用户名: 密码: 验证码:
纤锌矿结构GaN(0001)面的光电发射性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕纤锌矿结构GaN光电阴极的(0001)面光电发射模型、量子效率理论、材料结构设计与生长、制备工艺和阴极性能评估等方面开展了研究。
     针对现有的光电阴极表面发射模型的局限性,为了更好的解释NEAGaN光电阴极(0001)面光电发射机理,建立了基于双偶极子模型的[GaN(Mg)-Cs]:[0-Cs]光电发射模型,讨论了激活过程中Cs、O在GaN(0001)表面吸附的过程,认为第一个偶极层GaN(Mg)-Cs具有统一的有利于光电子逸出的指向性,所以进Cs后光电流上升幅度很大,第二个偶极层O-Cs没有统一的指向性,只是表面的缺陷使得一部分O-Cs偶极子具有有利于光电子逸出的方向,所以进O后光电流有增长但幅度不大。
     讨论了NEAGaN光电阴极(0001)面的光电发射过程,并通过求解载流子扩散方程的方法获得了NEAGaN光电阴极量子效率公式。根据公式,分析了GaN发射层吸收系数αhv、电子表面逸出几率P、电子扩散长度LD、GaN发射层厚度Te以及后界面复合速率Sv对量子效率的影响。分析了不同生长方法、不同衬底和不同缓冲层材料的优劣。设计了不同p型掺杂浓度的反射式GaN光电阴极、梯度掺杂的反射式GaN光电阴极、发射层厚度150nm的透射式GaN光电阴极、以及组分渐变Ga1-xAlxN作为缓冲层的透射式GaN光电阴极。
     对现有的NEA光电阴极制备与评估系统进行了升级改造,增加了紫外光源和透射式的测试光路,使其可以很好的完成紫外光电阴极制备及评估的工作。利用XPS研究了三种不同的化学清洗方法对GaN(0001)表面的净化效果,认为2:2:1的H2SO4(98%):H202(30%):去离子水混合溶液是一种有效的方法。采用同样的710℃进行了两次加热并且进行了激活实验,发现第一次加热中真空度的变化曲线成“W”型,而第二次加热过程中成“V”型,并且质谱仪记录的残气成分分压的变化情况也与之相符合。进行了不同光照下激活的实验,分别在全光谱的氘灯、70μW的300nm单色光和35μW的300nm单色光光照下对GaN光电阴极进行了激活实验。
     对不同结构的NEAGaN光电阴极性能进行了评估,发现GaN光电阴极最佳p型掺杂浓度在1017cm-3数量级,梯度掺杂的GaN光电阴极最大量子效率达到了56%,明显优于均匀掺杂,采用Ga1-xAlxN缓冲层可以使CaN光电阴极获得更为理想的透射式的量子效率,发现透射式GaN光电阴极最佳的发射层厚度应该在90nm左右。对比了不同制备工艺获得的NEAGaN光电阴极性能,验证了化学清洗方法的优劣,发现二次加热后GaN光电阴极的性能与第一次没有明显的变化,300nm单色光光照下激活的GaN光电阴极性能要优于氘灯的。最后对比了GaN与GaAs光电阴极的性能,发现NEAGaN光电阴极在稳定性上要好于GaAs。
     本文研究工作围绕NEAGaN光电阴极的相关理论和技术,在紫外光电阴极及紫外探测技术等方面具有参考和促进意义。
The (0001) plane photoemission model, quantum efficiency theory, material structural designing and growth, preparation technique evaluation, and performance evaluation of the wurtzite structure GaN photocathode were researched in this thesis.
     Because of the limitations of the existing photocathode surface emission model, in order to explain (0001) surface photoemission mechanism of the NEA GaN photocathode better,[GaN (Mg)-Cs]:[O-Cs] photoemission model based on dual-dipole model is established. Cs, O adsorption process on GaN (0001) surface during the activation is discussed, and the GaN (Mg)-Cs dipole layer is found having a uniform direction which is conducive for photoelectron escaping, so photocurrent has a big rise when Cs is introduced. There is not a uniform direction for the O-Cs dipole layer, but because of the surface defects, part of the O-Cs dipoles have the direction which is conducive for photoelectron escaping, so the photocurrent has a modest growth after introducing O.
     Photoemission process on (0001) surface of NEA GaN photocathode is discussed, and NEA GaN photocathode quantum efficiency formula is obtained by solving the carrier diffusion equation. According to the formula, influences of GaN emission layer absorption coefficient μhv, electron surface escape probability P, electron diffusion length LD, GaN emission layer thickness Te, and the recombination rate Sv of the back interface on quantum efficiency are analyzed. The pros and cons of different growth methods, different substrates, and different buffer layer materials are discussed. The different p-type doping concentration and gradient doping are designed for the reflection mode GaN photocathode.150nm thick GaN emission layer and a composition graded Ga1-xAlxN buffer layer are designed for the transmission mode GaN photocathode.
