用户名: 密码: 验证码:
近紫外激发白光LED用荧光粉的制备和发光性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用近紫外激发的三基色荧光粉实现白光LED已成为当前发展的重点,探索与之相匹配的荧光粉也就成为人们广泛关注的课题。但目前可供选择的近紫外激发的三基色荧光粉种类很有限,而且存在发光效率低、热稳定性差等不足。针对上述问题,根据当前LED用荧光粉的发展需要,本文以具有良好的化学稳定性和热稳定性的正硅酸和偏铝酸盐为基质,以稀土离子做为激活剂,制备两类近紫外激发(NUV:near ultraviolet)的白光LED用荧光粉,并采用化学制备方法改进粉末颗粒粒径、形貌及分散性,系统地研究了基质成分,晶体结构,电子能带结构以及制备工艺等对发光性能的影响。具体研究结果如下:
     对于正硅酸盐基荧光粉体系:
     (1)采用固相法制备了可被NUV激发的红色荧光粉M2SiO4:Eu3+(M=Ca, Sr, Ba),并研究了其晶体结构和发光性能的关系。M2SiO4中存在两种碱土离子格位:M(Ⅰ)(非反演对称)和M(Ⅱ)(反演对称)。在Ba2SiO4中,Eu3+主要取代M(Ⅰ),其发射以5D0→7F2(613nm)电偶极跃迁为主。在Ca2SiO4:Eu3+和Sr2Si04:Eu3+中,Eu3+取代M(Ⅰ)和M(Ⅱ)几率相等,其发射以5D0→7F1(591nm)磁偶极跃迁和5D0→7F2(613nm)电偶极跃迁为主。在该类荧光粉中,Ba2SiO4:Eu3+的激发和发射最强,色纯度最好。
     (2)研究了制备温度、Eu3+浓度及电荷补偿剂对Sr2Si04:Eu3+和Ba2Si04:Eu3+发光性能的影响。当制备温度为1300℃时,样品的发光强度最大。在Sr2SiO4:Eu3+中,Eu3+的猝灭浓度为6%,在Ba2SiO4:Eu3+中,Eu3+的猝灭浓度为8%。电荷补偿剂Li+,Na+和K+的引入均增强了荧光粉的发射强度,其中,Li+效果最好。
     (3)采用溶胶凝胶法制备了Sr2SiO4:Eu3+和SiO2@Sr2SiO4:Eu3+核壳结构复合发光材料。溶胶凝胶法较高温固相法制备的Sr2SiO4:Eu3+样品结晶温度低,发光强度大,颗粒分布均匀。SiO2@Sr2SiO4:Eu3+样品形貌为单分散球形,其发光强度优于Sr2SiO4:Eu3+。
     (4)研究了Sr2SiO4:Ce3+和Sr2Si04:Eu2+的发光特性,在长波紫外激发下两个样品均呈双峰发射。Sr2Si04:Ce3+的两个发射峰为406nm和436nm, Sr2Si04:Eu2+的两个发射峰为462nm和535nm,利用Sr2Si04的晶体结构解释了短波长的峰来源于Ce3+/Eu2+取代9配位的Sr(Ⅰ),较大波长的峰来源于Ce3+/Eu2+取代10配位的Sr(Ⅱ)。对Sr2Si04:xEu2+研究发现:随着Eu2+浓度的增加,蓝光发射峰减弱,绿光发射峰增强,主发射峰发生红移(535nm→569nm)。采用第一性原理从理论上分析了Sr2SiO4的电子结构及基质的吸收。
     对于铝酸盐体系:
     (1)采用溶胶凝胶法制备了能被NUV激发的SrAl2O4:Eu2+绿色荧光粉,研究了制备温度和Eu2+浓度对其发光性能的影响。结果表明:当温度为1200℃和Eu2+浓度为8%时样品的发射强度最大。当温度超过1200℃,样品中出现Sr4Al14025杂相,导致发射光谱产生蓝移(519nm→509nm)。
     (2)研究基质组分变化对Eu2+发射的影响。B3+置换SrAl2O4中的Al3+,可使基质晶相发生转变(从SrAl2O4、Sr4Al14O25到SrAl2B2O7),发射波长产生蓝移(519nm→467nm)。Ca2+和Ba2+置换SrAl2O4中Sr2+,可在全组分内形成SrAl2O4、CaAl2O4和BaAl2O4固溶体,实现Eu2+的蓝光(440nm),蓝绿(490nm)及绿光(519nm)发射。
     其它硼酸盐红色荧光粉:
     通过固相法制备的LiSrBO3:Eu3+荧光粉在395nm激发下发射峰值为613nm的红光。电荷补偿剂Li+的引入大大提高了其发射强度。另外,Al3+的掺杂改善了LiSrBO,:Eu3+的色纯度,当Al3+掺杂浓度为2%时,其色坐标最好为(0.658,0.342)。
At present, using a NUV LED chip coated red, green and blue phosphors has become the emphasis direction to generate white LED. Therefore, to explore tricolor phosphors that can be excited effectively by near UV LEDs (NUV) has attracted substantial attention. However, these types of tricolor phosphors are not much, being the drawbacks of low luminous efficiency and bad thermal stability. To solve the problems, two types of phosphors obtained by RE ions doped in orthosilicate and meta-aluminate hosts with stable thermal and chemical properties were prepared, and size, morphology and dispersion of the phosphors particles are improved by using chemical synthesis method in the paper. The effects of crystal structure, electronic band structure, and synthesis method on luminescent properties were systematically investigated. The main achievements are as the follows:
     1. A system of Rare earth doped orthsilicate phosphors:
     (1)M2Si04:Eu3+(M=Ca, Sr, Ba) red-emitting phosphors were synthesized by solid state reaction and these luminescent properties were investigated. M2Si04have two different cation sites:M(Ⅰ)(asymmetric) and M(Ⅱ)(symmetric). In the Ba2Si04:Eu3+, Eu3+mainly occupied at M(I) cation, causing the613nm emission of5D0→7F2strongest. In the Ca2SiO4:Eu3+and Sr2SiO4:Eu3+, it was equal probability that Eu3+occupied at M(☉) and M(Ⅱ) site, which made the transition5D0to7F1(591nm) was as strong as the transition5D0to7F2(613nm). Ba2SiO4:Eu3+phosphor had stronger excitation and emission intensity with better red color purity when compared with Sr2Si04:Eu3+and Ca2SiO4:Eu3+phosphors.
