用户名: 密码: 验证码:
高固含量聚羧酸减水剂合成与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高性能减水剂是配制高性能混凝土的关键技术之一。聚羧酸系减水剂具有高减水率、良好的保坍性和环境友好性等优点,是配制高性能混凝土的首选减水剂,也是当前减水剂技术领域的主要研究热点。
     本研究以马来酸酐的“无水酯化”工艺为基础,利用低温高效催化手段,得到具有较高双键活性的不饱和酯化大单体,并采用特殊的氧化还原引发体系在40℃下合成了固含量高达75%的聚羧酸系高性能减水剂(文中用“改进型PC”表示)。
     在酯化大单体合成中,利用固体酸催化剂,将马来酸酐(MAn)与不同分子量的甲氧基聚乙二醇(MPEG)按一定比例在低温、无氮气保护的条件下完成无溶剂酯化反应。通过正交设计实验,在分析核磁共振谱图的基础上,确定了最佳的酯化反应条件为:n(MPEG)∶n(MAn)=1∶2.5,催化剂用量为MPEG质量的1.6%,阻聚剂为MAn质量的0.3%,在75℃下反应5 h,可以得到酯化率为95%的大单体PMAn,同时控制双键剩余率为95%。在共聚合成中,结合红外光谱和核磁共振谱图,从引发体系的作用机理入手,
     比较了过硫酸铵和氧化还原两种不同引发体系下的共聚工艺,系统研究了引发剂投加方式及用量、反应温度、反应时间及体系浓度等对共聚工艺的影响。在所采用的次硫酸氢钠甲醛-过氧化氢氧化还原引发共聚工艺下,更多的酯化大单体参与了聚合,共聚进行得比较彻底,未聚合的单体残留很少,所合成的改进型PC减水剂的固含量可达到75%。
     对采用过硫酸铵引发体系在90℃~95℃下合成的聚羧酸系高性能减水剂(文中用“传统型PC”表示)和改进型PC在泵送混凝土中的应用进行了系统试验,并重点对改进型PC减水剂在混凝土中应用所存在的相容性难题进行了探讨。试验结果显示,改进型PC减水剂在新拌混凝土和易性、硬化混凝土强度等方面相比较传统PC有较强的优势,能有效减少水泥用量,降低混凝土材料成本,提高混凝土的综合性能。改进型PC与不同品牌膨胀剂、水泥的相容性均较好。随着集料中泥(或石粉)含量的增大,掺改进型PC混凝土的单方用水量增大,混凝土经时损失加大,抗压强度逐步降低。紫外-可见分光光谱分析显示,对改进型PC的吸附,泥>水泥>石粉,与宏观试验的结果相符。
     采用离心喷雾干燥工艺对改进型PC减水剂进行粉体制备研究,得到的减水剂粉体固含量达到99%。通过单因素试验研究了干燥室进口风温、进料液温度、进料液固含量对喷雾干燥工艺及粉体性能的影响,确定了喷雾干燥工艺适宜的参数范围为干燥室进口风温180℃~220℃,进料液温度20℃~40℃,进料液固含量20%~60%。采用2%碳酸钙作为抗结剂,喷雾干燥后的粉体分散性和稳定性较好。通过红外光谱分析发现聚羧酸减水剂分子结构中的羰基在干燥过程中发生了部分分解,但减水剂宏观性能仅受有限影响,粉体减水剂的性能与液剂减水剂基本相当。
High-performance water-reducing agent is one of the key technologies to the preparation of HPC. Polycarboxylate Superplasticizer with a high water reducing ratio, good concrete-slump-lost controlling ability (good dispersibility and holding dispersibility) and environmental friendliness, etc., is the preferred water-reducing agent, and its synthesis technology is the current major research focus. Starting from“anhydrous esterification”of maleic anhydride,obtained high activity of unsaturated open-chain hydrocarbons esterifiable big monomer,based on low efficient catalyst method , and synthetize solid content up to 75% of polycarboxylate superplasticizer ("improved PC") using special redox initiator at 40℃.