     The existing NEA photocathode preparation and evaluation system is upgraded, a UV light source and transmission testing optical path are added, so the new system can play the preparation and evaluation work well for the ultraviolet cathode. Three different chemical cleaning methods are studied by XPS, and the2:2:1H2SO4(98%):H2O2(30%):deionized water solution is found to be an effective method to clean the GaN (0001) surface. GaN samples are annealed by the same temprature of710℃for two times and activated, respectively. The vacuum level curve has a shape "W" during the first annealing, while the second has a "V" shape, which is consistent with the partial pressure of the residual gas recored by a quadrupole mass spectrometer. Activation experiments under different light are carried out, a deuterium lamp with full spectrum,70μW of300nm monochromatic light, and35μW of300nm monochromatic light are used.
     The performances NEA GaN photocathode of different structure are evaluated. The best p-type doping concentration of GaN photocathode is found to be at the magnitude of1017cm-3. The maximum quantum efficiency of gradient-doped GaN photocathode reaches56%, which is better than the uniform doping significantly. GaN photocathode with Ga1-xAlxN buffer layer can obtain more ideal transmission mode quantum efficiency, and the optimal thickness of the emission layer for the transmission mode GaN photocathode should be about90nm. The performances of NEA GaN photocathode obtained by different preparation methods are compared, which verifies the merits of chemical cleaning methods. The performance of GaN photocathode after the secondary annealing has no obvious change with the first, and GaN photocathode activated under the300nm monochromatic light has higher quatunm efficiency than that under the deuterium lamp. Finally, the performance of GaN and GaAs photocathode are compared, and the stability of NEA GaN photocathode is better than GaAs.
     Theory and technology of NEA GaN photocathode are studied in this thesis, which has reference and positive significance for the ultraviolet photocathode and UV detection technology.
引文
[1]刘元震,王仲春,董亚强.电子发射与光电阴极.北京:北京理工大学出版社,1995
    [2]刘学悫.阴极电子学.北京:科学出版社,1980
    [3]薛增泉,吴全德.电子发射与电子能谱.北京:北京大学出版社,1993
    [4]萨默A H.光电发射材料制备、特性与应用.侯洵译.北京:科学出版社,1979
    [5]A.Einstein. (U)ber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann Physik,1905,17(1):132-148
    [6]A.H.Sommer. Brief history of photoemissive materials. Proc. SPIE,1993,2022:2-17
    [7]Spicer W E. Photoemissive, photoconductive, and absorption studies of alkali antimony compounds. Physical review,1958,112(1):114-122
    [8]Scheer J J and Vanlar J. GaAs-Cs:new type of photoemitter. Solid State Communications, 1965,3:189-193
    [9]Turnbull A A and Evans G B. Photoemissions from GaAs-Cs-O. Journal of Phisics D: Applied Phisics,1968,1:155-160
    [10]Baum A W, Spicer W E, Pease R F W, et al. Negative electron affinity photocathodes as high-performance electron sources—Part1:achievement of ultra-high brightness from an NEA photocathode, Proc. SPIE,1995,2522:208-219
    [11]Aulenbacher K, Schuler J, Harrach D V, et al. Pulse response of thin III/V semiconductor photocathodes. Journal of Applied Physics,2002,92(12):7536-7543
    [12]Alley R, Aoyagi H, J.Clendenin, et al. The Stanford linear accelerator polarized electron source. Nuclear Instruments and Methods in Physics Research A,1995,365:1-27
