用户名: 密码: 验证码:
能量转换材料的光子协同增强效应与结构相调制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能量转换材料广泛应用于光学、磁学、电学等科学领域。光致发光能量转换材料的研究关系着激光晶体材料、太阳能电池、生物荧光标记、荧光显示材料、长余辉发光材料等关键技术领域,其能量转换机制及晶体场调节等对发光中心的影响是制约发光特征和效率的主要因素。为了提高光致发光能量转换材料的性能,我们提出了紫外光和红外光的光子协同增强效应的物理模型,设计了相关实验,研究了该机制的可行性;为了探索内部电荷再分布对能量转换材料的合成机理和光学性质的影响,我们研究了金属离子掺杂对能量转换材料的结构相和荧光调制。本论文的具体研究内容如下:
     1.我们介绍了稀土掺杂能量转换材料的种类、特征、应用以及制备方法,光伏电池的发展状况以及从光学角度提高光伏效率的途径。
     2.我们提出了光子协同增强效应机制,并合成了Er3+掺杂的YbF3和NaGdF4磷光体。在紫外光和红外光的单模和双模激发下,研究分析了这两种磷光体的稳态和瞬态荧光光谱的变化趋势。结果发现,在369nm+980nm双模共激发下,紫外光和红外光的光子协同增强效应在Er3+掺杂的YbF3中能够实现,并获得了最大为10.43%的656nm红光的绝对增强。在370nm (或442nm)+1.54μm双模共激发下,在Er3+掺杂的NaGdF4中实现了紫外光(或蓝光)和红外光的协同效应,获得了最大为42.2%的658nm红光的绝对增强。通过分析红外光的光子数的变化和红光的荧光寿命的变化,我们证明了光子协同增强效应的存在性。该工作为解决光电转换过程中红外光的子带损失和紫外光的热损失问题提供了新的思路。
     3.我们提出了在蓝光激发下实现白光LED的设想,制备了Eu3+/Ho3+掺杂的TGNL玻璃,研究了该玻璃在蓝光激发下的瞬态和稳态荧光光谱。在458nm蓝光激发下,从Eu3+和Ho3+掺杂的TGNL玻璃的发射谱在1931-CIE(X, Y)色坐标上的染色点可以看出,荧光的颜色从绿光跨过黄光进入红光区,实现了颜色的宽范围调节。从能量传递角度,我们分析了Eu3+-Ho3+体系的能量转移对多色荧光发射的调节作用。该工作为解决目前商用YAG:Ce3+白光LED荧光粉的显色指数比较差的问题提供了新的方法。
     4.我们通过控制合成样品的形貌控制其光学性质,探索了纳米盘、微米管、纳米棒三种形貌对单一Na1.23Ca0.12Y1.28Er0.24F6磷光体的光致发光和光电性质的影响。我们用水热法合成了Na1.23Ca0.12Y1.28Er0.24F6纳米盘、微米管、纳米棒,在980nm激发下探索了不同形貌的六角相Na1.23Ca0.12Y1.28Er0.24F6的荧光发射,发现Na1.23Ca0.12Y1.28Er0.24F6纳米盘、微米管、纳米棒发射出蓝光、红黄光、红光多色荧光。同时在980nm激发下,Na1.23Ca0.12Y1.28Er0.24F6纳米盘、微米管、纳米棒也表现出新颖的内部光电效应。我们实现了通过调制Na1.23Ca0.12Y1.28Er0.24F6的形貌控制多色荧光发射和内部光电效应,并给出了相应的物理解释。
     5.我们从晶体内部电荷的变化调制荧光材料的结构和光谱出发,研究了电荷再分布对氟化物材料的形貌、尺寸、相结构和光学性质的调制作用。我们用水热法合成了Bi3+, Al3+, Gd3+, Yb3+掺杂的BaF2和SrF+2微纳晶体,Pr3掺杂的NaYF4:18%Yb3+/2%Er3+,Ca2+和Er3+掺杂的NaGdF4晶体,通过SEM、TEM、能谱和光谱的分析,研究了掺杂前后的形貌、尺寸、相结构和光学性质的变化情况,并利用密度泛函理论计算出了金属离子掺杂对BaF2和SrF2晶胞的电荷差分变化。理论结合实验提出了电荷再分配对氟化物形貌、相结构的调制原理。
     6.我们提出了在一层薄膜中同时实现减反和转光双效作用的设想,用PS小球模板法制备了Y3+2O3:Er多孔金字塔阵列,实现了孔径尺寸可控。我们研究了Y+2O3:Er3多孔金字塔阵列的透射谱和在1.538μm红外光激发下的荧光光谱,结果发现孔径对阵列的光透过率有调节作用,当孔径为420nm时样品达到87%~96%最佳的透光率。此外,Y2O3:Er3+多孔金字塔阵列还能够把1.538μm红外光转化为绿光、红光、红外光。通过Li+离子的掺杂,我们进一步调节了Y32O3:Er+多孔金字塔阵列的荧光发射,使红光增强了19倍,红外光增强了3倍。这种具有减反/转光双功能度的Y2O3:Er3+多孔金字塔阵列可能用作太阳能电池的光学层材料。
     最后,我们总结了本论文的研究工作并提了多频区多光子协同增强,以及协同转光/陷光双效的纳米组装体的展望。
Energy-converted materials are used widely in optics, magnetics, and electricity fields. The studyof photoluminescence energy-converted materials involves several key fields, such as laser materials,solar cells, biological fluorescence label, display materials, and long afterglow phosphor and so on.The energy transfer mechanism in the photoluminescence process, and the influence of crystal fieldon luminescent centers, are the main factors to suppress high fluorescence quantum yield. To enhanceluminescent efficiency, we proposed a physical model of the synergistic effect of the ultraviolet andinfrared photons, and designed relevant experiments to explore the possibility of the proposedphysical model. To explore the influence of redistribution of internal charges on the synthesismechanism and optical properties, we studied the phase structure and fluorescence modifications ofmetal ions doped energy-converted materials. The thesis is organized as follows:
     1. The species, application feature, and preparation methods of the Rare-earth ions dopedenergy-converted materials were introduced. We introduced the development status of solar cells, andpropose some methods to increase photovoltaic effect through optical means.
