pattern [J]. Tectonics,23(TC1006):1~20.
    Cowgill E. Cenozoic right-slip faulting along the eastern margin of the Pamir salient, northwestern China [J]. Geological Society of America Bulletin,2010,122(1/2):145~161.
    Cowgill E. Impact of riser reconstruction on estimation of secular variation in rates of strike-slip faulting: revising the Cherchen River site along the Altyn Tagh Fault, NW China [J]. Earth and Planetary Science Letters,2007,254:239~255.
    Daeron M., J. P. Avouac, J. Charreau. Modeling the shortening history of a tip fold using structural
    Dahlstrom D A. Geometric constraints derived from the law of conservation volume and applied to evolutionary models for detachment folding [J]. American Association of Petroleum Geologists Bulletin,1990,74:336~344.
    Debhozorgi M., Poukermani M., Arian M. Quantitative analysis of relative tectonic activity in the Sarvestan area, Iran. Geomorphology,2010,121:329~341.
    Dolan J S., Christoferson S., Shaw J H.. Recognition of paleoearthquakes on the Puente Hills Bling Thrust Fault, California [J]. Science,2002,300(4):115~118.
    England P., Houseman G A. Finite Strain calculations of continental deformation:Comparison with the India-Asia collision [J]. Journal of Geophysical Research,1986,91:3664~3667.
    Epard J L and R. H. Groshong. Excess area and depth to detachment [J]. American Association of Petroleum Geologists Bulletin,1993,77:1291~1302.
    Fielding E J. Tibet uplift and erosion [J]. Tectonophysic,1996,260:55~84.
    Fu B H., Yoshiki Ninomiya, Guo J M. Slip partitioning in the northeast Pamir-TianShan convergence zone [J]. Tectonophysics,2010,483:344~364.
    Groshong R H., J. L. Epard. The role of strain in area constant detachment folding [J]. Journal of Structural Geology,1994,16:613~618.
    Harris R A, Archuleta. J, Day S M. Fault steps and the dynamic rupture process:2-d numerical simulations of a spontaneously propagating shear fracture [J]. Geophysical Research Letters,1991,18:893-896.
    Harris R A, Day S M. Dynamics of Fault Interaction:Parallel Strike-Slip Faults [J]. Journal of Geophysical Research,1993,98(B3):4461-4472.
    Jamison W R. Geometric analysis of fold development in overthrust terrans[J]. Journal of Structural Geology,1989,9:207~219.
    Jones P. B. Triangle zone geometry, terminology and kinematics [J]. Bulletin of Canadian petroleum Geology,1996,44(2):139-152.
    Kapp P., Guynn J H. Indian punch rifts Tibet. Geology,2004,32(1):993~996.
    Klinger Y, Xiwei Xu, Paul Tapponnier, et al. High-Resolution Satellite Imagery Mapping of the Surface Rupture and Slip Distribution of the Mw ~7.8,14 November 2001 Kokoxili Earthquake, Kunlun Fault, Northern Tibet, China [J]. Bulletin of the Seismological Society of America,2005,95(5): 1970-1987.
    Lave J and J. P. Avouac. Actie folding of fluvial terraces across the Siwaiks Hills, Himalayas of central Nepal [J]. Journal of Geophysical Research,2000,105:5735~5770.
    Lee H Y., Chung S L., Wang J R., et al. Miocene Jiali faulting and implications for Tibetan tectonic evolution [J]. Earth and Planetary Letters,2003,205:185~194.
    Li H B., Van der Woerd J., Tapponnier P., et al. Slip rate on the Kunlun fault at Hongshui Gou, and recurrence time of great events comparable to the 14/11/2001, Mw-7.9Kokoxili earthquake [J]. Earth and Planetary Science Letters,2005,237:285~299.
    Matte Ph., Tapponnier P., Arnaud N., et al. Tectonics of Western Tibet, between the Tarim and the Indus [J]. Earth and Planetary Letters,1996,142:311~330.
    Mieres R G, Suppe J. Relief and shortening in detachment folds [J]. Journal of Structural Geology,2006, 28:1785~1807.