    [13]Maruyama T, Brachmanna A, Clendenin J E, et al. A very high charge, high polarization gradient-doped strained GaAs photocathode. Nuclear Instruments and Methods in Physics Research A,2002,492:199-211
    [14]Siggins T, Sinclair C, Bohn C, et al. Performance of a DC GaAs photocathode gun for the Jefferson lab FEL. Nuclear Instruments and Methods in Physics Research A,2001, 475:549-553
    [15]Williams B F and Tietjen J J. Current status of negative electron affinity devices. Proceedings of the IEEE,1971,59(10):1489-1497
    [16]Martinelli R U and Fisher D G. The application of semiconductors with negative electron affinity surfaces to electron emission devices. Proceedings of the IEEE,1974, 62(10):1339-1360
    [17]Fisher D G, Enstrom R E, Escher J S, et al. Photoemission characteristics of transmission-mode negative electron affinity GaAs and (In,Ga)As vapor-grown structures. IEEE Transactions on Electron Devices,1974, ED-21(10):641-649
    [18]Pankove J I and Schade H. Photoemission from GaN. Applied Physics Letters,1974, 25(1):53-55
    [19]宗志园.NEA光电阴极的性能评估和阴极激活工艺研究:[博士学位论文].南京:南京理工大学,2000
    [20]钱芸生.光电阴极多信息量测试技术及其应用研究:[博士学位论文].南京:南京理工大学,2005
    [21]杜晓晴.高性能GaAs光电阴极:[博士学位论文].南京:南京理工大学,2005
    [22]邹继军GaAs光电阴极理论及其表征技术研究:[博士学位论文].南京:南京理工大学,2007
    [23]杨智GaAs光电阴智能激活与结构设计研究:[博士学位论文].南京:南京理工大学,2010
    [24]牛军.变掺杂GaAs光电阴极特性及评估研究:[博士学位论文].南京:南京理工大学,2011
    [25]张益军.变掺杂GaAs光电阴极研究及其特性评估:[博士学位论文].南京:南京理工大学,2012
    [26]F. Machuca, Y. Sun, Z. Liu, K. Loakeimidi, P. Pianetta, and R. F. W.Pease, Prospect for high brightness Ⅲ-nitride electron emitter, J. Vac. Sci. Technol. B.,2000, vol.18: 3042-3046
    [27]M. P. Ulmer, W. B. Wessels, F. Shahedipour, R. Y. Korotkov, C. Joseph, and T. Nihashi. Progress in the fabrication of GaN photo-cathodes. Proceedings of SPIE,2001, Vol.4288: 246-253
    [28]乔建良,常本康,高有堂,田思.NEA GaN光电阴极的制备及其应用.红外技术.2007,29(9):524-527
    [29]Machuca F. A thin film p-type GaN photocathode:prospect for a high performance electron emitter[D], Stanford University,2003:Machuca F 2003 Ph. D. Dissertation (Stanford:Stanford University)
    [30]M. P. Ulmer, W. B. Wessels, and O. H. W. Siegmund. Advances in wide-band gap semiconductor based photocathode devices for low light level applications. Proceedings of SPIE,2003, Vol.4854:225-232
    [31]李向阳,许金通,汤英文,等.GaN基紫外探测器及其研究进展.红外与激光工程,2006,35(03):276-280
    [32]Timothy Norton, Bruce Woodgate, Joseph Stock, George Hilton, Mel Ulmer, Shahid Aslam, R.D Vispute. Results from Cs activated GaN photocathode development for MCP detector systems at NASA GSFC. Proceedings of SPIE,2003,5164:155-164
    [33]王三胜,顾彪,徐茵,等.GaN基材料生长及其在光电器件领域的应用.电子器件.2002,25(1):1-8
    [34]彭冬生,冯玉春,王文欣,等.一种外延生长高质量GaN薄膜的新方法.物理学报.2006,55(7):3606-3610
    [35]郎佳红,顾彪,徐茵,等.标准温度和衬底分步清洗对GaN初始生长影响RHEED研究,红外技术,2003,25(6):64-68
    [36]张燕,龚海梅,白云,等.空间用紫外探测及AlGaN探测器的研究进展.激光与红外,2006,36(11):1009-1012
    [37]游达,汤英文,赵德刚,等.高量子效率前照式GaN基p-i-n结构紫外探测器.半导体学报,2006,27(05):896-899
    [38]谢雪松,吕长志,张小玲,等.GaN基p-i-n结构紫外光探测器.半导体光电,2007,28(01):33-35
    [39]Ulmer M P, Wessels B W, and O. H. W. Siegmund. Advances in wide-band gap semi-conductor based photocathode devices for low light level applications. Proceedings of SPIE,2002, Vol.4650:94-103
    [40]Ulmer M P, Wessels B W, Han B, et al. Advances in wide-band-gap semiconductor based photocathode devices for low light level applications. Proceedings of SPIE,2003, 5164:144-154
