用户名: 密码: 验证码:
锰氧化物纳微米材料的合成与性能表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了α-MnO_2纳米棒、α-MnO_2球和尖晶石LiMn_2O_4微球的合成,并对所得样品的电化学性能进行了表征。具体工作如下:
     采用简单的水热法在酸性体系下分解KMnO_4制备了单晶的α-MnO_2纳米棒。SEM和TEM结果表明,所合成α-MnO_2纳米棒的直径约30~70 nm,最大长度约2.6μm。通过分析不同水热反应时间所得MnO_2产物的相结构和微观形貌,提出α-MnO_2纳米棒的形成应经历了一“团聚—溶解—重结晶—各向异性生长—奥斯特瓦尔德熟化”过程。同时详细考察了各种实验条件对产物晶型和形貌的影响。电化学性能研究发现水热反应5和8 h所合成MnO_2产物的电容行为较好,初始放电比容量分别为84.9和75.3 F╱g。模拟锌锰电池测试发现所合成的α-MnO_2纳米棒具有良好的放电性能,在62.5和375 mA/g速率下的放电比容量分别为278和235 mAh/g。
     通过温和的湿化学法合成了α-MnO_2球。SEM和TEM分析表明所合成产物是由直径0.3~3μm的球形颗粒构成。条件实验发现温和的反应条件更有利于α-MnO_2球的形成,随着反应温度的升高,所得产物的形貌也将发生变化,讨论了α-MnO_2球的形成机理。模拟锂离子电池性能研究表明,在室温下所合成的α-MnO_2具有良好的电化学性能,其初始放电比容量为206.2 mAh/g,15次循环后的放电比容量仍为154.7 mAh/g。模拟锌锰电池测试发现70℃条件下所得α-MnO_2产物具有良好的放电特性,在50和500 mA/g速率下的放电比容量分别为280和168 mAh/g。
     以所制备的α-MnO_2球为前驱体,分别采用溶剂热反应和高温固相反应合成了LiMn_2O_4产物。SEM分析发现溶剂热合成的LiMn_2O_4形貌较不规则,主要为多面体颗粒;而高温固相法合成的LiMn_2O_4材料保持了好的球形形貌,颗粒尺寸为1~10μm。模拟锂离子电池性能研究表明,高温固相反应合成的LiMn_2O_4微球的电化学性能优于溶剂热反应合成的LiMn_2O_4产物。
In this dissertation,α-MnO_2 nanorods,α-MnO_2 spheres, and spinel LiMn_2O_4 microspheres have been synthesized, respectively. Their electrochemical properties have been characterized, accordingly. The details are presented as follows.
     Firstly, single-crystalα-MnO_2 nanorods were prepared by simple hydrothermal decomposition of KMnO_4 under acidic conditions. SEM and TEM images indicate that the as-synthesizedα-MnO_2 products are composed of nanorods with diameters 30-70 nm and have a length up to2.6μm. The growth process of the MnO_2 nanorods was studied by analyzing phase structures and morphologies of the products obtained at different reaction stages. An "agglomeration-dissolution/recrystallization-anisotropic growth-Ostwald ripening" process was proposed to explain the formation ofα-MnO_2 nanorods. Meantime, the effects of various experimental parameters on the phases and morphologies of the final products were investigated in detail. Electrochemical studies show that the MnO_2 nanorods prepared for 5 and 8 h exhibit ideal capacitive behaviors with initial discharge capacities of 84.9 and 75.3 F/g, respectively. In addition, the as-preparedα-MnO_2 nanorods display fine discharge characteristics in laboratory-made Zn-MnO_2 cells. The discharge capacities of theα-MnO_2 nanorods are 278 and 235 mAh/g, respectively, at current rates of 62.5 and 375 mA/g, accordingly.
     Secondly,α-MnO_2 spheres were synthesized by a mild wet chemical method. SEM and TEM images indicate that the resultant products consist of spherical particles with diameters ranging from 0.3 to 3μm. It is found that the mild reaction condition favors the formation ofα-MnO_2 spheres and the morphologies of the MnO_2 products vary with the increase of reaction temperatures. The formation of theα-MnO_2 spheres was discussed based on the experimental results. Electrochemical studies show that theα-MnO_2 nanorods obtained at room temperature exhibit fine electrochemical properties in laboratory-made Li-ion cells. The initial discharge capacity was 206.2 mAh/g and the discharge capacity retained 154.7 mAh/g over 15 cycles. In addition, it is seen that the products prepared at 70℃show excellent discharge characteristics in laboratory-made Zn-MnO_2 cells with discharge capacities of 280 and 235 mAh/g, respectively, at current rates of 50 and 500 mA/g, accordingly.