    Mitra S. Fault-propagation folds:Geometry, kinematic evolution, and hydrocarbon traps [J]. American Association of Petroleum Geologists Bulletin,1990,74:921~945.
    Mock C., Arnaud N O., Cantagrel J M. An early unroofing in northeastern Tibet? Constraints from 40Ar/39Ar thermochronology on granitoids from the eastern Kunlun range (Qianghai, NW China) [J]. Earth and Planetary Letters,1999,17(1):107~122.
    Molnar P, and England P., Late Cenozoic uplift og mountain ranges and global climatic change:chicken or egg? [J]. Nature,1990,346:29~34.
    Molnar P. and Tapponnier P. Cenozoic tectonics of Asia:Effects of a continental collision [J]. Science,1975, 189:419-426.
    Molnar P., E. T. Brown, B. C. Burchgiel, et al., Quaternary climate change and the formation of river terraces across growing anticlines on the north flank of the Tien Shan, Chian [J]. Journal of Geology, 1994,102(5):583~602.
    Montgomeiy D R, Rrandon M T.2002. Topographic controls on erosion rates in tectonically active mountain ranges [J]. Earth and Planet Science Letters,201:481~489.
    Mouthereru E., Lacombe O, and Meyer B.. The Zagros folded belt (Fars, Iran):constraints from topography and critical wedge modeling. Geophysics Journal of International [J],2006,246:1~21.
    Namson J. Structure of the western Foothills Belt, Miaoli-Hsinchu area, Taiwan, Southern part [J]. Petroleum Geology of Taiwan,18:31~51.
    Nicol A., Dissen R V., Vella P., et al., Growth of contrational structures during the last 10 m.y at the southern end of the emergent Hikurangi forearc basin, New Zealand [J]. New Zealand Journal of Geology & Geophysics,2002,45:365~385.
    Nicol A., J. K. Campbell. The impact of episode fault-related folding on late Holocene degradation terraces along Wairapa River, New Zealand [J]. New Zealand Journal of Geology and Geophysics,44: 145~156.
    Nicol R Van Dissen. Up-dip partitioning of displacement components on the oblique-slip Clarence Fault, New Zealand [J]. Journal of Structural Geology,2002,24:1521~1535.
    Norini G, Groppelli G, Lagmay A M F, et al. Recent left-oblique slip faulting in the central eastern Trans-Mexican Volcanic Belt:Seismic hazard and geodynamic implications [J]. Tectonics,2006, 25(TC4012):1-21.
    Novoa E., J. Suppe, J. H. Shaw. Inclined-shear restoration of growth folds [J]. American Association of Petroleum Geologists Bulletin,2000,84(6):787~804.
    Pan B., Burbanl D., Wang Y, et al. A 900 k.y.record of strath terrace formation during glacial-interglacial transitions in northwest China [J]. Geology,2003,31:957~960.
    Paradimitriou E., Wen X Z., Karakostas V., et al. Earthquake Triggering along the Xianshuihe Fault Zone of Western Sichuan, China [J]. Pure and Applied Geophysics,2004,161:1683~1707.
    Poblet J., K. Mcclay. Geometry and kinematics of single layer detachment folds [J]. American Association of Petroleum Geologists Bulletin,1996,80(7):1085~1109.
    Pratt T L., Shaw J H., Dolan J F., et al., Shallow seismic imaging of folds above the Puente Hills blind thrust fault, Los Angeles, California [J]. Geophysical Research Letters,2002,29:18-21.
    Ramsay J G. Folding and Fracturing of Rocks [M]. New York:McGraw-Hill,1962,1~568.
    Ramsay J G. The geometry and mechanics of formation of similar type folds [J]. Journal of Geology,1962, 70:309~327.
    Rich J L. Mechanics of low-angle over-thrust faulting as illustrated by Cumberland thrust block, Virginia, Kentucky and Tennessee [J]. American Association of Petroleum Geologists Bulletin,1934,18: 1584~1596.