     (2)The influence of annealing temperature, Eu3+dopant content and charge compensation (Li+, Na+, K+) on intensities of Sr2Si04:Eu3+and Ba2SiO4:Eu3+were studied. When annealing temperature was1300℃, the emission intensity of the samples reached maximum.The quenching content of Eu3+was6%and8%in the Sr2SiO1:Eu3+and Ba2SiO4:Eu3+,respectively. The charge compensator R+(R+=Li+,Na+and K_)injecting into the host efficiently enhanced the luminescence intensity,and the emission intensity of the phosphor doping L+was higher than that of Na+or K+
     (3)Sr2SiO4:Eu+and SiO2@Sr2SiO4:Eu3+core-shell phosphor were prepared by sol-gel method. Compared with the sample synthesized by solid state reaction, Sr2SiO4:Eu3+had possessed low crystal tempreture, strong emission intensity. SiO2@Sr2SiO4:Eu3+was composed of uniform coating and smooth shell, the emission intensity of SiO2@Sr2SiO4:Eu3+core-shell phosphor was higher than Sr2SiO4:Eu3+
     (4) The luminescent properties of Sr2SiO4:Ce3+and Sr2SiO4:Eu2+were investigated. Two samples showed two emission peaks under NUV excitation. The two emission peaks of Sr2SiO4:Ce3+were406nm and436nm, respectively. The two emission peaks of Sr2SiO4:Eu2+were463nm and535nm. Ce3+/Eu2+ions on Sr(I) Sites gave short wavelength emissions, while Ce3+/Eu2+ions on Sr(II) Sites showed an long emission band. With the increasing of Eu content, the blue emission intensity of Sr2SiO4:Eu2+decreased, whereas the green emission intensity increasing. Red shift of emission band from535nm to569nm has been aehieved with the increase of Eu2+content. The electronic structure and host absportion were performed by first principles.
     2. Eu2+doped meta-aluminate phosphors:
     (1)The SrAl2O4:Eu2+green-emitting phosphors were synthesized by sol-gel method, and their luminescent properties were investigated with changing the reducing temperature, the concentration of the activator. The highest intensity of SrAl2O4:Eu2+phosphor was achieved by annealing at1200℃and the Eu2+content of8mol%. Over1300℃, however, the Sr4Al14O25phase appeared, inducing a small blue-shift in the emission peak (519nm-509nm).
     (2) The effects of the host component variety through substituting cation in the host lattice on Eu2+emission spectra were researched. The substitution of B3+for Al3+ions in SrAl2O4host resulted in the transformation of phase from SrAl2O4to Sr4Al14O25as well as to SrB2Al2O7, which led to the blue-shift (519nm-467nm).When Ca2+and Ba2+ions replaced Sr2+ions in the host, SrAl2O4 CaAl2O4and BaAl2O4solid solution can be formed throughout the whole composition range. So, the blue, blue-green and green emitting of Eu2+can be tuned in the hosts.
     3. Other red borate phosphors:
     The luminescent properties of LiSrBO3:xEu3+phosphors were studied. This phosphor can be effectively excited by ultraviolet (395nm) and exhibit a satisfactory red performance peaked at around612nm. The introduction of charge compensator Li+, Na+and K+can further enhance emission intensity.The introduction of Al3+improved the color purity of LiSrBO3:Eu3+. When Al3+content was2%, the chromatieity coordinates was (0.652,0.348).
引文
[1]Kim J K, Schubert E F. Transcending the replacement paradigm of solid-state lighting[J]. Opt. Express,2008,16(26):21835-21842.
    [2]Zukauskas A, Shur M, Gaska R. Introduction to solid state lighting[M]. New York:John Wiley & Sons,2002.
    [3]Steigerwald D A, Bhat J C, Collins D, et al. Illumination with solid state lighting technology [J]. Selected Topics in Quantum Electronics, IEEE Journal of,2002,8(2): 310-320.
    [4]Schubert E F, Kim J K. Solid-state light sources getting smart[J]. Science,2005, 308(5726):1274-1278.
    [5]Schubert E F, Kim J K, Luo H, et al. Solid-state lighting-a benevolent technology [J]. Reports on Progress in Physics,2006,69(12):3069.
    [6]Tsao J Y. Solid-state lighting:lamps, chips, and materials for tomorrow[J]. Circuits and Devices Magazine, IEEE,2004,20(3):28-37.
    [7]徐叙路,苏勉曾.发光学与发光材料[M].化学工业出版社,2004.
    [8]陈大华.现代光源基础[M].学林出版社,1987.
    [9]王海波,朱宪忠,任巨光.荧光粉涂敷法制白光LED前景广阔[J].中国照明电器,2004,5(1).
    [10]Wang X H, Jia H Q, Guo L W, et al. White light-emitting diodes based on a single InGaN emission layer[J]. Applied Physics Letters,2007,91(16):161912-161912-3.
    [11]Borisov B, Nikishin S, Kuryatkov V, et al. Enhanced deep ultraviolet luminescence from AlGaN quantum wells grown in the three-dimensional mode[J]. Applied Physics Letters, 2005,87(19):191902-191902-3.
    [12]Setlur A A, Heward W J, Gao Y, et al. Crystal chemistry and luminescence of Ce3+-doped Lu2CaMg2(Si,Ge)3O12 and its use in LED based lighting[J]. Chemistry of materials,2006,18(14):3314-3322.