     Thirdly, spinel LiMn_2O_4 products were synthesized by solvothermal and high temperature solid-state reaction, respectively, by using the pre-obtainedα-MnO_2 spheres as precursors. SEM images indicate that the resulting products prepared by solvothermal reaction exhibit irregular shapes while the products obtained by solid-state reaction are microspheres having diameters of 1-10μm. Electrochemical studies show that the LiMn_2O_4 products prepared by solid-state reaction exhibit better electrochemical properties that that prepared by solvothermal method.
引文
[1] Brock S L, Duan N, Tian Z R, et al. A review of porous manganese oxide materials[J]. Chem. Mater., 1998, 10: 2619-2628.
    
    [2] Shen Y F, Zerger R P, DeGuzman R N, et al. Manganese oxide octahedral molecular sieves: preparation, characterization, and applications[J]. Science, 1993, 260:511-515.
    [3] DeGuzman, Shen Y F, Neth E J, et al. Synthesis and characterization of octahedral molecular sieves (OMS-2) having the hollandite structure[J]. Chem. Mater., 1994,6:815-821.
    [4] Hill J R, Freeman C M, Rossouw M H. Understanding γ-MnO_2 by molecular modeling[J]. J. Solid State Chem., 2004,177: 165-175.
    [5] Xia G G, Tong W, Tolentino E N, et al. Synthesis and characterization of nanofibrous sodium manganese oxide with a 2×4 tunnel structure[J]. Chem. Mater., 2001, 13:1585-1592.
    [6] Shen X F, Ding Y S, Liu J, et al. Synthesis, characterization, and catalytic applications of manganese oxide octahedral molecular sieve (OMS) nanowires with a 2×3 tunnel structure[J] . Chem. Mater., 2004, 16: 5327-5335.
    [7] Julien C, Massot M, Baddour-Hadjean R, et al. Raman spectra of birnessite manganese dioxides[J]. Solid State Ionics, 2003, 159: 345-356.
    [8] Schlorb H, Bungs M, Plieth. Synthesis and electrochemical studies of manganese oxides with spinel structure in aqueous electrolyte (9M KOH)[J]. Electrochim. Acta, 1997, 42(17): 2619-2625.
    [9] Bernard S, Chazal P, Mazet M. Removal of organic compounds by adsorption on pyrolusite (β-MnO_2)[J]. Water Res., 1997, 31(5): 1216-1222.
    [10]Koyanaka H, Matsubaya O, Koyanaka Y, et al. Quantitative correlation between Li absorption and H content in manganese oxide spinel λ-MnO_2[J]. J. Electroanal. Chem., 2003, 559: 77-81.
    
    [11] Tanaka Y, Tsuji M, Tamaura. ESCA and thermodynamic studies of alkali metal ion exchange reactions on an α-MnO_2 phase with the tunnel structure[J]. Phys. Chem. Chem. Phys., 2000,2: 1473-1479.
    
    [12]Kanungo S B, Tripathy S S, Mishra S K, et al. Adsorption of Co~(2+), Ni~(2+), Cu~(2+), and Zn~(2+) onto amorphous hydrous manganese dioxide from simple (1-1) electrolyte solution[J]. J. Colloid Interf. Sci., 2004, 269: 11-21.
    [13] Tripathy S S, Kanungo S B. Adsorption of Co~(2+), Ni~(2+), Cu~(2+) and Zn~(2+) from 0.5 M NaCl and major ion sea water on a mixture of δ-MnO_2 and amorphous FeOOH[J]. J. Colloid Interf. Sci., 2005, 284: 30~38.
    [14] 蔡冬鸣,任南琪.不同晶型锰氧化物去除水中亚甲基蓝染料的研究[J].环境科学学报,2006,26(12):1971~1976.
    [15] Tripathy S S, Bersillon J L, Gopal K. Adsorption of Cd~(2+) on hydrous manganese dioxide from aqueous solutions[J]. Desalination, 2006, 194: 11~21.