    Robinson A C., Yin A., Manning C E. Cenozoic evolution of the eastern Pamir:Implications for strain-accomadation mechanisms at the western end of the Himalayan-Tibetan orogen [J]. Geological Society of America Bulletin,2007,119(7/8):882~896.
    Rouby D., J. Suppe, H. Xiao. Folding and faulting mechanism in 3D-Restoration of folded and faultd surfaces [J]. American Association of Petroleum Geologists Bulletin,2000,84:805~829.
    Royden L H., Burchfiel B C., King R E., et al. Surface deformation and lower crustal flow in eastern Tibet [J]. Science,1997,276:788~790.
    Schumm S A., Dumont J F., Holbrook J M. Active Tectonics and Alluvial Rivers [M]. Cambridge: Cambridge University Press,2000.
    Shaw J H., Connors C, Suppe J. Seismic Interpretation of Contractional Fault-Related Folds:An AAPG Seismic Atlas [M]. American Association of Petroleum Geologists Special Publication,2004:12270.
    Shaw J H., Shearer P.. An elusive blind-thrust fault beneath metropolitan Los Angles [J]. Science,1999, 283:1516~1518.
    Shifeng Wang, Chun Fan, Gang Wang, et al. Late Cenozoic deformation along the northwestern continuation of the Xianshuihe fault system, Eastern Tibetan Plateau [J]. Geological Society of America Bulletin,2008,120:312-327.
    Sobel E R and Dumitru T A. Thrusting and exhumation around the margins of the western Tarim basin during the India-Asia collision [J]. Journal of Geophysic Research,1997,12:5043~5063.
    Starkel L. Climatically controlled terraces in uplifting mountain areas [J]. Quaternary Science Reviews, 2003,22:2189~2198.
    Strahler A N. Hypsometric (Area-Altitude) Analysis of Erosional Topography [J]. Bulletin of the Geological Society of America,1952,63:1117-1142.
    Suppe J and D. A. Medwedeff. Geometry and kinematics of fault-propogation folding [J]. Ecolg Geol Helv, 1990,83:409~454.
    Suppe J. Geometry and kinematics of fault-bend folding [J]. American Journal of Science,1983, 283:684~721.
    Suppe J., and Medwedeff D A. Fault-propagation folding:Abstracts with Program [J]. Geological Society of American Bulletin,1984,16:670~681.
    Tapponnier P. and Molnar P. Slip-line field theory and large scale continental tectonics [J]. Nature,1976, 264:319~324.
    Tapponnier P., Peltzer G., Le Dain A Y. Propagating extrusion tectonics in Asia:New insights from simple experiments with plasticine [J]. Geology,1982,10:611~616.
    Tapponnier P., Xu Z Q, Roger F. Oblique Stepwise Rise and Growth of the Tibet Plateau [J]. Science,2001, 294:1671~1677.
    Thatcher W. How the Continents Deform:The Evidence From Tectonic Geodesy [J]. Annual Review of Earth and Planetary Sciences,2009,37:237~262.
    Wallace R E., Geometry and rates of change of fault-generated range fronts, north-central Nevada [J]. Journal of Research of the United States Geological Survey,1978,6:637~650.
    Wang Q., Zhang P Z., Freymuller T., et al. Present-day crustal deformation in China constrained by global positoning system measure [J]. Science,2001,294:574~577.
    Xiao W J, Windley B F., et al.2002. Arc-ophiolite obduction in the western Kunlun Range (China): implications for the Paleozoic evolution of central Asia [J]. Journal of Geological Society of London, 2002,159:517-528.
    Xiao W J, Windley B F., et al. Carboniferous-Triassic subduction and accretion in the western Kunlun, China:implications for the collisional and accretionary tectonics of the northern Tibetan Plateau [J]. Geology,2002,30:295~298.
    Zhang P Z., Molnar P. and Downs W R., Increased sedimentation rates and grain sizes 2-4Myr ago due to the influence of climate change on erosion rates [J]. Science,2001,410:891~897.