     2. We proposed the synergistic effect of ultraviolet and infrared photons. We synthesized Er3+dopedYbF3and NaGdF4phosphors to check the possibility of synergistic effect. The change trend of thetransient and steady-state spectra was studied by employing single-mode and dual-mode excitationsources. The synergistic effect of ultraviolet and infrared photons was realized in the Er3+doped YbF3phosphors under369nm and980nm dual-mode excitation. The maximal absolute enhancement rateof658nm red emission was10.43%. The synergistic effect of ultraviolet and infrared photons wasrealized in the Er3+doped NaGdF4phosphors under370nm (or442nm) and1.54μm dual-modeexcitation. The maximal absolute enhancement rate of658nm red emission was42.2%. Thepossibility of synergistic effect was proved through analyzing the number of infrared photons andlifetimes of the red emission. The photon synergistic effect is a novel method to reduce thesub-bandgap and thermalization losses caused by ultraviolet and infrared photons in photovoltaicconversion.
     3. We offered an idea to obtain white light LED with blue excition source. We synthesizedEu3+/Ho3+doped TGNL glass, and analyzed the transient and steady-state spectra of the glass. Theemission spectra of the glass can be converted to the Commission International de I’Eclairage (CIE)1931chromaticity diagram. The luminescent color changes from green, through yellow, and finally to red. As a result, some color-tunable luminescence emissions were obtained. We thought thatcolor-tunable luminescence emissions were modified by an energy transfer from Eu3+to Ho3+ions.This work offeres a new method to resolve the poor color rendering index of YAG:Ce3+phosphors.
     4. We realized to control optical properties by controlling shapes of some phosphors, and exploredthe influence of specific morphological shapes of nanodisks, nanorods and microtubes on thephotoluminescence and inner photoelectric effect of single Na1.23Ca0.12Y1.28Er0.24F6phosphor. Wesynthesized hydrothermally hexagonal Na1.23Ca0.12Y1.28Er0.24F6nanodisks, microtubes, and nanorods,and obtained luminescence emissions by exciting nanodisks, microtubes, and nanorods with a980nmlaser. As a result, the nanodisks, microtubes, and nanorods emited blue, orange, and red luminescence,respectively. Additionaly, the Na1.23Ca0.12Y1.28Er0.24F6nanodisks, microtubes, and nanorods alsoshowed inner photoelectric effect behaviors under980nm excitation. Simultaneous control ofhomochromatic luminescence and inner photoelectric effect were achieved by modifyingmorphological shapes of single Na1.23Ca0.12Y1.28Er0.24F6phosphor.
     5. We explored the modification of redistribution of internal charges on the shape, phase, structure,and optical properties. We synthesized hydrothermally Bi3+, Al3+, Gd3+, or Yb3+doped BaF2and SrF2,Pr3+doped NaYF4:18%Yb3+/2%Er3+, and Ca2+or Er3+doped NaGdF4. The change trend of shape,phase, structure, and optical properties of above phosphors was obtained by analyzing the images ofSEM, TEM, EDS, and spectra. The electron density difference of metal ions doped BaF2and SrF2wascalculated according to the density functional theory. We proposed a modulation principle of shape,phase, and structure of the BaF2and SrF2crystals induced by the redistribution of internal charges.
     6. We offered an idea to realize simultaneously anti-reflection and light-conversion in single thinfilm. We synthesized Y2O3: Er3+porous pyramid arrays by different templates of the polystyrenecollidal microsphere, in which the micropore sizes can be controlled. The transmittance spectra ofY2O3:5%Er3+porous pyramid arrays showed that the transmission ratio could be controlled byadjusting micropore diameter sizes. The fluorescence spectra of porous pyramid arrays showed that1.538μm infrared light was upconverted to green, red and infrared luminescence. The intensity of redemission band of Y+2O3:5%Er3,5%Li+pyramid arrays was about19times greater than that of thesample without Li+. The intensity of infrared emission band is about3times greater than that of thesample without Li+. The Y2O3:5%Er3+porous pyramid arrays with the roles of anti-reflection andlight-conversion could be used as optical coating of the solar cells.
     At last, we gave a summary of the thesis and prospect of future works of multi-photons synergisticeffect and bifunctional nanoparticle with the anti-reflection and light-conversion functions.
引文
[1] B.R. Judd, Optical Absorption Intensities of Rare-Earth Ions, Phys. Rev.,1962,127(3):750-761.
    [2] G.S. Ofelt, Intensities of Crystal Spectra of Rare-Earth Ions, J. Chem. Phys.1962,37:511-520.
    [3]刘书珍,洪广言,国内外灯用稀土三基色荧光粉的剖析:(四)稀土三基色荧光粉的结构分析,发光快报,1995,4:14-18.
    [4] S. Ekambaram, K.C. Patil, Synthesis and properties of Eu2+activated blue phosphors, J. AlloysCompd.,1997,248:7–12.
    [5] C. Guo, L. Luan, X. Ding, F. Zhang, F. G. Shi, F. Gao, L. Liang, Luminescent properties ofSr5(PO4)3Cl:Eu2+, Mn2+as a potential phosphor for UV-LED-based white LEDs, Appl. Phys. B.,2009,95(4):779-785.
    [6] Y.X. Pan, M.M. Wu, Q. Su, Comparative investigation on synthesis and photoluminescence ofYAG:Ce phosphor, Mater. Sci. Eng. B,2004,106:251-256.
    [7] H.L. Li, N. Hirosaki, R.J. Xie, T. Suehiro, M. Mitomo, Fine yellow a-SiAlON:Eu phosphors forwhite LEDs prepared by the gas-reduction–nitridation method, Sci. Technol. Adv. Mater.,2007,8:601–606.
    [8] J.M. Zeng, Y.H. Kim,Y.F. Chen, Synthesis and Luminescent Properties of M2P2O7:Eu3+(M=Ca,Sr, Ba) Phosphors, Adv. Mater. Res.,2012,399-401:978-981.