    [13]Hirosaki N, Xie R J, Kimoto K, et al. Characterization and properties of green-emitting β-SiAlON:Eu2+powder phosphors for white light-emitting diodes[J]. Applied Physics Letters, 2005,86(21):211905-211905-3.
    [14]Neeraj S, Kijima N, Cheetham A K. Novel red phosphors for solid-state lighting:the system NaM(WO4)2-x(MoO4)x:Eu3+(M=Gd, Y, Bi)[J]. Chemical Physics Letters,2004,387(1): 2-6.
    [15]Mueller-Mach R, Mueller G, Krames M R, et al. Highly efficient all-nitride phosphor-converted white light emitting diode[J]. physica status solidi (a),2005,202(9):1727-1732.
    [16]姚光庆,冯艳娥,段洁菲,等.氮化镓发光二级管蓝光转换材料的合成和发光性质[J].物理化学学报,2003,19(3):226-229.
    [17]Jang H S, Im W B, Lee D C, et al. Enhancement of red spectral emission intensity of Y3Al5Oi2:Ce3+phosphor via Pr co-doping and Tb substitution for the application to white LEDs[J]. Journal of luminescence,2007,126(2):371-377.
    [18]孔丽,甘树才,洪广言,等.Pr3+或Sm3+掺杂YAG:Ce的发光特性及其荧光寿命[J].发光学报,2007,28(3):393-396.
    [19]Park J K, Choi K J, Park S H, et al. Application of Ba2++Mg2+Co-doped Sr2Si04:Eu Yellow Phosphor for White-Light-Emitting Diodes[J]. Journal of The Electrochemical Society,2005,152(8):H121-H123.
    [20]Yoo J S, Kim S H, Yoo W T, et al. Control of spectral properties of strontium-alkaline earth-silicate-europium phosphors for LED applications[J]. Journal of the Electrochemical Society,2005,152(5):G382-G385.
    [21]Park J K, Kim C H, Park S H, et al. Application of strontium silicate yellow phosphor for white light-emitting diodes[J]. Applied physics letters,2004,84(10):1647-1649.
    [22]Park J K, Choi K J, Yeon J H, et al. Embodiment of the warm white-light-emitting diodes by using a Ba codoped SrSiO:Eu phosphor[J]. Applied physics letters,2006,88: 043511-043513.
    [23]Saradhi M P, Varadaraju U V. Photoluminescence Studies on Eu2+-Activated Li2SrSiO4 a Potential Orange-Yellow Phosphor for Solid-State Lighting[J]. Chemistry of materials,2006, 18(22):5267-5272.
    [24]Yang Z, Wang S, Yang G, et al. Luminescent properties of Ca2BO3Cl:Eu2+ yellow-emitting phosphor for white light-emitting diodes[J]. Materials Letters,2007,61(30): 5258-5260.
    [25]刘景旺.用YVO4:Ce3+品体荧光粉与蓝光LED制造自然白光LED[J].北华航天工业学院学报,2007,17(1).
    [26]Piao X, Horikawa T, Hanzawa H, et al. Characterization and luminescence properties of SrSiN:Eu phosphor for white light-emitting-diode illumination[J]. Applied physics letters, 2006,88:161908.
    [27]Hu Y, Zhuang W, Ye H, et al. Preparation and luminescent properties of (Ca, Sr)S:Eu2+ red-emitting phosphor for white LED[J]. Journal of luminescence,2005,111(3):139-145.
    [28]杨志平,韩勇,李旭.一种新型的白光LED用红色荧光粉SrMoO4:Eu3+[J].河北工业大学成人教育学院学报,2006,21(2):13-15.
    [29]Wang J, Jing X, Yan C, et al.Ca1(?)-2(?)xEuxLixMoO4:Eu3+:A Novel Red Phosphor for Solid-State Lighting Based on a GaN LED[J]. Journal of The Electrochemical Society,2005, 152(3):G186-G188.
    [30]Li Y Q, Van Steen J E J, Van Krevel J W H, et al. Luminescence properties of red-emitting M2Si5N8:Eu2+(M= Ca, Sr, Ba) LED conversion phosphors[J]. Journal of alloys and compounds,2006,417(1):273-279.
    [31]Xie R J, Hirosaki N, Suehiro T, et al. A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes[J]. Chemistry of materials,2006, 18(23):5578-5583.
    [32]Zhang M, Wang J, Zhang Q, et al. Optical properties of Ba2SiO4:Eu2+phosphor for green light-emitting diode (LED)[J]. materials research bulletin,2007,42(1):33-39.
    [33]杨志平,王少丽,杨广伟,等.绿色荧光粉NaCaPO4:Tb3+的制备与发光特性[J].发光学报,2008,29(1):81-84.
    [34]Ping Y, Jianhua L, Guangqing Y. Luminescence and Preparation of LED Phosphor Ca8Mg(SiO4)4Cl2:Eu2+[J]. J Rare Earth,2005,23(5):633-635.
    [35]Ding W, Wang J, Zhang M, et al. Luminescence properties of new Ca10(Si207)3Cl2:Eu2+ phosphor[J]. Chemical physics letters,2007,435(4-6):301-305.
    [36]Mishra K C, Raukas M, Ellens A, et al. A scattered wave model of electronic structure of Eu2+ in BaMgAl10O17 and associated excitation processes[J]. Journal of luminescence,2002, 96(2):95-105.
    [37]Sohn K S, Kim S S, Park H D. Luminescence quenching in thermally-treated barium magnesium aluminate phosphor[J]. Applied physics letters,2002,81(10):1759-1761.
    [38]Kim J S, Jeon P E, Choi J C, et al. Warm-white-light emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+, Mn2+ phosphor[J]. Applied Physics Letters,2004, 84 (15):2931-2933.
    [39]Kim J S, Lim K T, Jeong Y S, et al. Full-color Ba3MgSi2Og:Eu2+, Mn2+ phosphors for white-light-emitting diodes[J]. Solid state communications,2005,135(1):21-24.
