用户名: 密码: 验证码:
干气密封非线性动力稳定性分析及其响应优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干气密封是一种新型的非接触式机械密封,它是现代流体动压润滑理论在密封技术领域的最新应用成果。由于密封间隙仅为3~5μm,极易受到外界干扰、结构参数等影响,极有可能导致动静密封环间的干摩擦或泄漏量增大,因而保证气膜动态稳定性是干气密封可靠运行的关键。气体端面密封的稳定性与其动力学特性密切相关,其动力学特性一直是国内外研究的技术难点。
     干气密封系统本身是一非线性系统,其动力学特性应具有非线性,以螺旋槽干气密封为研究对象,对气体润滑气膜的非线性动力稳定性进行了研究。从轴向和角向两个方面来研究干气密封槽内气体的非线性动力学行为,目的是寻求密封螺旋角的稳定范围,对干气密封设计与优化具有重要的理论指导意义。
     从N-S方程出发,基于微尺度流动中的滑移边界条件,推导了螺旋槽内稳态微尺度流动场的非线性雷诺方程。并应用PH线性化方法,将非线性偏微分方程转化为线性偏微分方程,再引入复函数将复常数偏微分方程又变为两个线性实常数微分方程组,并采用小参数迭代法进行求解,近似求得了螺旋槽内气体动压分布的解析解。继而可求出气体流速分布及泄漏量的大小,得到了轴向微扰下气膜反作用力的增量,再利用复数和迭代法对静态下气膜边值问题进行求解,获得了气膜轴向、角向刚度和阻尼的解析解,并通过对样机的分析,得到了轴向、角向刚度和阻尼随压力和转速变化的规律,为优化设计提供了依据。
     建立了轴向振动下气膜—密封静环系统动力学模型,利用程序求解了轴向振动方程,获得了螺旋槽结构参数响应的振动相轨图、Poincare’映射图和时间历程图,进而分析了螺旋槽干气密封系统轴向非线性动力学行为。通过特例验证了模型的正确性,进而通过选择合理的螺旋槽结构参数可以控制混沌。以密封静环为振子建立了气膜—密封环流固耦合系统轴向振动的计算模型,进而利用龙格—库塔法求解了振动方程,获得了不同螺旋角和槽深响应的振动相轨图和时间历程图,并分析了螺旋角和槽深对振动位移的影响。通过实例得到了轴向动态响应优化的最佳值,和实验值基本一致,为干气密封优化设计奠定理论基础。
     建立了角向振动下气膜—密封环系统的动力学模型,应用微扰法和龙格—库塔法求解气膜角向刚度、临界转动惯量和角向摆动的二维振动方程,获得了密封系统稳定时的密封结构参数范围,并分析了最佳稳定点和临界点振动响应。获得了密封系统稳定与失稳时的密封结构参数范围,并分析了最佳稳定点和临界点振动响应。最佳稳定点振动响应为准周期运动,而临界点振动响应发生了混沌运动。可通过该程序进行角向摆动分析,获得螺旋角的稳定范围,为干气密封的优化设计提供理论指导。
     在成都一通密封有限公司的3000转/分密封试验台上对干气密封样机进行了试验研究。完成了气体端面密封试验台的测试系统的总体方案设计、测试系统的硬件配置。测试了泄漏量、功耗、气膜轴向刚度和密封环轴向振动位移,给出了气体端面密封试验的测试结果,并与理论计算近似值比较,进行误差分析。试验测出数值与计算结果较为吻合,表明所建立的螺旋槽干气密封气膜密封环系统的动力学和数学模型是正确的,所编制的近似计算程序是可行的。
Dry gas seal is a new type of non-contact mechanical seal,it is the latest technologyapplication results of modern fluid dynamic pressure lubrication theory in the Sealingtechnology. Because of gaseous film gap is only3~5μm,it is easily affected by outsideinterference and structural parameters,Most likely lead to dry friction between the sealring or increased leakage,So it is the key of gas seal to keep the dynamic stability of gasfilm and seal rings. The stability of the gas seal is closely related to its dynamics,dynamics characteristics has been the study of technical difficulties at home and abroad.
     Dry gas seal system itself is a nonlinear system,dynamics characteristics should benonlinear,the paper takes spiral groove dry gas seal as research project,nonlineardynamic stability of gas film lubrication has been studied. Nonlinear dynamic behavior ofgas has been studied from both axial and angular,the aim is to seek the stability range ofsealing spiral angle,it has important theoretical significance in dry gas seal design andoptimization.