    [9] W. Chen, J.O. Malm, V. Zwiller, R. Wallenberg, J.O. Bovin, Size dependence of Eu2+fluorescencein ZnS:Eu2+nanoparticles, J. Appl. Phys.2001,89:2671-2675.
    [10] A.N. Georgobiani, V.B. Gutan, V.I. Demin, S.V. Semendyaev, Luminescence and Optical-Memory model of SrAl2+2O4:Eu2+,Dy3+and Sr4Al14O25:Eu,Dy3+, Chem. Mater. Sci.,2009,45(11):1289-1294.
    [11] Y.H. Wang, F. Li, Synthesis of BaAl12O19:Mn2+nanophosphors by a reverse microemulsionmethod and its photoluminescence properties under VUV excitation, J. Lumin.,2007,122-123:866–868.
    [12] R.S. Yadav, S.K. Pandey, A.C. Pandey, BaAl12O19:Mn2+green emitting nanophosphor for PDPapplication synthesized by solution combustion method and its Vacuum Ultra-VioletPhotoluminescence Characteristics, J. Lumin.,2011,131(9):1998–2003.
    [13] Y.J. Chen, G.M. Qiu, X.J. Geng, Y. Yang, S. Shi, H. Wang, Z.Q. Zhang, Study on Red Long-Time Luminescent Material Y2O2S:Eu, M (M=Mg, Ca, Sr, Ba), J. Rare Earths,2007,25:113-116.
    [14] P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, G. Huber, Efficient diode-pumped laser operation of Tm:Lu2O3around2μm, Opt. Lett.,2011,36:948-950.
    [15] T. Taira, W.M. Tulloch, R.L. Byer, Modeling of quasi-three-level lasers and operation of cwYb:YAG lasers, Appl. Opt.,1997,36:1867-1874.
    [16] H.H. Zenzie, T.M. Pollak, E.P. Chicklis, K.L. Schepler, Laser Emission at679.8-nm in Sm2+:BaMgF4, Advanced Solid State Lasers (ASSL) Williamsburg, Virginia October26,1987PosterSession (TuD),150-153..
    [17] W. Chewpraditkul, M. Moszynski, Scintillation Properties of Lu3Al5O12, Lu2SiO5and LaBr3Crystals Activated with Cerium, Phys. Procedia,2011,22:218–226.
    [18] Y.G. Zhang, Y. Don, Photoacoustic spectrum of BaF2:Ce3+phosphor, Physica B.,1996,217:149-152.
    [19] A.J. Wojtowicz, Rare-earth-activated wide bandgap materials for scintillators, NuclearInstruments and Methods in Physics Research Section A: Accelerators, Spectrometers,Detectors and Associated Equipment,2002,486:201–207.
    [20] G.S. Yi, H.C. Lu, S.Y. Zhao, Y. Ge, W.J. Yang, D.P. Chen, L.H. Guo, Synthesis, Characterization,and Biological Application of Size-Controlled Nanocrystalline NaYF4: Yb, Er Infrared-to-Visible Up-Conversion Phosphors, Nano. Lett.,2004,4(11),2191-2196.
    [21]刘政威,佘仲明,肖思国,一种能负载密码的多重色比高效发光防伪材料及其制备、应用,中国专利号ZL200310110415.6.
    [22] X. Wang, J. Zhuang, Q. Peng, Y.D. Li, A general strategy for nanocrystal synthesis, Nature,2005,437:121-124.
    [23]杨南如,余桂郁,溶胶-凝胶法简介第一讲-溶胶-凝胶法的基本原理与过程,硅酸盐通报,1993,2:56-63.
    [24] C. Boissière, M. Kümmel, M. Persin, A. Larbot, E. Prouzet, Spherical MSU-1Mesoporous SilicaParticles Tuned for HPLC, Adv. Funct. Mater.,2001,11(2):129-135.
    [25]马玉荣,齐利民,马季铭,中孔氧化硅的超分子模板合成及其结构与形貌的调控,化学进展,2003,15:477-486.
    [26]中投顾问:2008-2010年中国太阳能电池行业分析及投资咨询报告.
    [27]李申生,太阳能solar energy,2003,4期,5-6页.
    [28] A. Shalav, B.S. Richards, M.A. Green, Luminescent layers for enhanced silicon solar cellperformance: Up-conversion, Solar Energy Materials and Solar Cells, Solar Energy Materials&Solar Cells,2007,91:829–842.
    [29] C.H. Sun, P. Jiang, B. Jiang. Broadband moth-eye antireflection coatings on silicon, Appl. Phys.Lett.,2008,92:061112.
    [30] P.B. Clapham, M.C. Hutley, Reduction of Lens Reflexion by the “Moth Eye” Principle.Nature,1973,244:281-282.
    [31] S. A. Boden, D. M. Bagnall, Tunable reflection minima of nanostructured antireflective surfaces.Appl. Phys. Lett.,2008,93:133108.
    [32] P. Campbell, Martin A. Green. Light trapping properties of pyramidally textured surfaces. J. Appl.Phys.,1987,62(1):243-249.
    [33] S.H. Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, C.P. Grigoropoulos, H.J. Sung,Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High EfficiencyDye-Sensitized Solar Cell., Nano. Lett.,2011,11:666–671.
    [34] M.L. Kuo, D.J. Poxson, Y.S. Kim, F.W. Mont, J.K. Kim, E.F. Schubert, S.Y. Lin, Realization ofa near-perfect antireflection coating for silicon solar energy utilization, Opt. Lett.,2008,33:2527-2529.
    [35] S.Y. Lien, D.S. Wuu, W.C. Yeh, J.C. Liu, Tri-layer antireflection coatings (SiO2/SiO2-TiO2/TiO2)for silicon solar cells using a sol-gel technique, Solar Energy Materials&Solar Cells2006,90:2710-2719.
    [36] D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang, F.Y. Weng, Near-infrared quantum cutting intransparent nanostructured glass ceramics, Opt. Lett.,2008,33:1884-1886.