     In the esterification of maleic macromonomer synthesis, reacting the maleic anhydride (MAn) with different molecular weight polyethylene glycol monomethyl ether by using the self-made solid catalysts according to a certain percentage under the condition of low-temperature and non-nitrogen. By orthogonal design experiments, analyzing the nuclear magnetic resonance spectroscopy based on the diagram to determine the best conditions for the esterification: n(MPEG)∶n(MAn)= 1:2.5, catalyst dosage is 1.6%(MPEG Wt%), inhibitor dosage is 0.3%(MAn Wt%), reaction at 75℃under 5 hours. Under the best conditions the esterification rate can get 95%, while controlling the rate of double bond for the remaining 95%.
     In the radical polymerization reactions, combine with IR and NMR spectra, from the trigger mechanism of the system to start, and then compare with ammonium persulfate and redox initiator system, the initiator dosing methods, dosage, and discuss the reaction temperature, reaction time and the system of concentration on the copolymerization reaction were systematic investigated. For sodium formaldehyde sulfoxylate- hydrogen peroxide redox system, the copolymerization of polymerization monomer residual rarely, solid content is as high as 75%.
     The application of traditional PC(ammonium persulfate initiator system at reaction temperature 90℃~95℃) and modified PC in the pumping concrete was explored,focus on compatibility problems of water-reducing agent in concrete application. In the same concrete mix, compared to traditional PC, the modified PC has a stronger advantage on workability of fresh concrete and mechanical properties of hardened concrete, while able to effectively reduce the amount of cement, reduces costs and improves overall performance of concrete. Besides, the compatibility of modified PC with expansion agents and different kinds of cement is good. As clay / powder dosage increases, water requirement increases,slump losses increase, but early compressive strength gradually reduces. Through infrared spectroscopy it is discovered that adsorption of powders on modified PC, mud>cement> stone powder, which is consistent with macro test results.
     Finally, the Preparing of powder polycarboxylate superplasticizer by centrifugal spray drying process are discussed in this paper and the powder solid content can reach 99%. Based on single factor experiments, the major parameters affecting the drying process are discussed and the appropriate process conditions were obtained such as the import air temperature of drying chamber must be controlled at 180℃~220℃;the spray-drying feed temperature controlled at 20℃~40℃, and the concentrations of liquid polycarboxylate superplasticizer are in the range of 20% to 60%. With calcium carbonate and dosage of 2% as resistance agent, powder has good dispersion and good stability. Through infrared spectroscopy it is discovered that the carbonyl group were partly decomposed during the drying process, but the obtained powder’s performance were limited impacted thus its performance is at the same level compared to the liquid superplasticizer.
引文
[1]吴中伟.中国水泥与混凝土工业的现状与问题[J].硅酸盐学报,1999 (6):100-104.
    [2]杜婷,郭太平,林怀立,等.混凝土材料的研究现状和发展应用[J].混凝土,2006(5):12-14.
    [3] P. Gao, M. Deng, N. Feng. The Influence of Superplasticizer and Superfine Mineral Powder on the Flexibility, Strength and Durability of HPC [J].Cement and Concrete Research, 2001(31):703-706.
    [4]覃维祖.现代混凝土的设计理念与工程实践[A].混凝土外加剂及其应用技术[C].北京:机械工业出版社,2004:2-6.
    [5]陈剑雄,蒲心诚,蓝海.论高效减水剂在混凝土中的主导作用[J].混凝土,1998(3):10-13.
    [6]柳东辉,姜应民.高效减水剂混凝土材料与技术发展促进剂[J].黑龙江交通科技,2000(2):45.
    [7] K.C.Hsu, J.J.Chiu, S.D.Chen. Effect of Addition Time of a Superplasticizer on Cement Adsorption and on Concrete Workability [J].Cement & Composites, 1999(21):425-430.
    [8]冯乃谦.高性能混凝土[M].北京:中国建筑工业出版社,1996.
    [9]陈建奎.混凝土外加剂原理与应用[M].北京:中国计划出版社,1997.
    [10] Roger Rixom.The Economic Aspects of Admixture Use [J].Cement and Concrete Composite, 1998(20):141-147.
    [11]熊大玉,王小虹.混凝土外加剂[M].北京:化学工业出版社,2002:10-14.
    [12]木子下光南.混凝土用化学外加剂及其最新技术开发动向[J].水泥混凝土(日),1997(608):10-21.