    [41]Zhi Liu, Francisco Machuca, Piero Pianetta, et al. Electron scattering study within the depletion region of the GaN(0001) and the GaAs (100) surface, APPLIED PHYSICS LETTERS,2004, v 85, n 9:1541-1543
    [42]J. Stock, G Hilton, T. Norton, et al. Progress on development of UV photocathodes for photon-counting applications at NASA GSFC.. Proceedings of SPIE,2005, Vol.5898: 58980F-1-58980F-8
    [43]O. H. W. Siegmund, A.S. Tremsin, A. Martin, et al. GaN photocathodes for UV detection and imaging. Proceedings of SPIE,2003, Vol.5164:134-143
    [44]Shahedipour F S, Ulmer M P, et al. Efficient GaN photocathodes for low-level ultraviolet signal detection. IEEE Journal of Quantum Electronics,2002,38(4):333-335
    [45]Shoichi Uchiyama,Yasufumi Takagi, Minoru Niigaki, Hirofumi Kan. GaN-based photocathodes with extremely high quantum efficiency. APPLIED PHYSICS LETTERS, 2005,86:103511
    [46]李慧蕊,申屠军,戴丽英,等.负电子亲和势氮化镓光电阴极.光电子技术.2007,27(2):73-77
    [47]李朝木,曾正清,陈群霞.GaN负电子亲和势光电阴极材料的生长研究.真空与低温.2008,14(4):236-239
    [48]杜晓晴,常本康.负电子亲和势光电阴极量子效率公式的修正.物理学报.2009,58(12):8643-8650
    [49]A.S. Tremsin, O. H. W. Siegmund. The quantum efficiency and stability of UV and soft X-ray photocathodes. Proceedings of SPIE,2005, Vol.5920:592001
    [50]Charles L. Joseph. UV detective quantum efficiency measurements. Proceedings of SPBE,1999, Vol.3764:246-253
    [51]O. H.W. Siegmund, J.V. Vallerga, J. McPhate and A.S. Tremsin. Next generation microchannel plate detector technologies for UV Astronomy. Proceedings of SPIE,2004, Vol.5488:789-800
    [52]Oswald H.W. Siegmund. Advances in microchannel plate detectors for UV/visible Astronomy. Proceedings of SPIE,2003, Vol.4854:181-190
    [53]Patrick Morrissey, Steve Kaye, Chris Martin, Janet Sheung, Shouleh Nikzad, Todd Jones, Jordanna Blacksberg, Michael Hoenk and L. Douglass Bell. A novel low-voltage electron-bombarded CCD readout. Proceedings of SPIE,2006, Vol.6266:626610
    [54]Oswald H.W. Siegmund. High-performance microchannel plate detectors for UV/visible astronomy. Nuclear Instruments and Methods in Physics Research A,2004, Vol.525: 12-16
    [55]杜晓晴,常本康,汪贵华,等.NEA光电阴极的(Cs,O)激活工艺研究.光子学报.2003,32(7):826-829
    [56]乔建良,田思,常本康,等.负电子亲和势GaN光电阴极激活机理研究.物理学报.2009,58(8):5847-5851
    [57]Du Xiaoqing, Chang Benkang, Du yujie, Li Min. The optimization of (Cs,O) activation of NEA photocathode. The 5th International Vacuum Electron Sources Conference proceeding.2004:271
    [58]杜晓晴,常本康,钱芸生,等.GaN紫外光阴极材料的高低温两步制备实验研究.光学学报.2010,30(6):1734-1738
    [59]李飙,徐源,常本康,等.梯度掺杂结构GaN光电阴极的激活工艺研究.光电子·激 光.2011,22(9):1317-1321
    [60]乔建良,常本康,钱芸生,等.反射式NEA GaN光电阴极量子效率恢复研究.物理学报.2011,60(1):017903
    [61]F. Machuca, Z. Liu, Y. Sun, P. Pianetta, W. E. Spicer, and R. F. W. Pease, Simple method for cleaning gallium nitride (0001), J. Vac. Sci. Technol. A.,2002, vol.20: 1784-1786
    [62]Machuca F, Liu Z, Sun Y, et al. Role of oxygen in semiconductor negative electron affinity photocathodes. J. Vac. Sci. Technol. B.,2003,20(6):2721-2725
    [63]Mizuno I, Nihashi T, Nagai T, Development of UV Image intensifier tube with GaN photocathode. Proceedings of the SPIE.2008,6945:69451N
    [64]Oswald H.W. Siegmund, Anton S. Tremsin, John V. Vallerga, Jason B. McPhate, Jeffrey S. Hull, James Malloy and Amir M. Dabiran. Gallium nitride photocathode development for imaging detectors. Proceedings of SPIE,2008,7021:70211B