    [37] X.B. Chen, J.G. Wu, X.L. Xu, Y.Z. Zhang, N. Sawanobori, C.L. Zhang, Q.H. Pan, G. J. Salamo,Three-photon infrared quantum cutting from single species of rare-earth Er3+ions inEr0.3Gd0.7VO4crystalline, Opt. Lett.,2009,34:887-889.
    [38] B. M. van der Ende, L. Aarts, A. Meijerink, Near-Infrared Quantum Cutting for Photovoltaics,Adv. Mater.,2009,21:3073–3077.
    [39] P. Vergeer, T. J. H. Vlugt, M. H. F. Kox, M. I. den Hertog, J. P. J. M. van der Eerden, and A.Meijerink, Quantum cutting by cooperative energy transfer in YbxY1xPO4:Tb3+, Phys. Rev. B,2005,71:014119.
    [40] T. J. Lee, L. Y. Luo, W. G. Diau, T. M. Chen, B. M. Cheng, C. Y. Tung, Visible quantum cuttingthrough downconversion in green-emitting K2GdF5:Tb3+phosphors, Appl. Phys. Lett.2006,89:131121.
    [41] R.T. Wegh, E.V. D. van Loef, A. Meijerink, Visible quantum cutting via downconversion inLiGdF4: Er3+, Tb3+upon Er3+4f11→4f105d excitation, J. Lumin.,2000,90:111-122.
    [42] P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. den Hertog, J.P.J.M. van der Eerden, A. Meijerink,Quantum cutting by cooperative energy transfer in YbxY1-XPO4:Tb3+, Phys. Rev. B,2005,71:014119.
    [43]. B.M. van der Ende, L. Aarts, A. Meijerink, Near-Infrared Quantum Cutting for Photovoltaics,Adv. Mater.,2009,21:3073-3077.
    [44] L. Beauzamy, B. Moine, R. S. Meltzer, Y. Zhou, P. Gredin, A. Jouini, K. J. Kim, Quantum cuttingeffect in KY3F10:Tm3+, Phys. Rev. B,2008,78:184302.
    [45] S. Ye, B. Zhu, J. X. Chen, J. Luo, J. R. Qiu, Infrared quantum cutting in Tb3+,Yb3+codopedtransparent glass ceramics containing CaF2nanocrystals, Appl. Phys. Lett.,2008,92:141112.
    [46] A. Shalav, B. S. Richards, M. A. Green, Luminescent layers for enhanced silicon solar cellperformance: Up-conversion, Sol. Energy Mater. Sol. Cells,2007,90:829-842.
    [47] A. Shalav, B. S. Richards, T. Trupke, K. W. Kr mer, H. U. Güdel, Application of NaYF34:Er+up-converting phosphors for enhanced near-infrared silicon solar cell response, Appl. Phys. Lett.,2005,86:013505.
    [48] H. Shpaisman, O. Niitsoo, I. Lubomirsky, D. Cahen, Can up-and down-conversion and multi-exciton generation improve photovoltaics? Sol. Energ. Mat. Sol. C.,2008,92:1541-1546.
    [49] J. de Wild, J.K. Rath, A. Meijerink, W.G.J.H.M. van Sark, R.E.I. Schropp, Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%),Er3+(2%) upconversionphosphors, Sol. Energ. Mat. Sol. C.,2010,94:2395-2398.
    [50] J.J. Eilers, D. Biner, J.T. van Wijngaarden, K. Kr mer, H.U. Güdel, A. Meijerink, Efficientvisible to infrared quantum cutting through downconversion with the Er3+–Yb3+couple in Cs3Y2Br9, Appl. Phys. Lett.,2010,96:151106.
    [51] P. Gibart, F. Auzel, J.C. Guillaume, K. Zahraman, Below brand-gap IR response of substrate-freeGaAs solar cells using two-photon up-conversion, Jpn. J. Appl. Phys.1996,35:4401-4402.
    [52] K. Kawano, B.C. Hong, K. Sakamoto, T. Tsuboi, H.J. Seo, Improvement of the conversionefficiency of solar cell by rare earth ion, Opt. Mater.,2009,31:1353-1356.
    [53] Y. Teng, J. Zhou, X. Liu, S. Ye, J. Qiu, Efficient broadband near-infrared quantum cutting forsolar cells, Opt. Express2010,18:9672-9676.
    [54] J. Zhou, Y. Teng, X. Liu, S. Ye, X. Xu, Z. Ma, J. Qiu, Intense infrared emission of Er3+inCa8Mg(SiO4)4Cl2phosphor from energy transfer of Eu2+by broadband down-conversion, Opt.Express2010,18:21663-21668.
    [55] P. Vergeer, T.J.H. Vlugt, M.H.F. Kox, M.I. den Hertog, J.P.J.M. van der Eerden, A. Meijerink, Quantumcutting by cooperated energy transfer in YbxY1xPO4:Tb3+, Phys. Rev. B,2005,71:014119.
    [56]孙家跃,肖昂,杜海燕,刘洁,稀土光致发光材料的研究现状和应用,高等工程出版社,北京工业大学学报,2002,20:5-10.
    [57]李建宇,稀土发光材料及其应用,化学工业出版社,2003年。
    [58]周芳,方炎,戴守愚:光散射学报,2008,20,77-80.
    [59] G. S. Maciel, A. Biswas, R. Kapoor, P. N. Prasad, Blue cooperative upconversion in Yb3+-dopedmulticomponent sol-gel-processed silica glass for three-dimensional display, Appl. Phys. Lett.,2000,76:1978-1980.
    [60] W.Y. Jia, K.S. Lim, H.M. Liu, Y.Y. Wang, J.J. Ju, S.I. Yun, F.E. Fernandez, W.M. Yen,Up-conversion of multi-site Er in LiNbO3single-crystal fibers, J. Lumin.1996,66&67,190-197.
    [61] D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang, F.Y. Weng, Near-infrared quantum cutting intransparent nanostructured glass ceramics, Opt. Lett.2008,33:1884-1886.