    [13] E Sakai,J K Kang,M Daimon.Action mechanisms of comb-type superplasticizers containing grafted polyethylene oxide chains[A].Sixth CANMET/ACI International Conference on Superp lasticizers and Other Chemical Admixtures in Concrete[C].USA:American Concrete Institute,2000.
    [14] Kazuo Yamada, et al. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer [C].Cement and Concrete Research, 2000(2): 197–200.
    [15]刘治猛,罗远芳,刘煜平,等.新型聚羧酸类高效减水剂的合成及性能研究[J].化学建材,2003(4):15-18.
    [16]卞荣兵,沈健.聚羧酸混凝土高效减水剂的合成和研究现状[J].精细化工,2006,23(2):179-182.
    [17]廖国胜,马保国.丙烯酸系减水剂在水工混凝土中的应用[J].混凝土,2004(9):75-77.
    [18]张秀芝,杨永清,裴梅山.高效减水剂的应用与发展[J].济南大学学报(自然科学版), 2004,18 (2):139~144.
    [19] AITCIN P C. Cement of yesterday and concrete of tomorrow [J]. Cement and Concrete Research, 2000(30):1349-1359.
    [20] BASKOCA A, OZKULL M H, ARTIRMA S. Effect of chemical admixtures on workability and strength properties of prolonged agitated concrete[J]. Cement and Concrete Research, 1998, 28(5):737-747.
    [21]冉千平,丁蓓,游有鲤,等.新型羧酸类梳型接枝共聚物超塑化剂的应用性能研究[J].化学建材,2003(6):44-46.
    [22]李崇智,冯乃谦,李永德,等.高性能减水剂的研究现状与展望[J].混凝土与水泥制品,2001(2):3-6.
    [23]谭洪波.功能可控型聚羧酸土减水剂研究与应用[D].武汉理工大学,2009.
    [24]蒋亚清.混凝土外加剂应用基础[M].北京:化工出版社,2004.
    [25]陈道文,杨红,王鸣华.有机化学[M].北京:化学工业出版社,2001.
    [26] V.S. Ramachandran, V.M. Malhotra,C. Jolicoeur, et al.Superplasticizers:properties and applications in concrete[C]. Canada: Ministry of public works and government services, 1998.
    [27] SHAWLE T, ZHOU Xin-han. Method of making a water reducing additive for cement: US, 5985989[P].1996-11-16.
    [28]李崇智,李永德,冯乃谦.21世纪的高性能减水剂[J].混凝土,2001(5):3-6.
    [29] Kao Corp ( JP ) .Process for the production of methacrylic polymers:European Patent,1209178[P].2002-05-29.
    [30]李崇智,冯乃谦,牛全林.聚羧酸系减水剂结构模型与高性能化分子设计[J].建筑材料学报,2004,7(2):194-201.
    [31] Hirata T, Yuasa T, Shiote K, et al. Method for dispersion of cement: US, 6048916[P].2000-04-11.
    [32] HIRATA T, et al. Cementitious composition comprising acrylic copolymers: European Patent, 0792850[P].1997.
    [33]李亮.聚羧酸系混凝土减水剂构性及应用技术研究[D].武汉理工大学,2009.
    [34]李崇智.新型聚羧酸系减水剂的合成及其性能研究[D].清华大学.2004.
    [35] E.Okada,K. Sakagami. Process for preparation of AE concrete or AE mortar: US, 4325736[P].1982-04-20.
    [36] J.M. Gaidis, A.M. Rosenberg. Multi component concrete superplasticizer:US, 4460720[P].1984-07-17.
    [37] T.Tsubakimoto,H. Tahara,H. Kobayashi,T. Hirata et al. Cement dispersant: US, 4870120[P].1989-09-26.
    [38] T.Mizunuma, R. Tamaki, S. Kanzaki, et al. Dispersant composition for cement: US, 4963190[P].1990-10-16.
    [39] H.Koyata, T.Tsutsumi. Additive composition for cement admixture: US, 5223036[P].1993-06-29.
    [40] Y.Tanaka, A.Ohta, T.Hirata,et al. Cement composition using the dispersant of (meth) acrylic esters, (metha) acrylic acids polymers: US, 6187841[P].2001-02-13.