    [40]Shen C, Yang Y. Synthesis and luminous characteristics of Ba2MgSiOs:Eu2+ phosphor[J]. Materials and Manufacturing Processes,2011,26(10):1335-1337.
    [41]Yang W J, Luo L, Chen T M, et al. Luminescence and energy transfer of Eu-and Mn-coactivated CaAl2Si2O8 as a potential phosphor for white-light UVLED[J]. Chemistry of materials,2005,17(15):3883-3888.
    [42]Wang H, Yang J, Zhang C M, et al. Synthesis and characterization of monodisperse spherical SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+(Ln=Eu, Tb, Dy, Sm, Er, Ho) particles with core-shell structure[J]. Journal of solid state chemistry,2009, 182(10):2716-2724.
    [43]Hong S J, Kwak M G, Han J I. Optimization of solvent condition for highly luminescent Y2O3:Eu3+ nanophosphor[J]. Current applied physics,2006,6:e211-e215.
    [44]Faucher M D, Morlotti R, Moune O K. The effects of added foreign ions in Gd2O2S:Tb3+; crystal field calculations, lifetimes, photo-luminescence and absorption spectra[J]. Journal of luminescence,2002,96(1):37-49.
    [45]Luo X, Cao W. Ethanol-assistant solution combustion method to prepare La2O2S:Yb, Pr nanometer phosphor[J]. Journal of alloys and compounds,2008,460(1):529-534.
    [46]Thirumalai J, Chandramohan R, Auluck S, et al. Controlled synthesis, optical and electronic properties of Eu3+ doped yttrium oxysulfide (Y2O2S) nanostructures[J]. Journal of colloid and interface science,2009,336(2):889-897.
    [47]Wang Y, Sun Y, Zhang J, et al. New red Y0.85Bi0.1Eu0.05V1-yMy04(M=Nb, P) phosphors for light-emitting diodes [J]. Physica. B, Condensed matter,2008,403(12):2071-2075.
    [48]Wang Y H, ZuoY Y, Gao H. Luminescence Properties of nanocrystalline YVO4:Eu3+ under UV and VUV excitation[J]. Materials Research Bulletin.2006,41(11):2147-2153.
    [49]Wu Z C, Shi J X, Wang J, et al. Synthesis and luminescent properties of SrAl2O4:Eu2+green-emitting phosphor for white LEDs[J]. Materials Letters,2006,60(29): 3499-3501.
    [50]Wu Z, Gong M, Shi J, et al. Comparative investigation on synthesis and luminescence of Sr4Al14O25:Eu2+ applied in InGaN LEDs[J]. Journal of Alloys and Compounds,2008,458(1): 134-137.
    [51]Zych E, Goetz W, Harrit N, et al. Spectroscopic properties of sintered BaMgAl10O17: Eu2+(BAM) translucent pellets:Comparison to the commercial powder [J]. Journal of alloys and compounds,2004,380(1):113-117.
    [52]Wu Z C, Shi J X, Wang J, et al. A novel blue-emitting phosphor LiSrPO4:Eu2+ for white LEDs[J]. Journal of Solid State Chemistry,2006,179(8):2356-2360.
    [53]Liu J, Wu Z, Gong M. Thermally stable luminescence of blue LiSrPO4:Eu2+ phosphor for near-UV light-emitting diodes[J]. Applied Physics B,2008,93(2-3):583-587.
    [54]Yao S S, Li Y Y, Xue L H, et al. Nanostructure and luminescent properties of sol-gel derived europium-doped Ba2Ca(BO3)2[J]. Applied physics,2010,51(3):273.
    [55]Yang C H, Pan Y X, Zhang Q Y. Enhanced white light emission from Dy3++Ce3+codoped 4 phosphors by combustion synthesis[J]. Materials Science and Engineering:B, 2007,137(1):195-199.
    [56]Zhang M, Wang J, Ding W, et al. Luminescence properties of M2MgSi2O7:Eu2+(M=Ca, Sr) phosphors and their effects on yellow and blue LEDs for solid-state lighting[J]. Optical Materials,2007,30:571-578.
    [57]Saradhi M P, Varadaraju U V. Photoluminescence Studies on Eu2+-Activated Li2SrSiO4 a Potential Orange-Yellow Phosphor for Solid-State Lighting[J]. Chemistry of materials,2006, 18(22):5267-5272.
    [58]Barry T L. Equilibria and Eu2+ Luminescence of Subsolidus Phases Bounded by Ba3MgSi2O8, Sr3MgSi2O8, and Ca3MgSi2O8[J]. Journal of The Electrochemical Society,1968, 115(7):733-738.
    [59]Liu J, Lian H, Shi C. Improved optical photoluminescence by charge compensation in the phosphor system CaMoO4:Eu3+[J]. Optical Materials,2007,29(12):1591-1594.
    [1]孙彦彬,邱关明,陈永杰,等.稀土发光材料的合成方法[J].稀土,2003,24(1):43-48.
    [2]陈衡,红外物理学,国防工业出版社[M].北京(1985).
    [3]日本一雄,无机和配位化合物的红外和拉曼光谱(第四版)[M].北京:化学工业出版社,1991,.
    [4]CASTEP Users Guide, San Diego:Accelrys Inc. (2001).
    [5]V. Milman, B.Winkler, J.A.White,etc. Electronic structure, properties, and phase stability of inorganic crystals:A pseudopotential plane-wave study[J] J.Quantum Chem.2000,77: 895-910.
    [6]J. P. Perdew, W.Yue. Accurate and simple density functional for the electronic exchange energy:Generalized gradient approximation[J]. Phys. Rev. B,1986,33,8800-8802.
    [7]J. P. Perdew, J. A. Chevary, S. H. Vosko, etc. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation[J]. Phys. Rev. B,1992,46:6671-6687.
    [1]Morell A, El Khiati N. Green phosphors for large plasma TV screens [J]. Journal of The Electrochemical Society,1993,140(7):2019-2022.