    [16] Mustafa S, Zaman M I, Khan S. pH effect on phosphate sorption by crystalline MnO_2[J]. J. Colloid Interf. Sci., 2006, 301: 370~375.
    [17] Xu R, Wang X, Wang D S, et al. Surface structure effects in nanoerystal MnO_2 and Ag/MnO_2 catalytic oxidation of CO[J]. J. Catal., 2006, 237: 426~430.
    [18] 唐幸福,黄秀敏,邵建军,等.氧化锰八面体分子筛纳米棒的合成及其催化甲醛低温氧化性能[J].催化学报,2006,27(2):97~99.
    [19] Zhou H, Shen Y E Wang J Y, et al. Studies of decomposition of H_2O_2 over manganese oxide octahedral molecular sieve materials[J]. J. Catal., 1998, 176: 321~328.
    [20] Lou J D, Xu Z N. Solvent free oxidation of alcohols with manganese dioxide[J]. Tetrahedron Lett., 2002, 43: 6149~6150.
    [21] Makwana V D, Son Y C, Howell A R, et al. The role of lattice oxygen in selective benzyl alcohol oxidation using OMS-2 catalyst: a kinetic and isotope-labeling study[J]. J. Catal., 2002, 210: 46~52.
    [22] Kozawa A, Yeager J F. Cathodic reduction mechanism of MnOOH to Mn(OH)_2 in alkaline electrolyte[J]. J. Electrochem. Soc., 1968, 115(10): 1003~1007.
    [23] Kanungo S B, Parida K M, Sant B R. Studies on MnO_2-Ⅱ. Relationship between physicochemical properties and electrochemical activity of some synthetic MnO_2 of different crystallographic forms[J]. Electrochim. Acta, 1981, 26(8): 1147~1156.
    [24] Ivanova N D, Kirillov S A, Mishchenko A B. Electrochemical behaviour of non-stoichiometric manganese oxide-hydroxide[J]. Electrochim. Acta, 1993, 38(15): 2305~2307.
    [25] Abbas H, Nasser S A. Hydroxyl as a defect of the manganese dioxide lattice and its application to the dry cell battery[J]. J. Power Sources, 1996, 58(1): 15~21.
    [26] 朱立才,袁中直,李伟善.化学组成对EMD电化学行为的影响[J].无机材料学报,2005,20(2):489~493.
    [27] Ananth M V, Pethkar S, Dakshinamurthi K. Distortion of MnO_6 octahedra and electrochemical activity of Nstutite-based MnO_2 polymorphs for alkaline electrolytes-an FTIR study[J]. J. Power Sources, 1998, 75: 278~282.
    [28] Qu D Y. Investigation of the porosity of electrolytic manganese dioxide and its performance as alkaline cathode material[J]. J. Power Sources, 2006, 156: 692~699.
    [29] 努尔买买提,夏熙.纳米α-MnO_2的制备及其性能研究[J].无机材料学报,2000,15(5):802~806.
    [30] 赵峰鸣,马淳安,童少平,等.喷雾热解法制备超细MnO_2及其电化学性能[J].化工学报,2005,56(5):925~931.
    [31] 刘立清,王建明,吴梅银,等.超细γ-MnO_2的物理性质及电化学性能[J].功能材料,2005,3(36):404~407.
    [32] Cheng F, Chen J, Gou X, et al. High-power alkaline Zn-MnO_2 batteries using γ-MnO_2 nanowires/nanotubes and electrolytic zinc power[J]. Adv. Mater., 2005, 17: 2753~2756.
    [33] Wei Z, Huang W, Zhang S, et al. Carbon-based air electrodes carrying MnO_2 in zinc-air batteries[J]. J. Power Sources, 2000, 91: 83~85.
    [34] Klapste B, Vondrak J, Velicka J. MnO_x/C composites as electrode materials Ⅱ. Reduction of oxygen on bifunctional catalysts based on manganese oxides[J]. Electrochim. Acta, 2002, 47: 2365~2369.
    [35] Cao Y L, Yang H X, Ai X P, et al. The mechanism of oxygen reduction on MnO_2-catalyzed air cathode in alkaline solution[J]. J. Electroanal. Chem., 2003, 557: 127~134.
    [36] Feng E X, Dong H, Wang Y D, et al. A simple and high efficient direct borohydride fuel cell with MnO_2-catalyzed cathode[J]. Electrochem. Commun., 2005, 7: 449~452.