    Zhang Z C., Xiao X C., Wang J., et al. Post-Collisional Plio-Pleistocene Shoshonitic Volcanism in the Western Kunlun Moutains, NW China:Geolchemical Constraints on Mantle Source Characterstics and Petrogenesis [J]. Journal of Asian Earth Sciences,2007,31(2008):379~403.
    Zheng H B, Powell C M., An Z S. Pliocene uplift of the northern Tibetan Plateau [J]. Geology,2000,28(8) :715~718.
    陈杰,K. M. Scharer, D. W. Burbank, et al.,利用河流阶地限定活动褶皱类型和生长机制:运动学模型[J].地震地质,2005,27(4):512~528
    陈杰,K. M. Scharer, D. W. Burbank, et al.,西南天山明尧勒背斜的第四纪滑脱褶皱作用[J].地震地质,2005,27(4):530~547.
    陈立春,王虎,冉勇康,等.玉树Ms7.1级地震地表破裂与历史大地震[J].科学通报,2010,55(13):1200-1205.
    陈正位,杨攀新,李智敏,等.玉树7.1级地震断裂特征与地震地表破裂带[J].第四纪研究,2010,30(3):628-631.
    程三友,刘少锋,张会平,等.大别山构造地貌的DEM初步分析[J].地质力学学报,2005,11(4):333~341.
    邓起东,冯先岳,张培震,等.天山北麓乌鲁木齐山前坳陷逆断裂褶皱带及其形成机制[J].地学前缘,1999,6(4):215-221.
    邓起东,张培震,冉勇康,等.中国活动构造基本特征[J].中国科学(D辑),地球科学,2002,32(12):1020-1030.
    杜国云,王竹华,李晓燕.构造地貌分析体系及相关的构造地貌标志[J].烟台师范学院学报(自然科 学版),2002,18(2):105-112.
    方世虎,贾承造,郭召杰,等.准格尔盆地南缘前陆冲断带形成时间的初步厘定[J].地学前缘,2005,12(3):66~72.
    冯先岳.新疆古地震[M].乌鲁木齐:新疆科技卫生出版社.1997.93-112.
    高国英,王盛泽.天山中强震震源机制解[J].内陆地震,1997,11(增刊):148~158.
    管树巍,李本亮,何登发,等.复杂构造解析中的几何学方法与应用[J].地质科学,2007,42(4):722~739.
    管树巍,李本亮,何登发,等.构造楔形体的识别与勘探—以准噶尔盆地南缘为例[J].地学前缘,2009,16(3):131~139.
    韩慕康.构造地貌学[J].地球科学进展,1992,7(5):61~62.
    何登发,吕修祥.前陆盆地分析[M].北京:石油工业出版社,1996.
    洪顺英,沈旭辉,荆凤,等.基于SRTM-DEM的阿尔泰山构造地貌特征分析[J].国土资源遥感,2007,73(3):62~68.
    胡建中,谭应佳,张平,等.塔里木盆地西南缘山前带逆冲推覆构造特征[J].地学前缘,2008,15(2):221~230.
    黄忠范,潘良云.塔西南山前冲断褶皱构造带的分布与组合特征[A].CPS/SEG2004国际地球物理会议论文集,2004:837~839.
    姜春发,朱志直,柴耀楚,等.昆仑开合构造[M].北京:地质出版社.1992,1~217.
    阚瑗珂,朱利东,龚建辉,等.基于ArcView的带状剖面工具开发及在地貌分析中的应用[J].成都理工大学学报(自然科学版),2006,33(1):64~69.
    郎玲玲,程维明,朱启疆,等.多尺度DEM提取地势起伏度的对比分析—以福建低山丘陵区为例[J].地理信息科学,2007,9(6):1~6.
    黎敦朋.青藏高原西北缘上新世-早更新世构造变形与高原隆升[D].北京:中国地质科学院博士学位论文,2008.
    李本亮,贾承造,庞雄奇,等.环青藏高原盆山体系内前陆冲断构造变形的空间变化规律[J].地质学报,2007,81(9):1200~1207.