    [2]Fleet M E, Liu X. High-Pressure Rare Earth Disilicates REE2Si207(REE=Nd, Sm, Eu, Gd): Type K [J]. Journal of Solid State Chemistry,2001,161(1):166-172.
    [3]Monteverde F, Celotti G. Structural data from X-ray powder diffraction for new high-temperature phases (Y1-xLnx)2Si2O7 with Ln=Ce, Pr, Nd [J]. Journal of the European Ceramic Society,2002,22(5):721-730.
    [4]Dorenbos P. Locating lanthanide impurity levels in the forbidden band of host crystals [J]. Journal of luminescence,2004,108(1):301-305.
    [5]Howe B, Diaz A L. Characterization of host-lattice emission and energy transfer in BaMgAl10O17:Eu2+[J]. Journal of luminescence,2004,109(1):51-59.
    [6]Taghavinia N, Lerondel G, Makino H, et al. Activation of porous silicon layers using Zn2Si04:Mn2+ phosphor particles [J]. Journal of luminescence,2002,96(2):171-175.
    [7]Chang I F, Shafer M W. Efficiency enhancement in manganese-doped zinc silicate phosphor with AlPO4 substitution [J]. Applied Physics Letters,1979,35(3):229-231.
    [8]Joly A G, Chen W, Zhang J, et al. Electronic energy relaxation and luminescence decay dynamics of Eu3+in Zn2SiO4:Eu3+ phosphors [J]. Journal of luminescence,2007,126(2): 491-496.
    [9]Kandarakis I, Cavouras D, Prassopoulos P, et al. Evaluating Zn2Si04:Mn phosphor for use in medical imaging radiation detectors [J]. Applied Physics A,1998,67(5):521-525.
    [10]Alavi S, Dexpert-Ghys J, Caussat B. High temperature annealing of micrometric Zn2SiO4: Mn phosphor powders in fluidized bed [J]. Materials Research Bulletin,2008,43(10): 2751-2762.
    [11]Sohn K S, Cho B, Park H D. Photoluminescence Behavior of Manganese- Doped Zinc Silicate Phosphors [J]. Journal of the American Ceramic Society,1999,82(10):2779-2784.
    [12]Chang I F, Brownlow J W, Sun T I, et al. Refinement of zinc silicate phosphor synthesis [J]. Journal of the Electrochemical Society,1989,136(11):3532-3536.
    [13]Lin J, Sanger D U, Mennig M, et al. Sol-gel deposition and characterization of Mn2+-doped silicate phosphor films [J]. Thin Solid Films,2000,360(1):39-45.
    [14]Zhang Q Y, Pita K, Kam C H. Sol-gel derived zinc silicate phosphor films for full-color display applications [J]. Journal of Physics and Chemistry of Solids,2003,64(2):333-338.
    [15]Chakradhar R P S, Nagabhushana B M, Chandrappa G T, et al. Solution combustion derived nanocrystalline ZnSiO4:Mn phosphors:A spectroscopic view [J]. The Journal of Chemical Physics,2004,121:10250.
    [16]Yang E S, Brownlow J M. Thermal release of trapped electrons and phosphorescent decay in zinc silicate phosphors [J]. Journal of Applied Physics,1981,52(7):4753-4756.
    [17]Mai M, Feldmann C. Two-color emission of Zn2SiO4:Mn from ionic liquid mediated synthesis [J]. Solid State Sciences,2009,11(2):528-532.
    [18]Fonda G R. The Yellow and Red Zinc Silicate Phosphors [J]. The Journal of Physical Chemistry,1940,44(7):851-861.
    [19]Bhatkar V B, Omanwar S K, Moharil S V. Combustion synthesis of silicate phosphors[J]. Optical Materials,2007,29(8):1066-1070.
    [20]] Jang H S, Jeon D Y. Yellow-emitting Sr3SiO5:Ce3+, Li+ phosphor for white-light-emitting diodes and yellow-light-emitting diodes [J]. Applied Physics Letters, 2007,90:041906.
    [21]Poort S H M, Blasse G. The influence of the host lattice on the luminescence of divalent europium [J]. Journal of luminescence,1997,72:247-249.
    [22]Kim J S, Jeon P E, Choi J C, et al. Emission color variation of M2SiO4:Eu2+(M=Ba, Sr, Ca) phosphors for light-emitting diode[J]. Solid state communications,2005,133(3): 187-190.
    [23]Park J K, Choi K J, Park S H, et al. Application of Ba2+·Mg2+ Co-doped Sr2Si04:Eu Yellow Phosphor for White-Light-Emitting Diodes [J]. Journal of the Electrochemical Society,2005,152(8):H121-H123.
    [24]Kim J S, Park Y H, Kim S M, et al. Temperature-dependent emission spectra of M2SiO4:Eu2+(M=Ca, Sr, Ba) phosphors for green and greenish white LEDs[J]. Solid state communications,2005,133(7):445-448.
    [25]Kim J S, Park Y H, Choi J C, et al. Optical and Structural Properties of Eu2+doped (Sr1-xBax)2Si04 phosphors[J]. Journal of the Electrochemical Society,2005,152(9): H135-H137.
    [26]Judd B R. Optical absorption intensities of rare-earth ions [J]. Physical Review,1962, 127(3):750.
    [27]Ofelt G S. Intensities of crystal spectra of rare-earth ions [J]. The Journal of Chemical Physics,1962,37:511.
    [28]苏锵.稀土化学[M].郑州:河南科学技术出版社,1993.
    [29]Blasse G, Grabmaier B C. Luminescent materials [M]. Berlin:Springer-Verlag,1994.
    [30]Kitai A. Luminescent Materials and Applications [M]. London:John Wiley & Sons, 2008.
    [31]Ronda C. Luminescence:From Theory to application[M]. Weinheim:Wiley-VCH Verlag Gmbh,2007.