    [37] Wang Y G, Xia Y Y. A direct borohydride full cell using MnO_2-catalyzed cathode and hydrogen storage alloy anode[J]. Electrochem. Commun., 2006, 8: 1775~1778.
    [38] Shao-Horn Y, Hackney S A, Johnson C S, et al. Microstructural features of α-MnO_2 electrodes for lithium batteries[J]. J. Electrochem. Soc., 1998, 145(2): 582~589.
    [39] Dai J, Li S F, Siow K S, et al. Synthesis and characterization of the hollandite-type MnO_2 as a cathode material in lithium batteries[J]. Electrochim. Acta, 2000, 45: 2211~2217.
    [40] Kumagai N, Komaba S, Sakai H, et al. Preparation of todorokite-type manganese-based oxide and its application as lithium and magnesium rechargeable battery cathode[J]. J. Power Sources, 2001, 97-98: 515~517.
    [41] Tsuda M, Arai H, Nemoto Y, et al. Electrode performance of romanechite for rechargeable lithium batteries[J]. J. Power Sources, 2001, 102: 135~138.
    [42] Yagi H, Ichikawa T, Hirano A, et al. Electrode characteristics of manganese oxides prepared by reduction method[J]. Solid State Ionics, 2002, 154-155: 273~278.
    [43] Hill L I, Verbaere A, Guyomard D. MnO_2 (α-, β-, γ-) compounds prepared by hydrothermat-electrochemical synthesis: characterization, morphology, and lithium insertion behavior[J]. J. Power Sources, 2003, 119-121: 226~231.
    [44] Lee H Y, Goodenough J B. Supercapacitor behavior with KCI electrolyte[J]. J. Solid State Chem., 1999, 144: 220~223.
    [45] Reddy R N, Reddy R G. Sol-gel MnO_2 as an electrode material for electrochemical capacitors[J]. J. Power Sources, 2003, 124: 330~337.
    [46] Toupin M, Brousse T, Be1anger D. Charge storage mechanism of MnO_2 electrode used in aqueous electrochemical capacitor[J]. Chem. Mater., 2004, 16: 3184~3190.
    [47] Subramanian V, Zhu H, Vajtai R, et al. Hydrothermal synthesis and pseudocapacitance properties of MnO_2 nanostructures[J]. J. Phys. Chem. B, 2005, 109: 20207~20214.
    [48] Chang J K, Chen Y L, Tsai W T. Effect of heat treatment on material characteristics and pseudo-capacitive properties of manganese oxide prepared by anodic deposition[J]. J. Power Sources, 2004, 135: 344~353.
    [49] 刘素琴,王珏,黄可龙,等.水热处理对二氧化锰电容性能的影响[J].无机化学学报,2006,22(10):1783~1787.
    [50] 邓梅根,张治安,胡永达,等.超级电容器碳纳米管与二氧化锰复合电极材料的研究[J].硅酸盐学报,2004,32(4):411~415.
    [51] 张治安,杨帮朝,邓梅根,等.纳米无定型MnO_2/碳黑复合电极的电容特性研究[J].硅酸盐学报,2005,33(2):164~169.
    [52] 汪形艳,王先友,侯天兰,等.纳米α-MnO_2/活性碳混合电极电容器的性能[J].化工学报,2006,57(2):442~447.
    [53] Yuan A, Zhang Q. A novel hybrid manganese dioxide/activated carbon supercapacitor using lithium hydroxide electrolyte[J]. Electrochem. Commun., 2006, 8: 1173~1178.
    [54] Liu X M, Fu S Y, Huang C J. Synthesis, characterization and magnetic properties of β-MnO_2 nanorods[J]. Powder Teehnol., 2005, 154: 120~124.
    [55] Luo F, Song W, Yan C H. Enhanced room temperature magnetoresistance effect in oxygen defective β-MnO_2 microcrystal[J]. Chem. Phys. Lett., 2006, 431: 337~340.
    [56] Beyene N W, Kotzian P, Schachl K, et al. (Bio)sensors based on manganese dioxide-modified carbon substrates: retrospections, further improvements and applications[J]. Talanta, 2004, 64: 1151~1159.