    李海兵,付小方,Jerome VAN DER WOERD,等.汶川地震(Ms 8.0)地表破裂及其同震右旋斜向逆冲作用[J].地质学报,2008,82(12):1623-1643.
    李海兵,司家亮,潘家伟,等.活动断裂的变形特征及其大地震复发周期的估算[J].地质通报,2008,27(12):1968~1991.
    李吉均,方小敏.青藏高原隆起与环境变化研究[J].科学通报,1996,43(15):1402~1406.
    李建华,张家声,单新建.西昆仑-西南天山地区断裂活动性研究[J].地质学报,2002,76(3):347~356.
    李江海,潘文庆,蔡振忠,等.大陆盆地的聚敛-闭合过程研究:以塔里木盆地为例[J].地学前缘,2007,14(4):105~113.
    李锦轶,肖序常.对新疆地壳结构与构造演化几个问题的简要评述[J].地质科学,1999,34(4): 405~419.
    李茂玮.帕米尔-西昆仑地震带强震活动的规律性特征[J].内陆地震,1994,8(2):134~140.
    李勇,周荣军.青藏高原东缘大陆动力学过程与地质响应[M].北京:地质出版社,80-90.
    刘秉理.西昆仑及其山前地带构造地貌研究[J].江汉石油学报,1988,10(1):19~26.
    刘朝荣,张建.塔里木西南坳陷构造的几点新认识[J].新疆地质,2002,20(增刊):31~37.
    刘丛强,谢广轰,中井俊一,等.新疆于田县康苏拉克新生代火山岩Sr, Nd, Ce, O同位素及微量元素地球化学[J].科学通报,1989,23:1803~1806.
    刘嘉麒,买买提.依明.西昆仑山第四纪火山的分布与K-Ar年龄[J].中国科学:B辑,1990,2:180~187.
    刘嘉麒.对“新疆普鲁火山岩及时代归属问题”一文的质疑[J].岩石学报,1989,2:95~97.
    刘静,曾令森,丁林,等.青藏高原东南缘构造地貌、活动构造和下地壳流动假说[J].地质科学,2009,44(4):1227~1255.
    刘少锋,王陶,张会平,等.数字高程模型在地表过程研究中的应用[J].地学前缘,2005,12(1):303~309.
    刘胜,邱斌,尹宏,等.西昆仑山乌泊尔逆冲推覆带构造特征[J].石油学报,2005,26(6):17~19.
    刘胜,汪新,伍秀芳,等.塔西南山前晚新生代构造生长地层与变形时代[J].石油学报,2004,25(5):24~28.
    刘新华,杨勤科,汤国安.中国地形起伏度的提取及在水土流失定量评价中的应用[J].水土保持通报,2001,21(1):57~59.
    刘志宏,王芃,刘永江,等.柴达木盆地南翼山-尖顶山地区构造特征及变形时间的确定[J].吉林大学学报(地球科学版),2009,39(5):796~802.
    刘志杰,孙永军.青藏高原隆升与黄河形成演化[J].地理与地理信息科学,2007,23(1):79~83.
    罗金海,何登发.西昆仑北缘冲断带和田段的构造特征[J].石油与天然气地质,1999,20(3):237~241.
    苗继军,贾承造,侯向辉,等.塔里木盆地西部喀什地区新生代褶皱冲断带构造解析[J].地质科学,2007,42(4):740~752.
    潘保田,高红山,李炳元,等.青藏高原层状地貌与高原隆升[J].第四纪研究,2004,24(1):50~58.
    潘保田,高红山,李吉均.关于夷平面的科学问题—兼论青藏高原夷平面[J].地理科学,2002,22(5):520~526.
    潘家伟,李海兵,Van Der Woerd J,等.西昆仑山前冲断带晚新生代构造地貌特征[J].地质通报,2007,26(10):1368~1379.
    潘家伟.西昆仑山前冲断带晚新生代构造变形与构造地貌研究[D].北京:中国地质科学院硕士学位论文,2008.