    [65]李朝木,曾正清,陈群霞.GaN负电子亲和势光电阴极材料的生长研究.真空与低温.2008,14(4):236-239
    [66]乔建良.反射式NEA GaN光电阴极激活与评估研究:[博士学位论文].南京:南京理工大学,2010
    [67]田健.GaN紫外光电阴极的材料结构设计和制备工艺研究:[硕士学位论文].重庆:重庆大学,2011
    [68]曾正清,李朝木,王宝林,等.GaN负电子亲和势光电阴极的激活改进研究.真空与低温.2010,16(2):108-112
    [69]杜晓晴,利用反射与透射光谱测量GaN外延层的光学参数.光学与光电技术.2010,8(1):76-79
    [70]杜玉杰.GaN光电阴极材料特性与激活机理研究:[博士学位论文].南京:南京理工大学,2012
    [71]乔建良,常本康,钱芸生,等.NEA GaN光电阴极光谱响应特性研究.物理学报.2010,59(5):3577-3582
    [72]刘春波,刘敏,张欣馨,等.有机紫外光探测器原理及其主要影响因素.化工进展.2013,32(25601):42-47
    [73]周兴江,曹凝.深紫外固态激光源光电子能谱仪系列装备.中国科学院院刊,2013,2801:104-110
    [74]于磊,林冠宇,陈斌.大气遥感远紫外光谱仪绝对光谱辐照度响应度定标方法研究.光谱学与光谱分析,2013,3301:246-249
    [75]黄翌敏.紫外探测技术应用.红外,2005,04:9-15
    [76]郑学刚.氧化锌薄膜的制备及其紫外探测特性研究:[硕士学位论文].曲阜:曲阜师范大学,2006
    [77]江巍.紫外探测系统设计技术研究:[硕士学位论文].西安:西安电子科技大学,2007
    [78]李海国.基于有机宽带隙半导体的异质结型紫外探测材料与器件:[博士学位论文].杭州:浙江大学,2011
    [79]靳贵平.紫外探测技术与双光谱图像检测系统的研究:[博士学位论文].西安:中国科学院研究生院(西安光学精密机械研究所),2004
    [80]周伟,马妮,吴晗平.近地层紫外探测作用距离及其影响因素研究.红外技术,2011,33(22206):357-360+371
    [81]周伟,吴晗平,吕照顺,等.空间紫外目标探测系统技术研究.现代防御技术,2011,39(22606):172-178+190
    [82]郝永皓,赵建伟,秦丽溶,等.基于四针状ZnO纳米结构的高灵敏紫外探测器件.西南大学学报(自然科学版),2012,34(20905):51-56
    [83]黄然,李筠,刘猛,等.基于Zn_2SiO_4:Mn的紫外探测薄膜的研制.激光杂志,2009,30(17005):18-19
    [84]张雯,贺永宁,张庆腾,等.ZnO纳米线阵列的籽晶控制生长及其紫外探测性能.硅酸盐学报,2010,38(25001):12-16
    [85]张宣妮,王益军,张玉叶.紫外探测技术的新发展.价值工程,2010,29(20517):3-5
    [86]李炳军.紫外探测技术在导弹来袭告警系统中的应用:[硕士学位论文].长沙:国防科学技术大学,2007
    [87]刘晓科,马君,唐辉,等.一种日盲区紫外信号探测系统前端.探测与控制学报,2007,12106:41-44
    [88]郝永皓.Ⅱ-Ⅵ族纳米结构的控制合成及其紫外探测性能研究:[硕士学位论文].重庆:西南大学,2012
    [89]韩延刚.纳米TiO_2/有机复合半导体紫外探测材料:[博士学位论文].杭州:浙江大学,2010
    [90]杨承.日盲型紫外探测和直升机着舰光电助降技术的研究:[博士学位论文].成都:电子科技大学,2010
    [91]董政.日盲紫外探测系统自动目标识别的研究:[博士学位论文].成都:电子科技大学,2011
    [92]杨承,曾钦勇,朱大勇,等.日盲型紫外探测系统的探测距离模型及实验研究.光电工程,2010,37(25009):133-139
    [93]杨承,曾钦勇,朱大勇,甘春泉.日盲型紫外探测系统中目标定位的研究.激光技术, 2008,32(2):140-142+146
    [94]李晓延.第三代半导体材料双雄并立,难分高下.今日电子,2013,23301:24
    [95]Yujie J. Ding, Jacob B. Khurgin. Resonant Raman scattering in GaN single crystals and GaN-based heterostructures:feasibility for laser cooling. Chinese Optics Letters,2013, 1101:67-75
    [96]赵芳,张运炎,宋晶晶,等.具有三角形InGaN/GaN多量子阱的高内量子效率的蓝光LED.发光学报,2013,3401:66-72
    [97]王健,谢自力,张韵,等.利用X射线衍射研究Mg掺杂的InN的快速退火特性.中国激光,2013,40(43301):176-179
    [98]植成杨,甘志银,潘建秋.一种新型薄膜制备设备的研制.科技传播,2013,5(8302):115-116+112
    [99]廉瑞凯,李林,范亚明,等.预辅Al及AlN缓冲层厚度对GaN/Si(111)材料特性的影响.中国激光,2013,40(43301):164-168
    [100]朱琳,余春燕,梁建,等.Ag作催化剂制备的GaN的形貌及其性能.无机化学学报,2013,2901:63-68
    [101]贾文博,李培咸,周小伟,等.MOCVD脉冲生长对InGaN太阳能电池材料的影响.电子科技,2013,26(28001):10-11
    [102]张雪锋,王莉,刘杰,等Electrical characteristics of AlInN/GaN HEMTs under cryogenic operation. Chinese Physics B,2013,2201:482-485
    [103]周安,修向前,张荣,等Roles of Ⅴ/Ⅲ ratio and mixture degree in GaN growth: CFD and MD simulation study. Chinese Physics B,2013,2201:513-517
    [104]陈峻,范广涵,张运炎.Improvement of characteristics of an InGaN light-emitting diode by using a staggered AlGaN electron-blocking layer. Chinese Physics B,2013, 2201:552-555
    [105]杨扬,李培咸,周小伟,等.Mg注入非极性a面GaN退火温度的研究.电子科技,2013,26(28001):12-15
    [106]王东盛,郭文平,张克雄,等.400 nm高性能紫光LED的制作与表征.发光学报,2013,3402:225-229
    [107]邢东,冯志红,王晶晶,等In0.17Al0.83N在碱性溶液中的化学湿法腐蚀行为研究.半导体技术,2013,38(29402):118-121
    [108]包琦龙,丛宏林,徐小明,等.100mm直径硅衬底上MOCVD外延生长无裂纹GaN.半导体技术,2013,38(29402):130-134
    [109]Liu XiaoPing, Fan GuangHan, Zheng ShuWen, et al. Investigation of GaN-based light-emitting diodes using a p-GaN/i-InGaN short-period superlattice structure as last quantum barrier. Science China (Technological Sciences),2013,5601:98-102