    [62] Y. Chen, Y. Huang, M. Huang, R. Chen, Z. Luo, Spectroscopic properties of Er3+ions in bismuthborate glasse, Opt. Mater.2004,25:271-278.
    [63] M. Pollnau, D.R. Gamelin, S.R. Luthi, H.U. Gudel, Power dependence of upconversionluminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B,2000,61:3337-3346.
    [64] L. Vegard, The constitution of mixed crystals and the space occupied by atoms. Z. Phys.,1921,5:17-26.
    [65] R.D. Shannon, Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances inHalides and Chaleogenides, Acta Cryst. A,1976,32:751-767.
    [66] Y. Shimizu, Y. Noguchi, T. Moriguchi, Light emitting device having a nitride compoundsemiconductor and a phosphor containing a garnet fluorescent material, US patent no.5998925,7December1998.
    [67] V.G. Babajanyan, R.B. Kostanyan, P.H. Muzhikyan, A.G. Petrosyan, Absorption andphotoluminescence of YAG:Er3+, YAG:Ce3+, and YAG:Er3++Ce3+crystals, J. Contemp. Phys.,2011,46:85-90.
    [68] H.J. Yang, L. Yuan, G.S. Zhu, A.B. Yu, H.R. Xu, Luminescent properties of YAG:Ce3+phosphorpowders prepared by hydrothermal-homogeneous precipitation method, Mater. Lett.2009,63:2271–2273.
    [69] R. Huang, S. Li, S.L. Xue, Z.X. Jiang, S.X. Wu, Preparation and Characterization of YAG:Ce3+Phosphors by Sol-solvothermal Process,2012International Conference on Future Environmentand Energy,2012,28:85-89.
    [70]朱学绘,范广涵,何安和,陈献文,何苗,章勇, SiO2-YAG:Ce3+玻璃荧光体的制备及其白光LED的封装,2010,1:1-13.
    [71] M.Y. Peng, L. Wondraczek, Bi2+-doped strontium borates for white-light-emitting diodes, Opt.Lett.,2009,34:2885-2887.
    [72] D.Q. Chen, Y.L. Yu, H. Lin, P. Huang, F.Y. Weng, Z.F. Shan, Y.S. Wang, CeF3-based glassceramic: a potential luminescent host for white-light-emitting diode, Opt. Lett.,2009,34:2882-2884.
    [73] D.Q. Chen, Y.L. Yu, P. Huang, H. Lin, Z.F. Shan, Y.S. Wang, Color-tunable luminescence of Eu3+in LaF3embedded nanocomposite for light emitting diode, Acta Mater.,2010,58:3035-3041.
    [74] J.K. Krebs, C.M. Hobson, Eu3+site characterization in solution-grown yttrium oxide, Mater. Lett.,2007,61:4134–4136.
    [75] X.L. Yang, S.G. Xiao, J.W. Ding, X.H. Yan, Luminescence properties of rare earth doped YF3andLuF3nanoparticles, J. Appl. Phys.,2008,103:093101.
    [76] L.Y. Wang, Y.D. Li, Na(Y1.5Na0.5)F6Single-Crystal Nanorods as Multicolor LuminescentMaterials, Nano Lett.,2006,6:1645-1649.
    [77] Z.L. Fu, S.H. Zhou, T.Q. Pan, S.Y. Zhang, Preparation and luminescent properties of cubicEu3+:Y2O3nanocrystals and comparison to bulk Eu3+:Y2O3, J. Lumin.,2007,124:213-216.
    [78] W. R. Romanowski, S. Golab, G. D. Dzik, P. Solarz, T. Lukasiewicz, Conversion of infraredradiation into red emission in YVO4:Yb,Ho, Appl. Phys. Lett.,2001,79:3026-3028.
    [79] Y. Yu, Y.D. Zheng, F. Qin, Z.M. Cheng, C.B. Zheng, Z.G. Zhang, W.W. Cao, Experimentalinvestigation on the upconversion mechanism of754nm NIR luminescence ofHo3+/Yb3+:Y2O3,Gd2O3under976nm diode laser excitation, J. Lumin.,2011,131:190-193.
    [80] D.M. Shi, Q.Y. Zhang, G.F. Yang, C. Zhao, Z.M. Yang, Z.H. Jiang, Frequency upconversionluminescence in Tm3+/Yb3+-and Ho3+/Yb3+-codoped Ga2O3–GeO2–Bi2O3–PbO glasses, J.Alloys Compd.,2008,466:373–376.
    [81] L. Feng, J. Wang, Q. Tang, L.F. Liang, H.B. Liang, Q. Su, Optical properties of Ho3+-dopednovel oxyfluoride glasses, J. Lumin.,2007,124:187–194.
    [82] G.K. Liu, Y.H. Chen, J.V. Beitz, Photon avalanche up-conversion in Ho3+doped fluoride glasses,J. Lumin.,1999,81:7-12.
    [83] R. Scheps, Upconversion laser processes, Prog. Quantum Electron.1996,20:271–358.
    [84] D. Elizabeth, H. Lambertus, R. John, M. Roger, Three-Color, A.; Solid-State, Three-Dimensional Display, Science,1996,273:1185-1189.
    [85] G.S. Yi, H.C. Lu, S.Y. Zhao, Y. Ge, W.J. Yang, D.P. Chen, L.H. Guo, Synthesis, Characterization,and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,ErInfrared-to-Visible Up-Conversion Phosphors, Nano Lett.,2004,4,2191-2196.
    [86] J.C. Boyer, F. Vetrone, L.A. Cuccia, John A. Capobianco, Synthesis of Colloidal UpconvertingNaYF4Nanocrystals Doped with Er3+, Yb3+and Tm3+, Yb3+via Thermal Decomposition ofLanthanide Trifluoroacetate Precursors, J. Am. Chem. Soc.,2006,128:7444-7445.
    [87] A. Shalav, B.S. Richards, M.A. Green,; Luminescent layers for enhanced silicon solar cellperformance: Up-conversion, Sol. Energy Mater. Sol. Cells,2007,91:829-842.