    [41] M. Kinoshita, K.Okada. Method of producing polyetherester monomer and cement dispersants: US, 6444780[P].2002-09-03.
    [42]赵石林,岳阳,黄小彬.聚羧酸盐多元共聚物高效减水剂的研制[J].化学建材,2000,16(4):37-39.
    [43]李永德,谭力,等.新型羧酸类共聚型高效减水剂[J].化学建材,1997(3):123-126.
    [44]卞荣兵,缪昌文.聚羧酸高效减水保塌剂的研制与应用[J].化学建材,1999(6):36-37.
    [45]向建南,徐广宇,张伟强,等.羧酸类共聚物AE减水剂的合成与分散性能研究[J],湖南大学学报,1999,26(4):30-33.
    [46]郭保文,杨玉启,尉家臻.新型羧酸系高效减水剂合成研究[J].山东建材学院学报, 1998,12(S1):89-92.
    [47]蒋正武,孙振平,王培铭.我国聚羧酸系减水剂工业发展现状与方向探讨[J].混凝土,2006(4):19-20.
    [48]李崇智,李永德,冯乃谦.聚羧酸系减水剂的合成工艺研究[J].建筑材料学报,2002,5(4):326-330.
    [49]李崇智,李永德,冯乃谦.聚羧酸系减水剂结构与性能关系的试验研究[J].混凝土,2002(4):3-5.
    [50]李崇智,冯乃谦,王栋民,等.梳状聚羧酸系减水剂的制备、表征及其作用机理[J].硅酸盐学报,2005,33(1):87-92.
    [51]胡国栋,游长江,刘治猛,等.聚羧酸系高效减水剂减水机理研究[J].广州化学,2003,28(1):48-53.
    [52]胡建华,汪长春,杨武利,等.聚羧酸系高效减水剂的合成与分散机理研究[J].复旦学报(自然科学版),2000,39(4):463-466.
    [53]逢鲁峰,李笑琪,魏艳华,等.聚羧酸类混凝土高效减水剂的合成与应用性能研究[J].混凝土,2004(10):68-70.
    [54]王栋民,郭新秋,方占民,等.含不同结构单元共聚羧酸高效减水剂的应用研究[J].应用基础与工程科学学报,2002,10(3):213-218.
    [55]陈明凤,张华洁,彭家惠,等.聚羧酸减水剂的合成与性能[J].化学建材,2005,21(2):53-55.
    [56]陈明凤,徐丽娜,彭家惠,等.聚羧酸减水剂合成配方的确定[J].新型建筑材料,2004(11):32-35.
    [57]马保国,谭洪波,廖国胜,等.聚羧酸系高性能减水剂的合成工艺研究[J].国外建材科技,2006,27(1):1-3.
    [58]马保国,谭洪波,孙恩杰,等.聚羧酸系高性能减水剂的构性关系[J].化学建材,2006,22(2):36-38.
    [59]李崇智,李永德,冯乃谦.聚羧酸系高性能减水剂的研制及其性能[J].混凝土与水泥制品.2002(2):3-6.
    [60]逄鲁峰,李崇智,王栋民,等.聚羧酸高性能减水剂的合成试验研究[J].武汉理工大学学报,2009(4):108-110.
    [61]张振,杨晴,等.聚羧酸系减水剂的原位聚合工艺研究[J].化学建材,2009,25(2):43-45.
    [62]郑国峰.一种聚羧酸型高效减水剂的实验研究[J].混凝土与水泥制品,2001(2):7-8.
    [63]张玲.羧酸共聚型高效减水剂的研制[J].河南科学,2002,20(1):30-32.
    [64]徐雯,胡建华,杨武利,等.羧酸类接枝型高效减水剂及其合成方法:中国,1288870[P].2001-03-28.
    [65]王子明,王晓丰,郝利炜,等.聚合工艺对聚羧酸高性能减水剂性能的影响[J].新型建筑材料.2008(7):67-70.
    [66]冯中军,傅乐峰,等.聚羧酸高效减水剂的结构与性能关系研究[J].化学建材,2006,22(2):39-42.
    [67]雷爱中.聚羧酸减水剂的研究[D].武汉工业大学北京研究部.2000:1-8.
    [68]冉千平,游有鲲,周伟玲,等.聚羧酸类高效减水剂现状及研究方向[J].新型建筑材料.2001(12):25-27.