     Based on the N-S equation and slip boundary condition,a nonlinear Reynoldsequation for a steady-state and micro-scale flow field was derived.Using PHlinearization,the nonlinear partial differential equation can be transformed into the linearpartial differential equation,and then using complex function it can be transformed intotwo linear differential equation again.The problem was solved by using small parameteriterative method,and the approximate function expression of gas dynamic pressure in thespiral groove was obtained,and then the solution of flow velocity and spillage were foundout,the film reaction increment of axial perturbation has been obtained,and then usingcomplex function and iterative method to solved static gas film boundary value problem,the approximate function expression of gas film stiffness and damping was obtained,andthrough the analysis of the prototype, the law of stiffness and damping with the variationof pressure and speed was obtained,it could be provide a basis for optimizing the design.
     Dynamical model on a system of gas film and static seal ring subjected to axialvibration was established,and the axial vibration equation was solved by using theprogramme,then the vibration phase chart,the Poincare' mapping chart and the time history chart responded by structural parameter of the spiral groove were obtained,andaxial nonlinear dynamic behavior on spiral grooved gas seal system was discussed. Thecorrectness of the model was verified by the special case,and then the chaos can becontrolled by selecting reasonable structure parameters of the spiral groove. Acomputation model on the fluid-solid coupling system of gas film and seal rings subjectedto axial vibration was established by taking static seal ring as the oscillator,the vibrationequation was solved by using the Runge—Kutta algorithm,then the vibration phase chartand the time history chan responded by the different spiral angles and grooved depth wereobtained,and the effect of spiral angles and grooved depth on vibration displacement wasanalysed. The optimal value was obtained by example which are in agreement with theexperimental data,which provides the theoretical basis on dynamical optimization designof gas seals.
     The dynamic model of the angular wobbly of the gas film and seal ring wasestablished,and the gas film angular rigidity,critical moment of inertia and thetwo-dimensional angular wobbly vibration equation were solved by using the perturbationmethod and the Runge-Kutta method,then the seal structure stability and instabilityparameters were obtained,and the vibratory response of best stability point and criticalpoint were analyzed. The vibratory response of best stability point is quasi-periodicmotion,but response of critical point is chaotic motion. The program can be used toanalysis on angular wobbly,and then to obtain stable range of the spiral angles,whichprovides the theoretical guidance on optimization design of dry gas seals.
     The experimental investigation of dry gas seal prototype was conducted on the3000r/min sealing test device in ChengDu YiTong Seal Co.,Ltd. The research finishedoverall plan of instrumentation system and hardware configuration,tested leakage,powerlose,gaseous film rigidity and sealing ring axial vibration displacement,obtained testresults and analyzed error between test and calculation data. Comparing some data fromexperiments with that of approximate calculation,the results show that dynamical andmathematical model on a system of gas film and seal ring of the spiral groove dry gas sealis validated correctly,and the developed program of approximate analysis method ispracticable.
引文
[1] Fort J,Jehl J. Magnetic Bearings and Dry Seals Improve Compressor Operation [J].Hydrocarbon Processing,October1988:53-55