    [88] H. Zhang, Y.J. Li, Qu, Y.Q. Ivanov, Y. Huang, X.F. Duan, Plasmonic Modulation of theUpconversion Fluorescence in NaYF4:Yb/Tm Hexaplate Nanocrystals Using Gold Nanoparticlesor Nanoshells, Angew. Chem.2010,122:2927-2930.
    [89] A.G. Macedo, R.A.S. Ferreira, D. Ananias, M.S. Reis, V.S. Amaral, L.D. Carlos, J. Rocha, Effectsof Phonon Confinement on Anomalous Thermalization, Energy Transfer, and Upconversion inLn3R-Doped Gd2O3Nanotubes, Adv. Funct. Mater.2010,20:624-634.
    [90] F. Wang, X.G. Liu, Simultaneous phase and size control of upconversion nanocrystals throughlanthanide doping, Nature,2010,463:1061-1065.
    [91] J.F. Suyver, A. Aebischer, D. Biner, P. Gerner, J. Grimm, S. Heer, K.W. Kr mer, C. Reinhard,H.U. Güdel, Novel materials doped with trivalent lanthanides and transition metal ions showingnear-infrared to visible photon upconversion, Opt. Mater.,2005,27:1111-1130.
    [92] L. Wang, Y. Li, Controlled Synthesis and Luminescence of Lanthanide Doped NaYF4Nanocrystals, Chem. Mater.,2007,19:727-734.
    [93] D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang, F.Y. Weng, Near-infrared quantum cutting intransparent nanostructured glass ceramics, Opt. Lett.,2008,33:1884-1886.
    [94] M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, M.P. Hehlen, Power dependence ofupconversion luminescence in lanthanide and transition-metal-ion systems, Phys. Rev. B,2000,61:3337-3346.
    [95] P. Vergeer,; T.J.H. Vlugt, M.H.F. Kox, M.I.Den Hertog, J.P.J.M. van der Eerden, A. Meijerink,Quantum cutting by cooperative energy transfer in YbxY1xPO4:Tb3+, Phys. Rev. B,2005,71:014119.
    [96] X.F. Wang, X.H. Yan, Ultraviolet and infrared photon-excited synergistic effect in Er3+-dopedYbF3phosphors, Opt. Lett.,2011,36:4353-4355.
    [97] K.W. Kr mer, D. Biner, G. Frei, H.U. Güdel, M.P. Hehlen, S.R. Lüthi, Hexagonal SodiumYttrium Fluoride Based Green and Blue Emitting Upconversion Phosphors, Chem. Mater.,2004,16:1244-1251.
    [98] J.F. Suyver, J. Grimm, M.K. van Veen, D. Biner, K.W. Kr mer, H.U. Güdel, Upconversionspectroscopy and properties of NaYF4doped with Er3+, Tm3+and/or Yb3+, J. Lumin.,2006,117:1-12.
    [99] S. Schietinger, T. Aichele, H.Q. Wang, T. Nann, O. Benson, Plasmon-Enhanced Upconversion inSingle NaYF4:Yb3+/Er3+Codoped Nanocrystals, Nano Lett.,2010,10:134-138.
    [100] X. Yang, S. Xiao, J.W. Ding, X.H. Yan, Efficient up-converted white emission in Er3+, Tm3+andYb3+tridoped NaYF4powders, J. Mater. Sci.,2007,42:7042-7045.
    [101] A.S. Gouveia-Neto, E.B.da Costa, P.V.dos Santos, L.A. Bueno, S.J.L. Ribeiro, Sensitizedthulium blue upconversion emission in Nd3+/Tm3+/Yb3+triply doped lead and cadmiumgermanate glass excited around800nm J. Appl. Phys.,2003,94:5678-5681.
    [102] J. Qiu, M. Shojiya, Y. Kawamoto, Sensitized Ho3+up-conversion luminescence in Nd3+-Yb3+-Ho3+co-doped ZrF4-based glass, J. Appl. Phys.,1999,86:909-913.
    [103] H.W. Song, B.J. Sun, T. Wang, S.Z. Lu, L.M. Yang, B.J. Chen, X.J. Wang, X.G. Kong,Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+codopedcubic nanocrystalline yttria, Solid State Commun.,2004,132:409-413.
    [104] S. Schietinger, L. de S. Menezes, B. Lauritzen, O. Benson, Observation of Size Dependence inMulticolor Upconversion in Single Yb3+, Er3+Codoped NaYF4Nanocrystals, Nano Lett.,2009,9:2477-2481.
    [105] X. Sun, Y.W. Zhang, Y.P. Du, Z.G. Yan, R. Si, L.P. You, C.H. Yan, From TrifluoroacetateComplex Precursors to Monodisperse Rare-Earth Fluoride and Oxyfluoride Nanocrystals withDiverse Shapes through Controlled Fluorination in Solution Phase, Chem.-A Eur. J.,2007,13(8):2320–2332.
    [106] J. W. Mullin, Crystallization,3rd ed., Butterworth-Heinemann, Oxford,1997.
    [107] W. Ostwald, Studien uber die Bildung und Umwandlung fester Korper. Zeitschrift fürPhysikalische Chemie,1897,22:289-330.
    [108] Eduardo J. H. Lee, Caue Ribeiro, Elson Longo, and Edson R. Leite, Oriented attachment: Aneffective mechanism in the formation of anisotropic nanocrystals, J. Phys. Chem. B,2005,109(44):20842–20846.
    [109] V. Kumar, S. K. Sharma, T.P. Sharma, V. Singh, Band gap determination in thick flms fromreflectance measurements, Opt. Mater.,1999,12:115-117.
    [110] V.S. Letokhov, S.K. Sekatski, Laser stepped resonant photoelectric effect involving Nd3+dopant ions at the surface of a ZrO2crystal, JETP Lett.,1991,54:438-441.
    [111] Y.S. Liu, D.T. Tu, H.M. Zhu, R.F. Li, W.Q. Luo, X.Y. Chen, A Strategy to Achieve EfficientDual-Mode Luminescence of Eu3+in Lanthanides Doped Multifunctional NaGdF4Nanocrystals,Adv. Mater.,2010,22:3266-3271.