    [57] Bach S, Henry M, Baffler N, et al. Sol-gel synthesis of manganese oxides[J]. J. Solid State Chem., 1990, 88(2): 325~333.
    [58] Long J W, Stroud R M, Rolison D R. Controlling the pore-solid architecture of mesoporous, high surface area manganese oxides with the birnessite structure[J]. J. Non-Cryst. Solids, 2001, 285: 288~294.
    [59] 马淳安,楼颖伟,赵峰鸣,等.纳米MnO_2的制备及电化学性能研究[J].中国有色金属学报,2004,14(10):1736~1740.
    [60] 汪形艳,王先友,黄伟国.溶胶—凝胶模板法合成MnO_2纳米线[J].材料科学与工程学报,2005,23(1):112~115.
    [61] Toupin M, Brousse T, Belanger D. Influence of microstructure on the charge storage properties of chemically synthesized manganese dioxide[J]. Chem. Mater., 2002, 14: 3946~3952.
    [62] Kijima N, Yasuda H, Sato T, et al. Preparation and characterization of open tunnel oxide α-MnO_2 precipitated by ozone oxidation[J]. J. Solid State Chem., 2001, 159: 94~102.
    [63] Pagnanelli F, Sambenedetto C, Furlani G, et al. Preparation and characterization of chemical manganese dioxide: effect of the operating conditions[J]. J. Power Sources, 2007, 166: 567~577.
    [64] 张治安,杨邦朝,邓梅根,等.超级电容器纳米氧化锰电极材料的合成与表征[J].化学学报,2004,62(17):1617~1620.
    [65] Kim S H, Kim S J, Oh S M. Preparation of layered MnO_2 via thermal decomposition of KMnO_4 and its electrochemical characterizations[J]. Chem. Mater., 1999, 11: 557~563.
    [66] Komaba S, Kumagai N, Chiba S. Synthesis of layered MnO_2 by calcination of KMnO_4 for rechargeable lithium battery cathode[J]. Electrochim. Acta, 2000, 31~37.
    [67] Bach S, Pereira-Ramos J P, Baffler N. Synthesis and characterization of lamellar MnO_2 obtained from thermal decomposition of NaMnO_4 for rechargeable Lithium cells[J]. J. Solid State Chem., 1995, 120: 70~73.
    [68] Tang W, Yang X, Liu Z, et al. Preparation of β-MnO_2 nanocrystal/acetylene black composites for lithium batteries[J]. J. Mater. Chem., 2003, 13: 2989~2995.
    [69] Li Q, Wang Y, Luo G. pH-response of nanosized MnO_2 prepared with solid state reaction route at room temperature[J]. Sensor. Actuat. B-Chem., 1999, 59: 42~47.
    [70] Li Q, Luo G, Li H, et al. Preparation of ultrafine MnO_2 powders by the solid state method reaction of KMnO_4 with Mn(Ⅱ) salts at room temperature[J]. J. Mater. Process. Tech., 2003, 137: 25~29.
    [71] 李娟,李清文,夏熙,等.纳米MnO_2粉末的固相合成及其电化学性能的研究[J].应用科学学报,1999,17(2):245~249.
    [72] Ding Y S, Shen X F, Sithambararn S, et al. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method[J]. Chem. Mater., 2005, 17: 5382~5389.
    [73] Chen R, Zavalij, Whittingham M S. Hydrothermal synthesis and characterization of K_xMnO_2'yH_2O[J]. Chem. Mater., 1996, 8: 1275~1280.
    [74] Liu Y P, Qian Y T, Zhang Y H, et al. γ-Ray radiation preparation and characterization of nanocrystalline manganese dioxide[J]. Mater. Res. Bull., 1997, 32(8): 1055~1062.
    [75] Liao M Y, Lin J M, Wang J H, et al. Electrochemical synthesis of α-MnO_2 oetahedral molecular sieve[J]. Eleetrochem. Commun., 2003, 5: 312~316.
    [76] Prasad K R, Miura N. Potentiodynamically deposited nanostruetured manganese dioxide as electrode material for electrochemical redox supercapacitors[J]. J. Power Sources, 2004, 135: 354~360.
    [77] Zolfaghari A, Ataherian F, Ghaemi M, et al. Capacitive behavior of nanostructured MnO_2 prepared by sonochemistry method[J]. Electrochim. Acta, 2007, 52: 2806~2814.