    [32]肖志国,石春山,罗昔贤.半导体照明发光材料及应用[M].北京:化学工业出版社,2008.
    [33]Wybourne B G, Smentek L. Optical spectroscopy of lanthanides:magnetic and hyperfine interactions [M]. CRC Press,2007.
    [34]Dexter D L, Schulman J H. Theory of concentration quenching in inorganic phosphors [J]. The Journal of Chemical Physics,1954,22:1063.
    [35]Tian L, Mho S. Enhanced luminescence of SrTiO3:Pr3+ by incorporation of Li+ ion [J]. Solid State Communications,2003,125(11):647-651.
    [1]Yang H, Holloway P H. Enhanced photoluminescence from CdS:Mn/ZnS core/shell quantum dots[J]. Applied physics letters,2003,82(12):1965-1967.
    [2]Li J, Wang L W. First principle study of core/shell structure quantum dots[J]. Applied physics letters,2004,84(18):3648-3650.
    [3]Lin S E, Yu B Y, Shuye J J, et al. Photoluminescence and microstructure investigation of SiO2@Y2O3:Eu photonic bandgap crystals[J]. Journal of the American Ceramic Society,2008, 91(12):3976-3980.
    [4]El Mir L, Amlouk A, Barthou C, et al. Synthesis and luminescence properties of ZnO/Zn2SiO4/SiO2 composite based on nanosized zinc oxide-confined silica aerogels[J]. Physica B:Condensed Matter,2007,388(1):412-417.
    [5]Dai Q, Song H, Pan G, et al. The luminescence properties of the ZnO@ZnWO4:Eu3+ core-shell composites[J]. Journal of Luminescence,2008,128(7):1205-1210.
    [6]符远翔,孙艳辉,葛杏心.单分散纳米二氧化硅的制备与表征[J].硅酸盐通报,2008,27(1):154-159.
    [7]郑巍峰,李金华,赵蒙,等.溶胶凝胶法制备多孔Si02薄膜的新方法[J].半导体技术,2009,34(3):225-227.
    [8]陈胜利,董鹏,杨光华,等.单分散二氧化硅形成过程中TEM观察和形成机理[J].无机材料学报,1998,13(3):368-374.
    [9]Deotare P, Kameoka J. Sorting of silica nanocups by diameter during fabrication process[J]. Journal of Nanomaterials,2007(1):1-1.
    [10]孙道兴.纳米二氧化硅的制备与表征[J].纳米科技,2008,5(3):35-39.
    [11]Kong D Y, Yu M, Lin C K, et al. Sol-gel synthesis and characterization of Zn2SiO4: Mn@SiO2 spherical core-shell particles[J]. Journal of The Electrochemical Society,2005, 152(9):H146-H151.
    [12]Zhou Q F, Chan H L W, Choy C L. Synthesis and properties of ferroelectric SrBi2Ta209 powder and films prepared by a sol-gel process[J]. Journal of non-crystalline solids,1999, 254(1):106-111.
    [1]Barry T L. Fluorescence of Eu2+ Activated phases in binary alkaline earth orthosilicate systems[J]. Journal of The Electrochemical Society,1968,115(11):1181-1184.
    [2]Blasse G, Wanmaker W L, Ter Vrugt J W, et al. Fluorescence of Eu2+ activated silicates[J]. Philips Res. Rep,1968,23:189-200.
    [3]胡运生,庄卫东,叶信宇,等.半导体照明用荧光粉的研究进展[J].新材料产业,2008,5:50-54.
    [4]Kim C H, Park J K, Park H D, et al. White light emitting diodes of GaN-based Sr2Si04: Eu and the luminescent properties[C]. Materials Science Forum.2004,449:953-956.
    [5]J. S. Kim, J. Y. Kang, P. E. Jeon, et al. GaN-based white light-emitting diodes fabricated with a mixture of Ba3MgSi208:Eu2+ and Sr2SiO4:Eu2+phosphors[J]. Jpn. J.Appl Phys. Part1, 2004,43(3):989-992.
    [6]夏威,雷明凯,罗昔贤,等.宽激发带稀土激活碱土金属硅酸盐发光材料特性研究[J].光谱学与光谱分析,2008,28(1):41-46.
    [7]Poort S H M, Janssen W, Blasse G. Optical properties of Eu2+ -activated orthosilicates and orthophosphates[J]. J. Alloys Compd.,1997,260(1-2):93-97.
    [8]Barry T L, Equilibria and Eu2+luminescence of subsolidus phases bounded by Ba3MgSi208, Sr3MgSi208, and Ca3MgSi208[J]. J. Electrochem. Soc.1968,115(7):733-738.
    [9]Poort S H M, Reijnhoudt H M, van der Kuip H O T, et al. Luminescence of Eu2+ in silicate host lattices with alkaline earth ions in a row[J]. J. Alloys Compd.,1996,241(1-2): 75-81.
    [10]Lai C W, Wang C W, Lin C H, et al. Application the yellow phosphor and luminescence characteristics of SrSiO3:xEu2+, synthesized by hydrothermal synthesis process[J]. Electron Devices and Solid-State Circuits,2007 IEEE Conference on; Tainan,Taiwan.
    [11]Kim J S, Jeon P E, Choi J C, et al. Emission color variation of M2SiO4:Eu2+(M= Ba, Sr, Ca) phosphors for light-emitting diode[J]. Solid State Commun.,2005,133(3):187-190.
    [12]Park K J, Lim M, Choi K J, et al. Luminescence characteristics of yellow emitting Ba3Si05:Eu2+ phosphor[J]. J. Mater. Sci.,2005,40(8):2069-2071.
    [13]J. K. Park, C. H. Kim, et al. Applieation of strontium silicate yellow phosphorfor white light-emitting diodes[J]. Appl. Phys. Lett.,2004,84 (10):1647-1649.