    [112] J.N. Shan, M. Uddi, N. Yao, Y.G. Ju, Anomalous Raman Scattering of Colloidal Yb3+,Er3+Codoped NaYF4Nanophosphors and Dynamic Probing of the Upconversion Luminescence, Adv.Mater.,2010,20:3530-3537.
    [113] G.S. Yi, G.M. Chow, Colloidal LaF3:Yb,Er, LaF3:Yb,Ho and LaF3:Yb,Tm nanocrystals withmulticolor upconversion fluorescence, J. Mater. Chem.,2005,15:4460-4464.
    [114]曹茂盛,曹传宝,徐甲强,纳米材料学,哈尔滨工程大学出版社,2002.
    [115] J.H. Zeng, J. Su, Z.H. Li, R.X. Yan, Y.D. Li, Synthesis and upconversion luminescence ofhexagonal-phase NaYF+4:Yb3, Er3+phosphors of controlled size and morphology, Adv. Mater.,2005,17:2119-2123.
    [116] X.D. Feng, D.C. Sayle, Z.L. Wang, M.S. Paras, B. Santora, A.C. Sutorik, T.X.T. Sayle, Y. Yang,Y. Ding, X.D. Wang, Y.S. Her, Converting Ceria Polyhedral Nanoparticles into Single-CrystalNanospheres, Science,2006,312:1504-1507.
    [117] F. Wang, Y. Han, C.S. Lim, Y.H. Lu, J. Wang, J. Xu, H.Y. Chen, C. Zhang, M.H. Hong, X.G.Liu, Simultaneous phase and size control of upconversion nanocrystals through lanthanidedoping, Nature,2010,463:1061-1065.
    [118] A. Iacomino, G. Cantele, F. Trani, D. Ninno, DFT Study on Anatase TiO2Nanowires: Structureand Electronic Properties As Functions of Size, Surface Termination, and Morphology, J. Phys.Chem. C,2010,114(29):12389-12400.
    [119] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys.Rev. Lett.,1996,77:3865–3868.
    [120]李盼来,杨志平,王志军,郭庆林,Sr32SiO4:Dy+材料制备及发光特性,高等学校化学学报,2008,29:457-460.
    [121]罗遵度,黄艺东,固体激光材料光谱物理学,科学技术出版社,2003年,39-46.
    [122] S.W. Liu, J.G. Yu, Cooperative self-construction and enhanced optical absorption ofnanoplates-assembled hierarchical Bi2WO6flowers, J. Solid. State Chem.,2008,181:1048-1055.
    [123] S. Khonthon, S. Morimoto, Y. Arai, Y. Ohishi, Redox equilibrium and NIR luminescence ofBi2O3-containing glasses, Opt. Mater.,2009,31:1262–1268.
    [124] G. Lakshminarayana, J. Ruan, J.R. Qiu, NIR luminescence from Er–Yb, Bi–Yb and Bi–Ndcodoped germanate glasses for optical amplification, J. Alloys. Compd.,2009,476:878–883
    [125] J.J. Ren, J.R. Qiu, D.P. Chen, X. Hu, X.W. Jiang, C.S. Zhu, Ultrabroad infrared luminescencefrom Bi-doped aluminogermanate glasses, Solid State Commun.,2007,141:559-562
    [126] L.L. Wu, Y. Liang, F.W. Liu, H.Q. Lu, H.Y. Xu, X.T. Zhang, S. Hark, Preparation ofZnO/In2O3(ZnO)nheterostructure nanobelts, CrystEngComm,2010,12:4152-4155.
    [127]陈新亮,薛俊明,张德坤,蔡宁,张晓丹,赵颖,耿新华,绒面结构ZnO薄膜及其表面处理,人工晶体学报,2008,37:631-633.
    [128] J.S. Yoo, S.K. Dhungel, M. Gowtham, J.S. Yi, Properties of Textured ZnO: Al Films Preparedby RF Magnetron Sputtering for Thin Film Solar Cells, Journal of the Korean Physical Society,2005,47: S576-S580.
    [129] Z.J. Liu, J.C. Chou, S.Y. Wei, J.Y. Gan, T.R. Yew, Improved Resistive Switching of TexturedZnO Thin Films Grown on Ru Electrodes, Ieee Electron Device Lett.,2011,32:1728-1730.
    [130] S.Q. Li, K. Sassa, S. Asai, Fabrication of Textured Si3N4Ceramics by Slip Casting in a HighMagnetic Field, J. Am. Ceram. Soc.,2004,87:1384-1387.
    [131] A. Lennie, H. Abdullah, S.M. Mustaza, K. Sopian, Photovoltaic Properties of Si3N4Layer onSilicon Solar Cell Using Silvaco Software, Eur. J. Sci. Res.,2009,29:447-453.
    [132] G. Stollwerck, S. Reber, C. H ler, Crystalline Silicon Thin-Film Solar Cells on Silicon NitrideCeramic Substrates, Adv. Mater.,2001,13:1820–1824.
    [133] H. Jin, K.J. Weber, C. Zhang,Y. Ren, Low Si surface recombination through negatively chargedSi3N4films,24th European Photovoltaic Solar Energy Conference,21-25September2009,Hamburg, Germany,72-76.
    [134] W.L. Min, A.P. Betancourt, P. Jiang, B. Jiang, Bioinspired broadband antireflection coatings onGaSb, Appl. Phys. Lett.,2008,92:141109.
    [135] K.S. Han, H. Lee, D. Kim, H. Lee, Fabrication of anti-reflection structure on protective layer ofsolar cells by hot-embossing method, Sol. Energy Mater. Sol. Cells,2009,93:1214-1217.
    [136] S.A. Boden, D.M. Bagnall, Tunable reflection minima of nanostructured antireflective surfaces,Appl. Phys. Lett.,2008,93:133108.
    [137] F. Lahoz, Ho3+-doped nanophase glass ceramics for efficiency enhancement in silicon solarcells, Opt. Lett.,2008,33:2982-2984.