    [2] Fischbach M J. Dry Seal Applications in Centrifugal Compressors [J]. HydrocarbonProcessing,1989,68(10):47-51
    [3]曹登峰,宋鹏云,李伟,赵越.螺旋槽气体端面密封动力学研究进展[J].润滑与密封,2006(5):178-182
    [4] Josef Sedy. Improved Performance of Film-Riding Gas Seals Through Enhancement [J].ASLE Transaction,1967,23(1):35-44
    [5] Carmody C.Testing and repair options for critical dry-gas seal: Updates.[J].HydrocarbonProcessing,2011,90(5):63-69
    [6] Ruan Bo. Numerical Modeling of Dynamic Sealing Behavior of Spiral Groove Gas FaceSeals[C]. Presented at the STLE/ASME Tribology Conference, San Francisco, CA,October22-24,2001
    [7] Mi1ler B,Green I. On the Stability of Gas Lubricated Triboelements Using the StepJump Method[J]. ASME J Lubri,1997,119(1):193-199
    [8] Mi1ler B,Green I. Constitutive Equations and the Correspondence Principle for theDynamics of Gas Lubricated Triboelemcnts[J]. ASME J Tribol,1998,120:345-352
    [9] Zirkelback N, San Andres L. Effect of Frequency Excitation on Force Coefficients ofSpiral Groove Gas Seals[J]. ASME J Tribol,1999,121:853-863
    [10] Zirkelback N. Parametric Study of Spiral Groove Gas Face Seals[J]. J Tribol Trans,2000,43:337-343
    [11]刘雨川.端面气膜密封特性研究[D].北京:北京航空航大大学,1999
    [12]李双喜,蔡纪宁,陈罕,等高速螺旋槽气体密封轴向微扰的有限元分析[J].北京化工大学学报,自然科学版,2003,30(1):52-56
    [13] Green I,Roger M. A Simultaneous Numerical Solution For the Lubrication andDynamic Stability of Noncontacting Gas Face Seals[J]. ASME J Tribol,2001,123(4):388-394
    [14] Mi1ler B,Green I. Numerical Technique for Computing Rotor Dynamic Properties ofMechanical Gas Face Seals[J].ASME J Tribol,2002,124:755-761
    [15]张伟政,俞树荣,丁雪兴,等.螺旋槽干气密封稳态微尺度流动场的动压计算[J].兰州理工大学学报,2006(6):72-75
    [16]丁雪兴,王悦,张伟政,等.螺旋槽干气密封润滑气膜角向涡动的稳定性分析[J].北京化工大学学报,2008,35(2):7-11
    [17]丁雪兴,俞树荣,张伟政,等.螺旋槽干气密封槽形参数的协调优化[J].力学与实践,2007,29(3):25-29
    [18]丁雪兴,陈德林,张伟政,等.螺旋槽干气密封微尺度流动场的近似计算及其参数优化[J].应用力学学报,2007,24(3):425-428
    [19]徐小峰,张文.一种非稳态油膜力模型下刚性转子的分叉和混沌特性[J].振动工程学报.2000,13(2):247-250
    [20]杨金福,刘占生,于达仁,解永波.滑动轴承非线性动态油膜力及稳定性研究[J].动力工程,2004,24(4):501-504
    [21]孙保苍,周传荣.不平衡转子-轴承系统非线性行为研究[J].振动与冲击,2003,22(2):85-89
    [22]吕延军,张永芳,刘恒,虞烈.滑动轴承-平衡转子系统非线性动力行为[J].润滑与密封,2006(2):6-9
    [23]陈予恕,孟泉.非线性转子轴承系统的分叉[J].振动工程学报,1996,9(3):266-275
    [24]陈予恕,丁千,孟泉.非线性转子的低频振动失稳机理分析[J].应用力学学报,1998,15(1):113-117
    [25] Etsion I. Experimental Observation of the Dynamic Behavior of NoncontactingConed-face Mechanical Seals[J]..ASLE Trans,1984,27(3):263-270
    [26] Kollinger R, et al. Theoretical and Experimental Investigation into the RunningCharacteristics of Gas-lubricated Mechanical Seals[C].12th Intl Conf on FluidScaling,BH RA,1989:307-322
    [27]徐万孚.螺旋槽干运行非接触气体密封的理论分析与试验[J].机械工程学报,2003,39(4):124-127
    [28]陈铭,张秋翔,蔡纪宁,等.气体端面密封试验设备[J].流体机械,2005,33(2):14-16
    [29]关家麒.约翰·克兰28型干气密封系列产品介绍[J].流体机械,1995,23(4):34-37
    [30] A.Pannar. Designing Out Distortion Extends Mechanical Face Seal Life Design[J],Engineering,1990,46(8):28-36
    [31] N.M.Wallace. Recent Development in High Duty Seals,Flexibox,Manchester,England,1983
    [32] Fischbach M J. Dry Seal Applications in Centrifugal Compressors [J]. HydrocarbonProcessing,1989,68(10):47-51
    [33]赵亚萍.双向干气密封的研制情况及技术分析[J].流体机械,1996,24(4):46-47
    [34]王玉明.鼎名密封[产品报告].天津鼎名密封有限公司,2001
    [35]王玉明,马将发,陆文高.高速透平压缩机的轴端密封[J].石油化工设备技术,2000,21(4):62-65
    [36]王超,尹宏伟.循环氢压缩机干气密封的改造和应用[J].石油化工设备技术,2001,22(3):50-61
    [37]潘春华.干气密封在合成气压缩机中的应用[J].风机技术,2001(1):12-15
    [38]刘艳梅,王海宁等.2MCL606型富气压缩机的轴封改造[J].流体机械,2002(10):298-301
    [39]李桂芹,王玉华.压缩机干气密封基本原理及使用分析[J].风机技术,2000(1):19-23
    [40]张珊.机械密封环端面流体动压槽的加工方法[J].流体机械,2001,28(3):38-41
    [41]杨惠霞,王玉明.泵用干气密封技术及应用研究[J].流体机械,2005,33(2):1-4
    [42]周卫.双端面干气密封在富气压缩机上的应用[J].流体机械,2002,30(11):40-43
    [43]方卫东,冯辉霞,孔文荣.干气密封在制冷压缩机上的应用[J].石油化工设备,2004,33(2):60-62.