    [14]J. K. Park, K. J. Choi, et al. Embodiment of the warm white light emitting diodes by using a Ba-codoped Sr3SiO5:Eu2+ phosphor[J]. Appl.Phys.Lett.,2006,88(4):043511.
    [15]Park J K, Choik J, Park S H. Application of Ba2+ Mg2+co-doped Sr2Si04:Eu2+ yellow phosphor for white-light-emitting diodes[J]. J. Electrochem. Soc.,2005,152(8):H121-H123.
    [16]Park J K, Choi K J, Kim K N. Investigation of strontium silicate yellow phosphors for white light emitting diodes from a combinatorial chemistry[J]. Applied Physics Letters,2005, 87(3):031108-031108-3.
    [17]Park J K, Choi K J, Kim C H, et al. Optical properties of Eu2+ activated Sr2Si04 phosphor for light-emitting diodes[J]. Electrochem. Solid-State Lett.,2004,7(5):H15-H17.
    [18]Park J K, Lim M A, Kim C H, et al. White light emitting diodes of GaN-based Sr2Si04: Eu and the luminescent properties[J]. Appl. Phys. Lett.,2003,82(5):683-685.
    [19]Lakshminarasimhan N, Varadaraju U V. White-Light generation in Sr2Si04:Eu2+, Ce3+ Under near-UV excitation [J]. J. Electrochem. Soc.,2005,152(9):H152-H156.
    [20]Sun X Y, Zhang J H, Zhang X, et al. A green-yellow emitting β-Sr2Si04:Eu2+ phosphor for near ultraviolet chip white-light-emitting diode[J]. J. Rare Earth.,2008,26(3):421-424.
    [21]Sun X Y, Zhang J H, Zhang X, et al. A white light phosphor suitable for near ultraviolet excitation[J]. J. Lumin.,2007,122-123:955-957.
    [22]Blasse G, Grabmaier B C. Luminescent Materials[M], Berlin:Springer-Verg,1994.
    [23]李盼来,杨志平,王志军,等Sr2SiO4:Dy3+材料制备及发光特性[J].高等学校化学学报,2008,10(3):26-29.
    [24]Dexter D L. A theory of sensitized luminescence in solids[J]. The Journal of Chemical Physics,1953,21:836.
    [25]Wybourne B G, Smentek L. Optical spectroscopy of lanthanides:magnetic and hyperfine interactions[M]. New York:CRC Press,2007.
    [26]Van Uitert L G. An empirical relation fitiing the position in energy of the lower d-band edge for Eu2+or Ce3+ in various compounds[J]. J. Lumin.,1984,29(5-6):1-9.
    [27]Van Uitert L G. An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds[J]. Journal of luminescence,1984.29(5):1-9.
    [28]Dorenbos P. Crystal field splitting of lanthanide 4fn-15d-levels in inorganic compounds[J]. J.Alloys Compd.,2002,34 (1-2):156-159.
    [29]Sivakumar V, Varadaraju U V. Ce3+/Eu3+ energy transfer studies on BaMgSiO4 A green phosphor for three band white LEDs[J]. J. Electrochem. Soc.,2007,154(5):167-171.
    [30]Kim J S, Kim J S, Kim T W, et al. Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors [J]. Solid State Commun.,2004,131(8): 493-497.
    [31]Lammers M J J, Blasse G. Luminescence of Tb3+ and Ce3+ Activated rare earth silicates[J]. J. Electrochem. Soc:Solid-State Sci. Technol.,1987,134(8):2068-2072.
    [32]Dorenbos P. Relation between Eu2+ and Ce3+ f←→d-transition energies in inorganic compounds[J]. J. Phys.:Condens. Matter,2003,15(27):4797-4807.
    [33]Dorenbos P. The Eu3+ charge transfer energy and the relation with the band gap of compounds[J]. J. Lumin.,2005,111(1-2):89-104.
    [1]Palilla F C, Levine A K, Tomkus M R. Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium[J].Journal of the Electrochemical Society, 1968,115(6):642-644.
    [2]王东,王民权.碱土铝酸盐掺杂二价铕离子磷光体的研究、应用和发展.材料科学与工程[J].1998,16(4):40-43.
    [3]宋庆梅,黄锦斐,吴茂钧.铝酸锶铕的合成与发光的研究[J].发光学报,1991,12(2):144-149.
    [4]肖志国.蓄光型发光材料及其制品[M].北京:化学工业出版社,2002.75.
    [5]肖志国.长余辉夜光材料[P].中国专利:CN1157312 A,1997-08-20.
    [6]Hajime Yamamoto, Tkashi Matsuzawa. Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+[J]. International Conference Luminescence.1996,8:131-133.
    [7]Zhao C, Chen D. Synthesis of CaAl2O4:Eu2+, Nd3+ long persistent phosphor by combustion processes and its optical properties [J]. Materials Letters,2007,61(17): 3673-3675.
    [8]Yamamoto H, Matsuzawa T. Mechanism of long phosphorescence of SrAl2O4:Eu2+, Dy3+ and CaAl2O4:Eu2+, Nd3+[J]. Journal of luminescence,1997,72:287-289.
    [9]Tang Z, Zhang F, Zhang Z, et al. Luminescent properties of SrAl2O4:Eu2+, Dy3+ material prepared by the gel method[J]. Journal of the European Ceramic Society,2000,20(12): 2129-2132.
    [10]He Z, Wang X, Yen W M. Investigation on charging processes and phosphorescent efficiency of SrAl2O4:Eu2+, Dy3+[J]. Journal of luminescence,2006,119:309-313.
    [11]Nag A, Kutty T R N. Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4:Eu, Dy [J]. Journal of alloys and compounds,2003,354(1):221-231.
    [12]Yu M, Lin J, Wang Z, et al. Fabrication, patterning, and optical properties of nanocrystalline YVO4:A(A= Eu3+, Dy3+, Sm3+, Er3+) phosphor films via sol-gel soft lithography [J]. Chemistry of materials,2002,14(5):2224-2231.