    [138] T. Trupke, M.A. Green, P. Würfel, Improving solar cell efficiencies by up-conversion ofsub-band-gap light, J. Appl. Phys.,2002,92:4117-4122.
    [139] F. Liu, E. Ma, D.Q. Chen, Y.S. Wang,Y.L. Yu, P. Huang, Infrared luminescence of transparentglass ceramic containing Er3+:NaYF4nanocrystals, J. Alloys Compd.,2009,467:317-321.
    [140] V. Badescu, A.M. Badescu, Improved model for solar cells with up-conversion of low-energyphotons, Renewable Energy,2009,34:1538–1544.
    [141] Y.Y. Cheng, B. Fückel, R.W. MacQueen, T. Khoury, R.G.C.R. Clady, T. F. Schulze, et al,Improving the light-harvesting of amorphous silicon solar cells with photochemicalupconversion, Energy Environ. Sci.,2012, DOI:10.1039/C2EE21136J.
    [142] Mokkelbost Tommy, Tyholdt Frode, Kaus Ingeborg, Fossdal Anita, Fagerberg Ragnar, GrandeTor, Garskaite Edita, Enhanced solar cell efficiency by up conversion,3rd NTNU NanoLabUser Meeting,2008, SINTEF S8807.
    [143] M.S. Liao, G.S. Qin, X. Yan, M. Hughes, T. Suzuki, Y. Ohishi, Evaluating upconversionmaterials developed to improve the efficiency of solar cells: comment, J. Opt. Soc. Am. B: Opt.Phys.,2010,27:1352-1355.
    [144] S. Fischer, J.C. Goldschmidt, P. L per, G.H. Bauer, R. Brüggemann, K. Kr mer, D. Biner, M.Hermle, and S. W. Glunz, upconversion: Optical and electrical characterization, J. Appl. Phys.2010,108:044912.
    [145] X. Wang, G.Y. Shan, K.F. Chao, Y.L. Zhang, R.L. Liu, Effects of Er3+concentration on UV/blueupconverted luminescence and a three-photon process in the cubic nanocrystalline Y2O+3:Er3,Mater. Chem. Phys.,2006,99:370–374.
    [146] W.H. Southwell, Gradient-index antireflection coatings, Opt. Lett.,1983,8:584-586.
    [147]肖俊峰,晶体硅太阳电池表面陷光结构的研究,2010年,浙江大学,硕士毕业论文。
    [148]李美成,任霄峰,白帆,余航,用于太阳电池的多孔金字塔型硅表面陷光结构制备方法,中国发明专利,专利号:201110252280.
    [149]梁学勤,冯成坤,陈奕峰,沈辉,闻立时,单晶硅小金字塔绒面及其对太阳电池性能的影响,材料导报,2011,25:13-16.
    [150] S.L. Jones, D. Kumar, R.K. Singh, P. H. Holloway, Luminescence of pulsed laser deposited Eudoped yttrium oxide films, Appl. Phys. Lett.,1997,71:404-406.
    [151] X.R. Hou, S.M. Zhou, H. Lin, H. Teng, Y.K. Li, W.J. Li, T.T. Jia, Violet and blue upconversionluminescence in Tm3+/Yb3+codoped Y2O3transparent ceramic, J. Appl. Phys.,2010,107:083101.
    [152]杨秋红,陆神洲,张浩佳,张斌,袁志军,周军,漆云凤,楼祺洪,固相法制备高光学质量氧化镧钇透明陶瓷,硅酸盐学报,2010,38:1088-1101
    [153]闻雷,孙旭东,碳酸盐前驱物制备Y2O3超细粉及透明陶瓷,中国稀土学,2003,21:166-169.
    [154]罗军明,李永绣,邓莉萍,共沉淀法合成Yb3+:Y2O3纳米粉及透明陶瓷的性能,无机化学学报,2008,24:260-264
    [155] G. Y. Chen, H. C. Liu, G. Somesfalean, Y. Q. Sheng, H. J. Liang, Z. G. Zhang, Q. Sun, F. P.Wang, Enhancement of the upconversion radiation in Y2O3:Er3+nanocrystals by codoping withLi+ions, Appl. Phys. Lett.,2008,92:113114.
    [156] Y.F. Bai, Y.X. Wang, G.Y. Peng, K. Yang, X.R. Zhang, Y.L. Song, Enhancement of theupconversion photoluminescence intensity in Li+and Er3+codoped Y2O3nanocrystals, Opt.Commun.,2008,281:2930-2932.
    [157] T.T. Van, J.R. Bargar, J.P. Changa, Er coordination in Y2O3thin films studied by extended x-rayabsorption fine structure, J. Appl. Phys.,2006,100:023115.
    [158] D.Q. Chen, Y.S. Wang, Y.L. Yu, P. Huang, Intense ultraviolet upconversion luminescence fromTm3+/Yb3+:β-YF3nanocrystals embedded glass ceramic, Appl. Phys. Lett.,2007,91:051920.
    [159] M. Pollnau, P. J. Hardman, W. A. Clarkson, D. C. Hanna, Upconversion, lifetime quenching,and ground-state bleaching in Nd3+:LiYF4, Opt. Commun.,1998,147:203-211.
    [160] S. Guy, M. F. Joubert, B. Jacquier, Photon avalanche and the mean-field approximation, Phys.Rev. B,1997,55:8240-8248.
    [161] F. Auzel, Upconversion and Anti-Stokes Processes with f and d Ions in Solids, Chem. Rev.,2004,104:139-173.
    [162]高濂,郑珊,张青红,纳米氧化钛光催化材料及应用,北京:化学工业出版社,2002,25-35.
    [163] A.E.R. Mohamed, S. Rohani, Modified TiO2nanotube arrays (TNTAs): progressive strategiestowards visible light responsive photoanode, a review, Energy Environ. Sci.,2011,4:1065-1086.
    [164] A. Fujishima, X.T. Zhang, D.A. Tryk, TiO2photocatalysis and related surface phenomena, Surf.Sci. Rep.,2008,63:515-582.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700