    [110]李健.2013半导体不相信预言.电子产品世界,2013,20(29301):10-24
    [111]孙丽,张江勇,陈明,等p-GaN退火对InGaN量子阱光学性能的影响.半导体技术,2013,38(29301):35-39
    [112]闫大为,王福学,朱兆旻,等.Capacitance and conductance dispersion in AlGaN/GaN heterostructure. Journal of Semiconductors,2013,3401:35-38
    [113]谢峰.Ⅲ族氮化物半导体可见光盲及日盲紫外探测器研究:[博士学位论文].南京:南京大学,2012
    [114]孙晓娟.GaN紫外探测器材料的MOCVD生长及器件研究:[博士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2012
    [115]苑进社,陈光德,张显斌.GaN基半导体太阳盲区紫外探测器研究进展.半导体光电,2003,01:5-11
    [116]沙金,江若琏,周建军,等.高响应度GaN紫外探测器.半导体光电,2003,03:172-173+177
    [117]王俊,赵德刚,刘宗顺,等.GaN基肖特基结构紫外探测器.半导体学报,2004,06:711-714
    [118]李雪.GaN基紫外探测器.红外,2004,05:23-27
    [119]周梅,赵德刚.以弱p型为有源区的新型p-n结构GaN紫外探测器.物理学报,2009,5810:7255-7260
    [120]周梅,赵德刚.结构参数对GaN肖特基紫外探测器性能的影响及器件设计.发光学报,2009,3006:824-831
    [121]杨凯,张荣,臧岚,等.GaN光导型紫外探测器.高技术通讯,1997,09:26-28
    [122]臧岚,杨凯,张荣,等GaN/6H-SiC紫外探测器的光电流性质研究.半导体学报,1998,03:38-42
    [123]李向阳,许金通,汤英文,等.GaN基紫外探测器及其研究进展.红外与激光工程,2006,03:276-280
    [124]周梅,左淑华,赵德刚.一种新型GaN基肖特基结构紫外探测器.物理学报,2007,09:5513-5517
    [125]周梅,赵德刚.p-GaN层厚度对GaN基p-i-n结构紫外探测器性能的影响.物理学报,2008,07:4570-4574
    [126]尤坤.氮化镓基MIS结构紫外探测器研究:[硕士学位论文].长春:中国科学院研究生院(长春光学精密机械与物理研究所),2011
    [127]程开富.新型紫外摄像器件及应用.国外电子元器件,2001,02:4-10
    [128]王宇.硅基GaN薄膜制备及紫外探测器的初步研究:[硕士学位论文].杭州:浙 江大学,2001
    [129]李嘉炜.硅基GaN欧姆接触及紫外探测器的研究:[硕士学位论文].杭州:浙江大学,2002
    [130]周飞跃.GaN基MSM结构紫外探测器研究:[硕士学位论文].成都:电子科技大学,2006
    [131]刘磊.GaN欧姆接触与MSM结构紫外探测器研究:[硕士学位论文].杭州:浙江大学,2004
    [132]张军琴.宽禁带半导体MSM结构紫外探测器的研究:[博士学位论文].西安:西安电子科技大学,2009
    [133]王锐,王淑荣,郭劲,等.高精度紫外标准辐射计.光学学报,2011,31(34904):38-43
    [134]王忆锋,余连杰,马钰.即时全球打击(PGS)武器早期预警对光电探测器的需求分析.激光与红外,2011,41(39003):288-292
    [135]杨俊,亓洪兴,肖功海,等.基于紫外光诱导荧光的溢油监测方法研究.光电工程,2011,38(25805):92-98
    [136]罗英,闫群,张德银,等.充气型紫外光敏管降噪研究.中国民航飞行学院学报,2011,2202:8-11
    [137]张伟,李毅,张虎,等.紫外衍射微透镜阵列的设计与制备.上海理工大学学报,2011,33(14102):174-178
    [138]贺东雷,刘品雄,王增斌,等.紫外侦察告警技术.航天电子对抗,2011,27(12401):33-36
    [139]李文连.有机/聚合物光探测器(PDs).光机电信息,2011,28(32704):1-15
    [140]邹翔,汪莱,裴晓将,等.薄p型层GaN基p-i-n型紫外探测器的反向漏电特性.半导体光电,2011,32(15402):165-167
    [141]安莹,董威.火焰光谱探测器检测用光源设计.应用光学,2011,32(18503):498-504
    [142]陆苗霞.GaN类探测成像器件的研究进展及其成果.科技广场,2011,11203:135-138
    [143]朱杰,麻芃,白云,等.紫外日盲焦平面探测器成像处理系统研制.红外与激光工程,2011,40(19804):690-695
    [144]包西昌,张文静,刘诗嘉,等.平面型GaN p-n结探测器的制备与性能.红外与毫米波学报,2011,3003:246-249
    [145]杨小虎,王淑荣,黄煜,等.基于标准探测器研究标准灯光谱辐照度和漫反射板双向反射分布函数随波长的变化.光学学报,2011,31(35106):139-145
    [146]邢大林,赵曼,唐亮,等.热退火对氮铝镓MSM结构紫外光电探测器性能的影响.长春理工大学学报(自然科学版),2011,3402:154-156+168
    [147]刘建卓,王学进,黄剑波,等.三波段电晕检测光学系统的设计.光学精密工程,2011,1906:1228-1234
    [148]杨永富,富容国,张益军,等.GaN光电阴极表面势垒对电子逸出几率的影响.物理学报,2012,6106:473-478
    [149]杨永富,富容国,马力,等.反射式GaN光电阴极表面势垒对量子效率衰减的影响.物理学报,2012,6112:589-596
    [150]杜晓晴,钟广明,田健.透射式GaN光电阴极在正面光照和背面光照下的量子效率特性研究.真空科学与技术学报,2011,3104:397-401
    [151]高频,王晓晖,杜玉杰,等.NEAGaN光电阴极的制备与评估.红外技术,2011,33(22206):332-335
    [152]李飙,常本康,徐源,等.GaN光电阴极的研究及其发展.物理学报,2011,6008:864-870
    [153]乔建良,常本康,牛军,等NEA GaN和GaAs光电阴极激活机理对比研究.真空科学与技术学报,2009,2902:115-118
    [154]杨铭NEAGaN光电阴极制备以及激活方法研究[博士学位论文].南京:南京理工大学,2010
    [155]刘恩科,朱秉升,罗晋生,等.半导体物理学(第6版).北京:电子工业出版社,2007
    [156]Michael E. Levinshtein, Sergey L. Rumyantsev, Michael S. Shur.杨树人,殷景志,译.先进半导体材料性能与数据手册.北京:化学工业出版社,2003
    [157]虞丽生.半导体异质结物理.北京:科学出版社,2007
    [158]王晓晖,常本康,张益军,等.GaN光电阴极激活后的光谱响应分析.光谱学与光谱分析,2011,31(10):1-4
    [159]谢长坤,徐法强,邓锐,等.GaN(0001)表面的电子结构研究.物理学报,2002,51(11):2606-2611