    [69] N.Mikanovic, M.A.Simand, C.Jolicoeur. Interaction between Polynaphthalene Type Superplasticizer and Cement During Initial Hydration [A].V.M. Malhotra. Proceedings of the 6th International CANMET/ACI Conference on Superplasticizer and Other Chemcial Admixtures in Concrete[C].American Concrete Institute, Detroit. SP-195, 2000:561-584.
    [70]姜国庆.日本高性能AE减水剂的研究进程及应用现状[J].化学建材,2000(2):42-44.
    [71]王玲,田培,白杰,等.我国混凝土减水剂的现状及未来[J].混凝土与水泥制品.2008(5):1-7.
    [72]李崇智,冯乃谦,李永德.现代高性能混凝土的研究与发展[J].建筑技术,2003(1):23-25.
    [73]万朝均,丁星.超高强高性能混凝土研究与应用现状[J].重庆建筑大学学报,1999(1):67-69
    [74]下山善秀,田中良弘,小林忠司.200N/mm2級セメント系纖維補强復合材料の適用[J].コンクリト工学,2003,41(1):20-23.
    [75]施惠生,孙振平,邓恺.混凝土外加剂实用技术大全[M].北京:中国建材出版社,2008:4-5.
    [76]王子明.进入中国的主要跨国混凝土外加剂企业分析[J].混凝土外加剂通讯,2002(2):4-8.
    [77]温浩,隋晓宏,欧杰,等.自密实高性能混凝土在澳门观光塔工程中的应用[J].中国建材科技, 2000(5):13-17.
    [78]王子明.聚羧酸系减水剂面临的问题与系列化发展趋势[J].建筑装饰材料世界,2009(5):48.
    [79]李崇智,王栋民,王金才.聚羧酸系减水剂的分子结构模型与作用机理探讨[A].中国硅酸盐学会混凝土水泥制品分会第七届理事会议暨学术交流大会论文集[C].北京:中国硅酸盐学会, 2005: 158-166.
    [80]覃维祖.水泥—高效减水剂相容性及其检测方法研究[A].高强混凝土及其应用第二届学术讨论会论文集[C], 1995.
    [81]陈银洲.混凝土外加剂研究概况与进展[J].武汉工业大学学报,2000,15(1):31-33.
    [82]黄亚梅.减水剂与水泥的相容性研究[J].长江科学院院报,2002,19(4):22,23.
    [83]赵平,刘克忠,隋同波,等.高贝利特水泥与高效减水剂相容性研究[J].水泥,2000,(5):1-5.
    [84]孙振平,蒋正武,王玉吉,等.混凝土外加剂与水泥适应性[J].建筑材料学报,2002,5(3):26-31.
    [85]董健苗,龙世宗,严彩霞.水泥与高效减水剂相容性问题研究[J].广西工学院学报,2001,12(12):43-45.
    [86]丁铸,张宁,张德成,等.水泥与减水剂相容性的研究[J].水泥技术,1999,(5):13-16.
    [87] UCHIKAWA H, SAWAKI D, HANEHARA S. Influence of kind and added timing of organic admixture on the composition,structure, and property of fresh cement paste[J]. Cement and Concrete Research, 1995, 25(2):353-364.
    [88] YAMADA K, TAKAHASHI T, HANEHARA S, et al. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer [J]. Cement and Concrete Research, 2000, 30(1):197-207.
    [89] KREPPELT F, WEIBEL M, ZAMPINI D, et al. Influence of solution chemistry on the hydration of polished clinker surfaces-a study of different types of polycarboxylic acid-based admixtures [J]. Cement and Concrete Research, 2002, 32(1):187-198.
    [90] YAMADA K, TAKAHASHI T, HANEHARA S, et al. Effects of the chemical structure on the properties of polycarboxylate-type superplasticizer [J]. Cement and Concrete Research, 2000, 30(1):197-207.
    [91] KREPPELT F, WEIBEL M, ZAMPINI D, et al. Influence of solution chemistry on the hydration of polished clinker surfaces-a study of different types of polycarboxylic acid-based admixtures [J]. Cement and Concrete Research, 2002, 32(1):187-198.