    [13]Kim K B, Kim Y I, Chun H G, et al. Structural and optical properties of Eu2+ phosphor[J]. Chemistry of materials,2002,14(12):5045-5052.
    [14]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社,2005.
    [15]孙家跃,杜海燕,胡文祥.固体发光材料[M].北京:化学工业出版社,2003.
    [16]Blasse G, Grabmaier B C. Luminescent Materials[M], Berlin:Springer-Verg,1994.
    [17]Kitai A. Luminescent Materials and Applications[M]. London:John Wiley & Sons, 2008.
    [18]Ronda C. Luminescence:From Theory to application[M]. Weinheim:Wiley-VCH Verlag Gmbh,2007.
    [19]肖志国,石春山,罗昔贤.半导体照明发光材料及应用[M].北京:化学工业出版社,2008.
    [20]Wybourne B G, Smentek L. Optical spectroscopy of lanthanides:magnetic and hyperfine interactions[M]. CRC Press,2007.
    [21]Potdevin A, Chadeyron G, Boyer D, et al. Sol-gel based YAG:Ce3+ powders powders for applications in LED devices [J]. Physica Status Solidi (c),2007,4(1):65-69.
    [22]Chander H. Development of nanophosphors-A review[J]. Materials Science and Engineering:R:Reports,2005,49(5):113-155.
    [23]Missions D T I G W. LED lighting technology:lessons from the USA [J]. Report of DTI Global Watch Mission,2006.
    [24]Narukawa Y, Narita J, Sakamoto T, et al. Recent progress of high efficiency white LEDs [J]. Physica Status Solidi (a),2007,204(6):2087-2093.
    [25]Sommer C, Wenzl F P, Hartmann P, et al. Silicate phosphors and white LED technology: improvements and opportunities[C]. Optical Engineering Applications. International Society for Optics and Photonics,2007:66690O-66690O-8.
    [26]Mills A. Phosphors to brighten your future[J]. III-Vs Review,2006,19(5):36-39.
    [27]Xie R J, Hirosaki N. Silicon-based oxynitride and nitride phosphors for white LEDs-A review [J]. Science and Technology of Advanced Materials,2007,8(7):588-600.
    [28]Bergh A, Craford G, Duggal A, et al. The promise and challenge of solid-state lighting [J]. Physics Today,2001,54:42.
    [29]Rohwer L S, Srivastava A M. Development of Phosphors for LEDs [J]. Interface-Electrochemical Society,2003,12(2):36-41.
    [30]Fonda G R. Characteristics of Silicate Phosphors[J]. Journal of Physical Chemistry,1939, 43(5):561-577.
    [31]Lakshminarasimhan N, Varadaraju U V. White-light generation in Sr2SiO4:Eu2+, Ce34 under near-UV excitation a novel phosphor for solid-state lighting[J]. Journal of The Electrochemical Society,2005,152(9):H152-H156.
    [32]Sun X, Zhang J, Zhang X, et al. A green-yellow emitting β-Sr2SiO4:Eu2+ phosphor for near ultraviolet chip white-light-emitting diode[J]. Journal of Rare Earths,2008,26(3): 421-424.
    [33]Sun X, Zhang J, Zhang X, et al. A white light phosphor suitable for near ultraviolet excitation[J]. Journal of luminescence,2007,122:955-957.
    [34]Qiao Y, Zhang X, Ye X, et al. Photoluminescent properties of Sr2SiO4:Eu3+ and Sr2SiO4:Eu2+ phosphors prepared by solid-state reaction method [J]. Journal of rare earths, 2009,27(2):323-326.
    [35]张中太,张俊英.无机光致发光材料及应用[M].北京:化学工业出版社,2005.
    [36]Holsa J, Aitasalo T, Jungner H, et al. Role of defect states in persistent luminescence materials[J]. Journal of alloys and compounds,2004,374(1):56-59.
    [37]史光国,崔凯.半导体发光二极管及固体照明[M].北京:科学出版社,2007.
    [38]Nakamura S, Fasol G. The blue laser diode:GaN based light emitters and lasers[M]. Berlin,Germany:Springer-Verlag,1997.
    [39]Yuan Z X, Chang C K, Mao D L, et al. Effect of composition on the luminescent properties of Sr4AI14O25:Eu2+, Dy3+ phosphors[J]. Journal of alloys and compounds,2004, 377(1):268-271.
    [40]Zhao C, Chen D, Yuan Y, et al. Synthesis of Synthesis of Sr4AI14025:Eu2+, Dy3+ phosphor nanometer powders by combustion processes and its optical properties [J]. Materials science & Engineering B, Solid-state materials for advanced technology,2006,133(1-3):200-204.
    [41]Blasse G, Bril A. Fluorescence of Eu2+ activated alkaline-earth aluminates [J]. Philips Res. Rep,1968,23:201-206.
    [1]罗文雄,黄世华,由芳田,等.YBO3:Eu3+纳米晶发光特性[J]物理学报,2007,56(3):1765-1769.
    [2]Cheng W D, Zhang H, Lin Q S, et al. Syntheses, crystal and electronic structures, and linear optics of LiMBO3(M=Sr, Ba) orthoborates[J]. Chem. Mater,2001,13(5):1841-1847.
    [3]何贵平,张弱,姚若河.Er3+和Ce3+/Ce4+掺杂β-BaB2O4纳米棒的制备、结构与发光性质[J].物理化学学报,2010,26(3):85-690.
    [13]王继磊,王达健,李岚,等.硅酸盐单基质白光LED荧光体的制备和光谱性质[J].发光学报,2006,4(27):463-468.
    [4]Dexter D L, Schulman J H. Theory of concentration quenching in inorganic phosphors[J]. J. Chem. Phys.1954,22(6):1063-1071.
    [5]Tian L H, Mho S I. Enhanced luminescence of SrTiO3:Pr3+ by incorporation of Li+ ion[J]. Solid State Communications,2003,125(11-12):647-651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700