    [44]杨富来.干气密封技术及实际应用[J].石油化工设备技术,2004,25(3):63-66
    [45]李晓忠.高压氨泵的轴封改造[J].石油化工设备技术,2004,25(2):59-61
    [46]赵佰超.离心压缩机干气密封研制与应用[J].化工设计,2002,12(5):27-31
    [47]余金秀.干气密封离心泵上的应用[J].流体机械,2002,30(8):37-39
    [48]郝木明,胡丹梅,杨宝亮.泵用零溢出非接触式机械密封[J].流体机械,2002,30(9):13-16
    [49]孟昭月.低温乙烯泵用干气密封的研制及应用[J].黑龙江石油化工,2001,12(4):35-37
    [50]喻宁,吕碧超.富气压缩机用干气密封设计和制造[J].流体机械,2003,31(9):11-14
    [51]田宏光.离心氢压机螺旋槽干气密封技术及其应用研究[D].大连:大连理工大学,2003.
    [52]谭清德.28AT型干气密封装置的应用研究及其改进[D].成都:四川大学,2004.
    [53]杜志永.大型离心压缩机密封技术研究[D].大连:大连理工大学,2003.
    [54]郝木明,苏玉柱.上游泵送机械密封在液化汽泵上的应用研究[J].润滑与密封,2001(4):57-59
    [55]黄文斌,刘文涛.富气压缩机干气密封的改造及应其用[J].石油化工设备技术,2002,23(4):53-56
    [56]陈秀琴,朱维兵,王和顺.干气密封技术的研究现状及发展趋势[J].液压与气动,2008,28(2):52-56
    [57]张金凤,袁寿其,曹武陵.机械端面密封技术研究现状及发展趋势[J].流体机械,2004,32(10):26-31
    [58]于新奇,王振辉,蔡仁良.动压型机械密封技术的应用和发展[J].流体机械,2005,33(8):28-32
    [59]蒋小文.螺旋槽干气密封数值模拟及其槽形参数优化[D].南京:南京工业大学,2004
    [60]顾永泉.机械密封实用技术[M].北京:机械工业出版社,2001
    [61]顾永泉.流体动密封[M].山东:石油大学出版社,1990
    [62]吴望一.流体力学[M].北京:北京大学出版社,1995
    [63] O.平克斯,B.斯德因李希特.流体动力润滑理论[M].北京:机械工业出版社,1980,1-26
    [64]张鹏顺,陆思聪.弹性流体动力润滑及其应用[M].北京:高等教育出版社,1995,12-26
    [65]陈伯贤.流体润滑理论及其应用[M].北京:机械工业出版社,1991,1-3
    [66]郝木明.机械密封实用技术[M].北京:中国石化出版社,2010
    [67]蔡仁良,顾伯勤,宋鹏云.过程装备密封技术[M].北京:化学工业出版社,2002,8-12
    [68]林兆福.气体动力学[M].北京:北京航空航天大学出版社,1988,4-7
    [69]顾建中.热学教程(修订本)[M].北京:高等教育出版社,1961,85-89
    [70]耿洪滨.新编工程材料[M].哈尔滨:哈尔滨工业大学出版社,2000,231-232
    [71]蔡作乾,王琏,杨根.陶瓷材料辞典[M].北京:化学工业出版社,2002
    [72]丁雪兴.干气密封螺旋槽润滑气膜的稳、动态特性研究[D].兰州:兰州理工大学,2008:14-65
    [73]钱伯章.离心式压缩机干气密封和磁力轴承及其应用[J].化工机械,1991,18(4):245-249
    [74]彭建.螺旋槽干气密封的优化设计[J].流体机械,1995,23(3):9-11
    [75]蒋小文.螺旋槽干气密封数值模拟及其槽形参数优化[D].南京:南京工业大学,2004
    [76] Marco Taliv C.Faria. An efficient finite element procedure for analysis of high-speedspiral groove gas face seals[J].Journal of tribology,2001,123:205-210
    [77]刘斌,蔡纪宁,张秋翔等.螺旋槽端面干气密封的参数研究[J].北京化工大学学报,2002,29(5):56-60
    [78] Gabriel R P. Fundamentals of spiral Groove non-contacting Face seals[J].LubricationEngineering,1994,50(3):215-224