    [92] ANDERSEN P J, ROY D M. Effect of superplasticizers molecular weight on its absorption and dispersion of cement [J]. Cement and Concrete Research, 1988, 18(7):980-986.
    [93]加藤弘毅,牛山宏隆.ポリカルポン酸系高性能减水劑の作用机構に及ぼす硫酸ィォンの影響.セメント·ュンクリ—ト,1999,634(12):48-54.
    [94]李崇智,冯乃谦.梳形聚羧酸系减水剂与水泥的相容性研究[J].建筑材料学报,2004,7(3):252-260.
    [95] L.Coppola, E.Erali, R.Troli and M.Collepardi.Blending of Acrylic Superplasticizer with Naphthalene, Melamine or Lignosulfonate-based Polymers [A].V.M.Malhotra. Proceedings of the fifth CANMET/ACI International Conference on Superplasticizers and Other Chemical Admixtures in Concrete[C].ACI SP-173,Rome, Italy,1997:229-247.
    [96] L.Jardine, H.Koyata, K.Folliard, et al..Admixture and Method for Optimizing Addition of EO/PO Superplasticizer to Concrete Containing Smectitte Clay-Containing Aggregates:US, 6352952[P].2002-03-05.
    [97]李崇智,祁艳军,陈家珑,等.聚羧酸系减水剂在高性能混凝土中的应用研究[J].新型建筑材料,2008(6):57-62.
    [98]孙振平,王玲.如何安全高效地应用聚羧酸系减水剂[J].混凝土,2007(6):35-38.
    [99]刘国栋,关志梅,魏春涛.砂子含泥量对掺用聚羧酸高效减水剂混凝土性能的影响及有效对策[J].商品混凝土,2008(3):15-18.
    [100]肖怀芬,刘国栋,肖金芳.聚羧酸减水剂抑制混凝土中泥含量的新措施[J].中国建材科技.2008(2):30-34.
    [101] JG/T 223-2007,《聚羧酸高性能减水剂》[S].
    [102]郑柏存,沈军,傅乐峰,等.一种粉体聚羧酸减水剂的制备方法:中国,1919772 [P].2007-02-28.
    [103]王子明.商品砂浆用化学外加剂[A]首届全国商品砂浆学术会议论文集[C], 2005年.
    [104]王芹珠,杨增家.有机化学[M].北京:清华大学出版社,1997.
    [105]成都科学技术大学,天津轻工业学院,北京化工学院编.高分子化学及物理学(第一版) [M].轻工业出版社,1986:352-371.
    [106]徐溢,曹京,郝明.高分子合成用助剂[M].北京:北京工业出版社,2003:224-232.
    [107]潘祖仁.高分子化学[M].北京:化学工业出版社, 2003:17-23.
    [108]文梓芸,徐海军.水泥与塑化剂相容性的研究[A].中国硅酸盐学会第八届水泥化学学术会议[C].重庆:中国硅酸盐学会第八届水泥化学会议,2001:296-307.
    [109]朱明华.仪器分析(第三版) [M].北京:高等教育出版社,2000:286.
    [110]郭宜枯,王喜忠.喷雾干燥[M].北京:化工工业出版社,1983:1-5.
    [111]刘建学.全藕粉喷雾干燥工艺试验研究[J].农业工程学报,2006,22(9):229-231.
    [112]阎师杰,吴彩娥,寇晓虹,等.核桃油微胶囊化工艺的研究[J].农业工程学报,2003,19(1):168-170.
    [113]潘顺龙,杨岩峰,张敬杰,等.沉淀-喷雾干燥法制备纳米晶碳化硅粉体[J].无机材料学报,2006,21(6):1319-1324.
    [114] NAOYUKI SEIKE, KOICHI YAMAGUCHI, YUTAKA FURUYA, et al. Powder coating composition:US, 20070240613[P]. 2007-10-18.
    [115]刘广文.喷雾干燥实用技术大全[M].北京:中国轻工业出版社,2001:641.
    [116]陈国忠,陈炜,彭振华,等.一种可制成聚羧酸盐高效减水剂粉剂的浆体:中国,200710019369[P]. 2008-7-23.
    [117]周学永,高建保.喷雾干燥粘壁的原因与解决途径[J].应用化工,2007,36(6):599-602.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700