    [160]T. Mori, T. Ohwaki, Y. Taga, et al. Changes in surface composition of GaN by impurity doping. Thin Solid Films,1996,287:184-187
    [161]杜晓晴,常本康,宗志园,等.NEA光电阴极的表面模型.红外技术,2003,25(1):68-71
    [162]Fisher D G, Enstrom R E, Escher J S, et al. Photoelectron surface escape probability of (Ga, In) As:Cs-O in the 0.9 to 1.6 μm. Journal of Applied Physics,1972,43(9): 3815-3823
    [163]Su C Y, Chye P W, Pianetta P, et al. Oxygen adsorption on Cs covered GaAs (110) surfaces. Surface Science,1979,86:894-899
    [164]Su C Y, Lindau I, Spicer W E. Photoemission studies of the oxidation of Cs identification of the multiple structures of oxygen species. Chemical Physics Letters, 1982,87(6):523-527
    [165]Gao H R. Investigation of the mechanism of the activation of GaAs negative electron affinity photocathodes. The Journal of Science and Technology,1987, A5(4):1295-1298
    [166]Lin L W. The role of oxygen and fluorine in the electron emission of some kinds of cathodes. The Journal of Vacuum Science and Technology,1988, A6(3):1053-1057
    [167]Lu Q B, Pan Y X, Gao H R. Optimum (Cs, O)/GaAs interface of negative-electron-affinity GaAs photocathodes. Journal of Applied Physics,1990,68(2): 634-637
    [168]Clark M G. Electronic structure of the activating layer in Ⅲ-Ⅴ:Cs-O negative-electron-affinity photoemitters. Journal of Physics D:Applied Physics,1975,8: 535-542
    [169]Stocker B J. AES and LEED study of the activation of GaAs-Cs-O negative electron affinity surfaces. Surface science,1975,47:501-513
    [170]Burt M G, HeineV J. Journal of Physics C:Solid State Physics,1978,11:961-969
    [171]G. V. Benemanskaya, D. V. Daineka, G. E. Frank-Kamenetskaya. Changes in electronic and adsorption properties under Cs adsorption on GaAs (100) in the transition from As-rich to Ga-rich surface. Surface Science,2003,523:211-217
    [172]Liu Wenli, Wang Hui, Chang Benkang, et al. A study of the NEA photocathode activation technique on [GaAs(Zn):Cs]:O-Cs model. SPIE,2006,6352(3A):1-7
    [173]杜晓晴,常本康,邹继军.Cs,O激活方式对GaAs光电阴极的影响.真空科学与技术,2006,26(1):1-3
    [174]Spicer W E, Herrera-Gomez. Modern Theory and Applications of Photocathodes. 1993, Proc. SPIE,2022:18-33
    [175]乔建良,常本康,杜晓晴,等.反射式负电子亲和势GaN光电阴极量子效率衰减机理研究.物理学报,2010,59(4):2855-2859
    [176]J. F. Muth, J. D. Brown, M. A. L. Johnson, et al. Absorption coefficient and refractive index of GaN, A1N, and AlGaN alloys. Mater Res. Soc. Symp. Proc.,1999,537:G5.2
    [177]杜晓晴,常本康,宗志园GaAs光电阴极p型掺杂浓度的理论优化.真空科学与技术,2004,24(3):195-198
    [178]Xiaohui Wang, Benkang Chang, Ling Ren, et al. Influence of the p-type doping concentration on reflection-mode GaN photocathode. Applied Physics Letter,2011,98: 082109
    [179]王晓晖,常本康,钱芸生,等.梯度掺杂与均匀掺杂GaN光电阴极的对比研究.物理学报,2011,60:047901
    [180]Zhang Yi-jun, Chang Ben-kang, Yang Zhi, et al. Distribution of carriers in gradient-doping transmission-mode GaAs photocathodes grown by molecular beam epitaxy. Chinese Physics B,2009,18(10):4541-4546
    [181]Zhi Yang, Benkang Chang, Jijun Zou, et al. Comparison between gradient-doping GaAs photocathode and uniform-doping GaAs photocathode. Applied Optics,2007,46(28): 7035-7039
    [182]Niu Jun, Yang Zhi, Chang Ben-Kang. Equivalent method of solving quantum efficiency of reflection-mode exponential doping GaAs photocathodes. Chinese Physics Letters,2009,26(10):104202
    [183]王晓晖,常本康,钱芸生,等.透射式负电子亲和势GaN光电阴极的光谱响应研究.物理学报,2011,60:057902