    潘裕生,王毅.青藏高原第五缝合带的发现及证据[J].地球物理学报,1994,37(2):241~250.
    潘裕生.昆仑山区构造区划初探[J].自然资源学报,1989,4(3):196~203.
    潘裕生.西昆仑地区的大地构造特征及演化[J].地质科学,1990,3(4):224~232.
    彭树森.大地形变测量所反映的天山最新构造运动[J].内陆地震,1993,7(2):136-141.
    曲国胜,陈杰,陈新安,等.西昆仑-帕米尔造山带及其北缘前陆盆地板内变形构造[J].地质论评,1998,44(4):419~429.
    曲国胜,李亦刚,李岩峰,等.塔里木盆地西南前陆构造分段及其成因[J].中国科学(D辑):地球科学,2005,35(3):193~202.
    曲国胜,许建东,王俞,等.西昆仑-帕米尔前陆依格子牙薄皮弧形推覆构造分析[J].地球学报,1999(增刊),20(57):82~91.
    任俊杰,谢富仁,刘东英,等.2010玉树地震的构造环境、历史地震活动及其复发周期估计[J].震灾防御技术,2010,5(2):228-233.
    施雅风,李吉均,李炳元,等.晚新生代青藏高原的隆升与东亚环境变化[J].地理学报,1999,54(1):10~20.
    孙鑫喆,徐锡伟,陈立春,等.青海玉树Ms7.1地震两个典型地点的地表破裂特征[J].地震地质,2010,32(2):338-344.
    汤国安,杨昕,等ArcGIS地理信息系统空间分析实验教程[M].科学出版社,2006,480.
    王国灿,杨巍然,马华东,等.东、西昆仑山晚新生代以来构造隆升作用最比[J].地学前缘,2005,12(3):157~166.
    王世虎,徐希坤,宋国奇.塔西南坳陷和田凹陷前陆逆冲带构造特征[J].石油实验地质,2001,23(4):378-383.
    王素华,钱祥麟.塔西南与塔吉克盆地新生代构造与油气聚集[J].北京大学学报(自然科学版),2001,37(4):523~528.
    王晓强,路星,刘斌,等.新疆地区现今地壳垂直运动及地震活动研究[J].大地测量与地壳动力学,2009,29(6):22~27.
    王永,王军,迟振卿,等.克里雅河阶地的形成与西昆仑山隆升[J].宁夏工程技术,2004,3(3):207~209.
    闻学泽,黄圣睦,江在雄.甘孜-玉树断裂带的新构造特征及地震危险性估计[J].地震地质,1985,7(3):23-32.
    闻学泽,贾晋康.鲜水河断裂带强震危险性预测[J].四川地震,1988,9(3):1987-1993.
    闻学泽,徐锡伟,郑荣章,等.甘孜-玉树断裂的平均滑动速率与近代大地震破裂[J].中国科学(D辑),2003,33(增刊):199-208.
    闻学泽.四川西部鲜水河-安宁河-则木河断裂带的地震破裂分段特征[J].地震地质,2000,22(3):239-249.
    闻学泽.鲜水河断裂带未来三十年地震复发的条件概率[J].中国地震,1990,6(4):8-16.
    吴世敏,马瑞士,卢华复,等.西昆仑地震展布与塔西南“A”型俯冲[J].石油实验地质
    吴世敏,马瑞士,卢华复,等.西昆仑早古生代构造演化及其对塔西南盆地的影响[J].南京大学学报,1996,32(4):650~657.
    伍秀芳,刘胜,汪新,等.帕米尔-西昆仑北麓新生代前陆褶皱冲断带构造剖面分析[J].地质科学,2004,39(2):260~271.
    肖安成,杨树峰,陈汉林,等.西昆仑山前冲断系的结构特征[J].地学前缘,2000,7(增刊):128~135.
    肖安成,杨树锋,陈汉林,等.西昆仑山前冲断系的结构特征[J].地学前缘,2000,7(增刊):128~136.
    肖文交,侯泉林,李继亮,等.西昆仑大地构造相解剖及其多岛增生过程[J].中国科学(D辑):地球科学,2000,30(增刊):22~28.
