用户名: 密码: 验证码:
成分和工艺对S30432钢性能的影响及强化机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
S30432是目前世界上最先进的超超临界(USC)发电机组上使用的高等级耐热钢。本文通过晶间腐蚀试验、金相试验、力学性能试验和热模拟试验等方法以及XRD、SEM、TEM、HR-TEM等测试手段对S30432奥氏体耐热钢晶间腐蚀敏感性、不同热处理状态下的室温性能、高温性能、持久性能、高温应力状态下组织演变、高温强化机理以及热变形行为进行了详尽的研究,对S30432钢的国产化进程具有推进作用。
     研究结果表明,碳含量对S30432钢晶间腐蚀敏感性的影响比铌含量的影响更为显著,当铌含量与碳含量的比值大于5.8时,可以抑制晶间腐蚀的发生。随固溶温度升高,S30432钢的晶间腐蚀敏感性逐渐下降,当固溶温度不低于1100℃、碳含量不高于0.083%时,可以完全避免晶间腐蚀的发生。S30432钢管固溶后要快速冷却,要避免在840℃附近温度区域停留,以防止由于M23C6碳化物析出量增加而增大晶间腐蚀敏感性。
     固溶处理温度和时间对室温强度影响明显,如果固溶温度超过1150℃室温强度明显下降。冲击功随时效时间增加明显下降,但2000小时后趋于稳定。碳含量对室温强度影响明显,铌含量对室温强度影响不明显。
     S30432钢650℃4小时时效后持久强度均高于在700℃4小时进行时效处理。低碳中铌试验钢持久强度最高。元素Cu、Nb、C、N、和B的强化当量系数分别为1、1、4、20、337。
     MX相是S30432钢中最主要的强化相,对维持高温持久强度的贡献最大。MX相尺寸约50nm~120nm,通过与位错的强烈相互作用使钢的变形抗力增大。在650℃下同时效时间4小时相比,当时效时间达到2000小时时,MX相中的铌和氮的含量仅增加了5.50%和2.72%,这种缓慢变化有利于其强化效果的稳定性。
     细小的M23C6相在晶界、晶内弥散分布,起到重要强化作用,M23C6相的尺寸在0.3μm~0.8μm,大量分布在晶界上,在晶内也有弥散分布。在650℃下同时效时间4小时相比,当时效时间达到2000小时时,M23C6相析出量增加16.74倍,其尺寸也明显增大。少数大尺寸的M23C6相,不但对强化不起作用,甚至有危害作用。
     富铜相对S30432钢的强化有重要贡献。富铜相的尺寸在3nm~30nm,平均尺寸约10nm,弥散分布在晶内和晶界,阻碍位错运动使钢得到强化,同时富铜相还存在于亚结构和孪晶中阻止位错运动,使钢的强度得到提高。
     通过对S30432钢进行热模拟试验,获得了S30432钢在各个应变速率条件下不同变形温度时的流变曲线。确定了在不同变形条件下的峰值应力和峰值应变。求得了在0.005s-1~5s-1及800℃~1200℃变形条件下S30432钢的热变形激活能为485 kJ/mol。建立了S30432钢的热变形方程和动态组织状态图。确定了S30432钢的动态再结晶临界应力与其Z参数间的关系。确定了S30432钢动态再结晶晶粒尺寸D与其Z参数和参数A间的定量关系。建立了S30432钢的热加工图和热拉伸塑性图并对其中典型的变形机制进行了分析。
S30432 is a high-class heat-resistant steel used for components of most advanced USC boiler in the world. By means of SEM, TEM, HR-TEM and thermal simulator, the intergranular corrosion resistance, the mechanical properties, the microstructure evolution under the stress condition at high temperature, the strengthening mechanism and the hot deformation behavior of S30432 steel were investigated in order to accelerate its domestic production.
     The results show that the effect of carbon content on intergranular corrosion secretiveness of S30432 steel is more remarkable than that of niobium content. When the ratio of niobium content and carbon content is above 5.8, intergranular corrosion will be suppressed.
     With increasing of solid-solution temperature, the intergranular corrosion sensitivity decreases gradually. In the case of solution temperature exceeds 1100℃and carbon content is lower than 0.083wt% , intergranular corrosion can be avoided. To prevent intergranular corrosion sensitivity caused by M23C6 phase precipitation, long hold-up time around 840℃must be avoided by rapid cooling after solid-solution treatment.
     Temperature and time of solid-solution treatment affects the strength at room temperature obviously. When solution temperature exceeds 1150℃, the strength decreases apparently. Impact toughness decreases with aging time increasing and get even after 2000 hours. Carbon content affects the strength obviously and niobium content has minor effect on strength at room temperature.
     Creep rupture strength of tested steels aged at 650℃for 4 hours is higher than that of tested steels aged at 700℃. The steel with low carbon content and middle niobium content possess the highest creep rupture strength. The strengthing equivalent parameters of copper, niobium, carbon, nitrogen and boron elements are 1, 1, 4, 20, and 337 respectively.
     MX phase is the predominant strengthening phase in S30432 steel, and makes largest contribution to elevated temperature strength. The size of MX phase is about 50~120nm, and it has strong interaction with dislocation causing the increasing of deformation resistance.Compared with aging at 650℃for 4 hours, niobium content and nitrogen content in MX phase increased only 5.50% and 2.72% respectively when aging for 2000 hours, and these slow changes are beneficial to maitain its strengthening effect.
     M23C6 phase phase is major strengthening phase in S30432 steel. The size of M23C6 phase is about 0.3μm ~0.8μm. Most of M23C6 phase distributed in grain boundary, and also distributed in innergrain. After aging for 2000 hours at 650℃, the precipitation amount of M23C6 increased about 16.74 times than that of 4 hours, and its size increased evidently. Large size M23C6 can’t play strengthening effect and becomes harmful to high temperature strength.