    [184]Wang Xiao-Hui, Shi Feng, Guo Hui, et al. The optimal thickness of transmission-mode GaN photocathode, Chinese Physics B,2012,21(8):087901
    [185]Munoz M, Huang Y S, Pollak F H, et al. Optical constants of cubic GaN/GaAs(001): Experiment and modeling. J. App. Phys.,2003,93(5):2549-2553
    [186]Nemanich R J, Baumann P K, Benjamin M C, et al. Electron emission properties of crystalline diamond and Ⅲ-nitride surfaces. Applied Surface Science,1998,132:694-703
    [187]Xiaoqing Du, Benkang Chang, Yunsheng Qian, et al. Transmission-mode GaN photocathode based on graded AlxGa1-xN buffer layer. Chinese Optics Letters,2011,9(1): 010401
    [188]Wang Xiao-Hui, Gao Pin, Wang Hong-gang, et al. Influence of the wet chemical cleaning on quantum efficiency of GaN photocathode. Chinese Physics B.2013,22(2): 027901
    [189]K. M. Tracy, W. J. Mecouch, R. F. Daivs, et al. Preparation and characterization of atomically clean, stoichiometric surfaces of n-and p-type GaN (0001). Journal of Applied Physics,2003,94(5):3163-3172
    [190]S. W. King, J. P. Barnak, M. D. Bremser, et al. Cleaning of A1N and GaN surfaces. Journal of Applied Physics,1998,84(9):5248-5260
    [191]John F. Moulder. Handbook of X-ray Photoelectron Spectroscopy. Eden Prairie, MN: PERKIN-ELMER,1992
    [192]Xiaohui Wang, Zhonghao Ge, Guanghui Hao, et al. Comparison of First and Second Annealing GaN Photocathode.2012 Photonics Global Conference,2012
    [193]K. A. Elamrawi, M. A. Hafez, H. E. Elsayed-Ali. Atomic hydrogen cleaning of InP(100) for preparation of negative electron affinity photocathode. Journal of Applied Physics,1998,84(8):4568-4572
    [194]Masamichi Yamada, Yuichi Ide. Anomalous behaviors observed in the isothermal desorption of GaAs surface oxides. Surface Science,1995,339:L914-L918
    [195]D. A. Allwood, N. J. Mason, P. J. Walker. In situ characterization of Ⅲ-Ⅴ substrate oxide desorption by surface photo absorption in MOVPE. Materials Science and Engineering B,1999,66:83
    [196]Du Xiaoqing, Chang Benkang. Angle-dependent X-ray photoelectron spectroscopy study of the mechanisms of "high-low temperature" activation of GaAs photocathode. Appl. Surf. Sci.,2005,251 (1-4):267-272
    [197]邹继军,陈怀林,常本康.GaAs光电阴极表面电子逸出概率与波长关系的研究.光学学报,2006,26(9):1400-1403
    [198]Xiaohui Wang, Benkang Chang, Du Yujie, et al. Quantum efficiency of GaN photocathode under different illumination. Applied Physics Letter,2011,99:042102
    [199]刘金元,薛凤仪.紫外和真空紫外光谱辐射标准灯—氘灯.测量与设备,2002,3:19-21
    [200]A. Riedo, P. Wahlstrom, J. A. Scheer, et al. Effect of long duration UV irradiation on diamondlike carbon surfaces in the presence of a hydrocarbon gaseous atmosphere. Journal of Applied Physics,2010,108:114915
    [201]R. D. Saunders, W. R. Ott, J. M. Bridges. Spectral irradiance standard for the ultraviolet:the deuterium lamp. Applied Optics,1978,17(4):593-600
    [202]J. M. Bridges. Development and calibration of UV/VUV radiometric sources. SPIE, 1992,1764:262-270
    [203]Jijun Zou, Benkang Chang, Huailin Chen, et al. Variation of quantum yield curves of GaAs photocathodes under illumination. Journal of Applied Physics,2007,101:033126
    [204]Zhang Yi-Jun, Zou Ji-Jun, Wang Xiao-Hui, et al. Comparison of the photoemission behaviour between negative electron affinity GaAs and GaN photocathodes. Chinese Physics B,2011,20(4):048501

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700