    [79]王彤,徐洁,谷传纲.微尺度效应对螺旋槽干气密封的影响[J].工程热物理学报,2004,25(增刊):39-42
    [80]德洛芝道维奇(В.Н.Дроздович).动压气浮轴承[M].郑丽珠译.北京:国防工业出版社,1982
    [81]杜兆年,丁雪兴,俞树荣,等.轴向微扰下干气密封螺旋槽润滑气膜的稳定性分析[J].润滑与密封,2006,(10):127-130
    [82] R. J. AIMONE, W. E. FORSTHOFFER, R. M. SALZMANN. Dry gas seal systems:Best practices for design and selection, which can help prevent failures[J].Turbomachinery International,2007,48(1):20-21
    [83] N. G. Krivshich, S. A. Pavlyuk, S. A. Kolesnik, et al. Dry gas seal systems forequipment with slow shaft rotation[J].Chemical and Petroleum Engineering,2007,43(11-12):676-680
    [84]丁雪兴,张伟政,俞树荣,等.螺旋槽干气密封系统非线性动力学行为分析[J].中国机械工程,2010,9:1083-1087
    [85]张伟政,俞树荣,丁雪兴,等.螺旋槽干气密封系统轴向振动响应及结构优化[J].排灌机械工程学报,2010,28(3):228-232
    [86]刘雨川,徐万孚,王之栎,等.气膜端面密封角向摆动自振稳定性[J].机械工程学报,2002,38(4):1-6
    [87]徐万孚,刘雨川,王之栎,等.端面流体膜密封角向摆动自振产生及其半频特性的阐释[J].机械工程学报,2002,38(9):43-46
    [88]陈铭,张秋翔,蔡纪宁等.气体端面密封试验设备[J].流体机械,2005,33(2):14-16
    [89]钱恩.气体端面密封试验台的测试系统[D].北京:北京化工大学,2006
    [90]岑汉钊.化工机械测试技术[M].北京:化学工业出版社,1999
    [91]张发启.现代测试技术及应用[M].西安:西安电子科技术出版社,2005
    [92]汉泽西.现代测试技术[M].北京:机械工业出版社,2006
    [93]魏龙,顾伯勤,孙见君.机械密封性能参数的测量技术[J].流体机械,2003,31(3):21-23
    [94] Mayer E.机械密封[M].姚兆生,译.北京:化学工业出版社,1981
    [95]宋鹏云,陈匡民,董宗玉等.“零压差零泄漏”液体润滑螺旋槽机械密封性能的实验研究[J].流体机械,2000,28(7):11-13
    [96]魏龙,顾伯勤,孙见君等.机械密封端面摩擦特性参数及其测试技术[J].润滑与密封,2006(11):198-202
    [97]王和顺,陈次昌,黄泽沛,等.机械密封端面接触状测控技术[J].润滑与密封,2005(3):150-15
    [98]李鲲,吴兆山,姚黎明.机械密封的功率消耗试验及测量方法[J].润滑与密封,2001(6):49-50
    [99] Digard J,Gentile M.低压机械密封润滑状况的试验研究[C].国际流体密封会议文集.北京:机械工业出版社,1991,112-117
    [100]李宝彦,李云鹏,张建中.机械密封端面流体膜压膜厚的测量[J].大庆石油学院学报,1990,14(4):50-54
    [101]张家犀,左孝桐.机械密封端面膜压的试验研究[J].流体工程,1988,16(2):5-12
    [102] Batch B A,Iny E H. Pressure Generation in Radial-face Seal [C]. Proc2ndICFS,Paper F4,1964
    [103]余峰,刘学军.虚拟仪器及其应用[J].电机电器技术,2002,3:7-10
    [104]胡飞.面向仪器与测控系统的计算机软件应用平台技术现状与发展[J].测控技术,2001,20(4):34-36
    [105]张继革,段慧玲,彭慧芬.抽空状态下机械密封端面状况的实验研究[J].石油机械,1999,27(11):20-22
    [106]申忠如,郭福田,丁晖.现代测试技术与系统设计[M].西安:西安交通大学出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700