    肖文交,周辉,B F Windley,等.西昆仑造山带复式增生楔的构造特征与演化[J].新疆地质,2003,21(1):31~36.
    徐锡伟,闻学泽,郑荣章,等.川滇地区活动块体最新构造变动样式及其动力来源[J].中国科学(D辑),2003,33(增刊):151-162.
    徐锡伟,于贵华,马文涛,等.昆仑山地震(Mw7.8)破裂行为、变形局部化特征及其构造内涵讨论[J].中国科学(D辑),2008,38(7):785-796.
    徐锡伟,张培震,闻学泽,等.川西及其邻近地区活动构造基本特征与强震复发模型[J].地震地质,2005,27(3):446-461.
    许志琴,李海兵,杨经绥,等.东昆仑山南缘大型转换挤压构造带和斜向俯冲作用[J].地质学报,2001,75(2):156~164.
    许志琴,李化启,侯立炜,等.青藏高原东缘龙门-锦屏造山带的崛起—大型拆离断层和挤出机制[J].地质通报,2007,26(10):1262~1276.
    许志琴,杨经绥,姜枚,等.大陆俯冲及青藏高原周缘造山带的崛起[J].地学前缘,1999,6(3):139~152.
    杨逸畴.克里雅河地貌的形成与演化[J].干旱区地理,1990,13(1):37~45.
    张会平,刘少锋.利用DEM进行地形高程剖面分析的新方法[J].地学前缘,2004,11(3):111~112.
    张会平,杨农,张岳桥,等.基于DEM的岷山构造带构造地貌初步研究[J].国土资源遥感,2004,62(4):54~58.
    张会平,张平安,张威,等.基于DEM的岷江断裂带构造地貌模拟[J].辽宁工程技术大学学报,2004,23(5):603~605.
    张培震,邓启东,杨晓平,等.天山的晚新生代构造变形及其地球动力学问题[J].中国地震,1996,12(2):127~140.
    张培震,李传友,毛凤英.河流阶地演化与走滑断裂滑动速率[J].地震地质,2008,30(1):44~57.
    张培震,沈正康,王敏,等.青藏高原及周边现今构造变形的运动学[J].地震地质,2004,26(3):367~377.
    张培震,王琪,马宗晋.青藏高原现今构造变形特征与GPS速度场[J].2002,9(2):442~450.
    张培震.天山及其前陆盆地的晚新生代构造变形[J].科学通报,2003,48(24):2499~2502.
    张青松,周耀飞,陆祥顺,等.现代青藏高原上升速度问题[J].科学通报,1991,36(7):529~531.
    张先康,赵金仁,张成科,等.帕米尔东北侧地壳结构研究[J].地球物理学报,2002,45(5):665~661.
    张勇,许力生,陈运泰.2010青海玉树地震震源过程[J].中国科学(D辑),地球科学,2010,40(7):819-821.
    赵洪壮,李有利,杨景春,等.基于DEM数据的北天山地貌形态分析[J].地理科学,2009,29(3):445~449。
    赵洪壮,李有利,杨景春,等.基于DEM数据的北天山地貌形态分析[J].地理科学,2009,29(3):445~449.
    赵越,黎敦朋,刘健,等.构造地貌—认识高原历史的钥匙[J].地质通报,2008,27(12):1961~1967.
    中国科学院计算机网络信息中心.国际科学数据服务中心.http://datamirror.csdb.cn/[EBOL].2009.
    周荣军,马声浩,蔡长星.甘孜-玉树断裂带的晚第四纪活动特征[J].中国地震,1996,12(3):250-260.
    周荣军,闻学泽,蔡长星,等.甘孜-玉玉树断裂带的近代地震与未来地震趋势估计[J].地震地质,1997,19(2):115-124.
    周新源,罗金海,王清华.塔里木盆地南缘冲断带构造特征及其油气地质特征[J].中国科学D辑:地球科学,2004,34(增刊Ⅰ):56~62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700