    [78] Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures: synthesis, characterization, and applications[J]. Adv. Mater., 2003, 15(5): 353~389.
    [79] Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowires nanolasers[J]. Science, 2001, 292: 1897~1899.
    [80] Xiao T D, Strutt P R, Benaissa M, et al. Synthesis of high active-site density nanofibrous MnO_2-base materials with enhanced permeabilities[J]. Nanostruct. Mater., 1998, 10: 1051~1061.
    [81] Wang X, Li Y. Selected-control hydrothermal synthesis of α-and β-MnO_2 single crystal nanowires[J]. J. Am. Chem. Soc., 2002, 124(12): 2880~2881.
    [82] Wang X, Li Y. Rational synthesis of α-MnO_2 single-crystal nanorods[J]. Chem. Commun., 2002: 764~765.
    [83] Wang X, Li Y. Synthesis and formation mechanism of manganese dioxide nanowires/nanorods[J]. Chem. Eur. J., 2003, 9(1): 300~306.
    [84] Yuan Z Y, Zhang Z, Du G, et al. A simple method to synthesize single-crystalline manganese oxide nanowires[J]. Chem. Phys. Lett., 2003, 378: 349~353.
    [85] Wei M, Konishi Y, Zhou H, et al. Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process[J]. Nanotechnology, 2005, 16: 245~249.
    [86] Yue G H, Yan P X, Yan D, et al. Solvothermal route synthesis of single-crystalline α-MnO_2 nanowires[J]. J. Cryst. Growth, 2006, 294: 385~388.
    [87] Xiong Y, Xie Y, Li Z, et al. Growth of well-alighed γ-MnO_2 monocrystalline nanowires through a coordination-polymer-precursor route[J]. Chem. Eur. J., 2003, 9(7): 1645~1651.
    [88] Zhang Y C, Qian T, Hu X Y, et al. Simple hydrothermal preparation of γ-MnOOH nanowires and their low-temperature thermal conversion to β-MnO_2 nanowires[J]. J. Cryst. Growth, 2005, 280: 652~657.
    [89] Yang Z, Zhang Y, Zhang W, et al. Nanorods of manganese oxides: synthesis, characterization and catalytic application[J]. J. Solid State Chem., 2006, 179: 679~684.
    [90] Gao L, Fei L, Zheng H. Preparation of α-MnO_2 nanowires through a γ-MnOOH precursor route[J]. Mater. Lett., 2007, 61: 1785~1788.
    [91] Chen Y, Liu C, Li F, et al. Preparation of single-crystal α-MnO_2 nanorods and nanoneedles from aqueous solution[J]. J. Alloy. Compd., 2005, 397: 282~285.
    [92] Gao Y, Wang Z, Wan J, et al. A facile route to synthesize uniform single-crystalline α-MnO_2 nanowires[J]. J. Cryst. Growth, 2005, 279: 415~419.
    [93] Chen X, Li X, Jiang Y, et al. Rational synthesis of α-MnO_2 and γ-Mn_2O_3 nanowires with the electrochemical characterization of α-MnO_2 nanowires for supercapacitor[J]. Solid State Commun., 2005, 136: 94~96.
    [94] Liu Y, Zhang M, Zhang J, et al. A simple method of fabricating large-area α-MnO_2 nanowires and nanorods[J]. J. Solid State Chem., 2006, 179: 1757~1761.
    [95] Wang X, Wang X, Huang W, et al. Sol-gel template synthesis of highly ordered MnO_2 nanowire arrays[J]. J. Power Sources, 2005, 140: 211~215.
    [96] Wu J, Zhang H, Ma X, et al. Synthesis and characterization of sing crystalline MnOOH and MnO_2 nanorods by means of the hydrothermal process assisted with CTAB[J]. Mater. Lett., 2006, 60: 3895~3898.
    [97] Chen Y, Zhang M L, Jing X Y. Preparation and characterization of rod-shaped MnO_2 crystal[J]. Solid State Commun., 2005, 133: 121~123.
    [98] Zheng D, Sun S, Fan W, et al. One-step preparation of single-crystalline β-MnO_2 nanotubes[J]. J. Phys. Chem. B, 2005, 109: 16439~16443.
    [99] Li L, Chu Y, Liu Y, et al. Synthesis and shape evolution of novel cuniform-like MnO_2 in aqueous solution[J]. Mater. Lett., 2007, 61: 1609~1613.
    [100] Yang L X, Zhu Y J, Wang W W, et al. Synthesis and formation mechanism of nanoneedles and nanorods of manganese oxide octahedral molecular sieve using an ionic liquid[J]. J. Phys. Chem. B, 2006, 110: 6609~6614.
    [101] Cheng F, Zhao J, Song W, et al. Facile controlled synthesis of MnO_2 nanostructures of novel shapes and their application in batteries[J]. Inorg. Chem., 2006, 45: 2038~2044.
    [102] Yang R, Wang Z, Dai L, et al. Synthesis and characterization of single-crystalline nanorods of α-MnO_2 and γ-MnOOH[J]. Mater. Chem. Phys., 2005, 93: 149~153.
    [103] Wu C, Xie Y, Wang D, et al. Selected-control hydrothermal synthesis of γ-MnO_2 3D nanostructures[J]. J. Phys. Chem. B, 2003, 107: 13583~13587.
    [104] Li Z, Ding Y, Xiong Y, et al. One-step solution-based catalytic route to fabricate novel α-MnO_2 hierarchical structures on a large scale[J]. Chem. Commun., 2005: 918~920.
    [105] Li Z, Ding Y, Xiong Y, et al. Rational growth of various α-MnO_2 hierarchical structures and β-MnO_2 nanorods via a homogeneous catalytic route[J]. Cryst. Growth Des., 2005, 5(5): 1953~1958.
    [106] Li B, Rong G, Xie Y, et al. Low-temperature synthesis of α-MnO_2 hollow urchins and their application in reehargeable Li~+ batteries[J]. Inorg. Chem., 2006, 45: 6404~6410.
    [107] Tang B, Wang G, Zhuo L, et al. Novel dandelion-like beta-manganese dioxide microstructures and their magnetic properties[J]. Nanotechnology, 2006, 17:947-951.
    [108] Yuan J, Li W N, Gomez S, et al. Shape-controlled synthesis of manganese oxide octahedral molecular sieve three-dimensional nanostructures [J]. J. Am. Chem. Soc, 2005, 127: 14184-14185.
    [109] Li W N, Yuan J, Gomez-Mower S, et al. Synthesis of single crystal manganese oxide octahedral molecular sieve (OMS) nanostructures with tunable tunnels and shapes[J]. J. Phys. Chem. B, 2006,110: 3066-3070.
    [110] Ding Y S, Shen X F, Gomez S, et al. hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanoarchitectures[J], Adv. Funct. Mater., 2006, 16:549-555.
    [111] Li W N, Yuan J, Shen X F, et al. Hydrothermal synthesis of structure- and shape-controlled manganese oxide octahedral molecular sieve nanomaterials[J]. Adv. Funct. Mater., 2006, 16: 1247-1253.
    [112] Li X, Li W, Chen X, et al. Hydrothermal synthesis and characterization of orchid-like MnO_2 nanostructures[J] . J. Cryst. Growth, 2006, 297: 387-389.
    [113] Song X C, Zhao Y, Zheng Y F. Synthesis of MnO_2 nanostructures with sea urchin shapes by a sodium dodecyl sulfate-assisted hydrothermal process [J]. Cryst. Growth Des., 2007, 7(1): 159-162.
    [114] Ye S H, Lv J Y, Gao X P, et al. Synthesis and electrochemical properties of LiMn_2O_4 spinel phase with nanostructure[J]. Electrochim. Acta, 2004, 49: 1623-1628.
    [115] Choa J, Thackeray M M. Structural changes of LiMn_2O_4 spinel electrodes during electrochemical cycling[J]. J. Electrochem. Soc, 1999, 146: 3577-3581.
    [116] Vogler C, Butz A, Dittrich H, et al. Electrochemical and structural comparison of doped lithium manganese spinels[J]. J. Power Sources, 1999, 84: 243-247.
    [117] He X M, Li J J, Cai Y, et al. Preparation of spherical spinel LiMn_2O_4 cathode material for lithium ion batteries[J]. J. Solid State Electr., 2005, 9: 438-444.
    [118] Li W J, Shi E W, Chen Z Z, et al. Solvothermal synthesis of superfine Li_(1-x)Mn_2O_(4-σ) powders[J]. J. Solid State Chem., 2002,163: 132-136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700