     Cu-rich phase plays important role in strengthening of S30432 steel. The size of Cu-rich is about 3nm ~30nm and average size is about 10nm. Cu-rich phase distributes dispersively in grain boundary and innergrain. Cu-rich phase strengthen the steel by hindering the movement of dislocation. Meanwhile, Cu-rich phase existing in sub-structure and twin grains can impede the movement of dislocation further to improve the strength of steel.
     The flow curves under various strain rates and different deformation temperature conditions were obtained through test by Gleeble3500 thermal-mechanical simulator and the peak stress and peak stain under different deformation conditions were obtained. Under the strain rate of 0.005 s-1~5 s-1 at the temperature range of 800℃to 1200℃, the hot deformation activation energy of the steel is 485kJ/mol and the hot deformation equation was got.
     The relationship between critical stress for dynamic recrystallization and Zener-Hollomon parameter was determined.The dynamic microstructure diagram of S30432 steel under the deformation temperature range of 800℃~1200℃and the strain rate range of 0.005s-1~5s-1 were established. The quantitative relationship between the size D of S30432 steel dynamic recrystallization grain and its Zener-Hollomon parameter and A parameter was determined.
     Processing maps for S30432 steel under different strain conditions were set up. Typical deformation mechanisms in processing maps were discussed and hot-tension ductility diagram was obtained.
引文
1陆燕荪.能源工程领域的材料-从超超临界机组的发展透视研发新材料的紧迫性[C].材料科技周,中国青岛, 2004:1-11
    2 F. Masuyama. History of power plants and progress in heat resistant steel[J]. ISIJ International, 2001, 41(6): 612-625.
    3程世长,林肇杰,刘正东.锅炉和电站用钢展望[J].钢铁研究学报. 1994, 4: 24-32.
    4赵中平,姚珉芳.超级超临界机组开发讨论[J].动力工程, 2002, 20(2): 640-644.
    5 Y. Sawaragi, K. Miyata, A. Iseda, et al. 3rd Conference on Advanced in Materials Technology for Fossil Power Plants[C], April 5-6, 2001, University of Wales Swansea, 2001: 103-109.
    6樊险峰,杨松.超临界锅炉制造技术探讨[J].电力设备, 2002, 3(3): 28-32.
    7朱丽慧.新型锅炉用耐热钢的研究进展[J].热处理, 1999, (4): 6-125.
    8赵钦新,顾海澄,陆燕荪.国外电站锅炉耐热钢的一些进展[J].动力工程, 1998, 18(1): 74-83.
    9张业圣.我国火力发电用高压锅炉管现状与需求分析[J].钢管, 2008, 37(5): 1-10.
    10 Y. Sawaragi, K. Miyata. Advanced Heat Resistant Steel for Power Generation[C], San Sebastian, Spain, April 27-29, 1998: 122-125.
    11太田定雄著,张善元张绍林译.铁素体系耐热钢[M].北京:冶金工业出版社, 2003: 60-315
    12 K. Hayashi, T. Kojima, Y. Minami. Materials for Advanced Power Engineering 1998[C], ed. By J. Lecomte-Beckers et al., Forschungszentum Julich Gmbh, Julich, 1998: 41-50.
    13 J. Hald and S. Straub. Materials for Advanced Power Engineering 1998[C], ed. By J. Lecomte-Beckers et al., Forschungszentum Julich Gmbh, Julich, 1998: 559-563.
    14 C. Berger, R. B. Scarlin, K. H. Mayer et al. Materials for Advanced Power Eengineering 1994[C], PartⅡ, Kluwer Academic Pblishers, Pordrecht, NL, 1994: 47-72.
    15 Yansun Lu, Yingna Xu. Status & development of steel tubes used for power generation equipment in china[C]. Symposium on Ultra Super Critical Steels for Fossil Power Plants 2005, 12-13 April, 2005, Beijing, 2005: 1-11.
    16 T. Fujita. New steels for advanced plant up to 620℃[C]. Palo Alto, CA, 1995: 190-198.
    17 Bendick W, Vainllant J C, Vandenberghe B and Lefebre Bo. VM12-a new 12%Cr steel for boiler tubes, headers and steam pipes in USC power plants[C], EPRI International conference on Materials and Corrosion Experiences for Fossil Power Plant, 18-21 November, Wild Dunes Resort, Isle of Palms, SC, USA, Hiton Head Island, USA, October 25-28, 2004.
    18刘荣藻.低合金热强钢的强化机理[M].北京:冶金工业出版社,1981:7-54
    19 Fujimitsu Masuyama. History of power plants and progress in heat resistant steels[J]. ISIJ International, 2001, 41(6): 612-625.
    20 M. Palkes, Task 1A. Conceptual Design - ALSTOM Approach, Boiler materials for ultra supercritical coal power plants[C], Topical Report USC T-3, February 2003.
    21 R. Viswanathan, K. Coleman, R.W. Swindeman, J. Sarver, et al. Boiler materials for ultra supercrical coal power plants[C]. USC Materials-Quarterly Report July - Sept. 2003 October 20, 2003.
    22 R. I. Jaffee: Metall. Trans.[J], 1979, 10A:139-140.
    23 Abe F, Igarashi M, Fujitsuna N, et al. Alloy design of advance ferritic steels for 650℃USC boilers[C], Conference on Advance Heat Resistant Steels for Power Generation, 27-29 April San Sebastian, Spain, Electric Power Research Institute Palo Alto CA, 1998.
    24 Abe F. High performance creep resistant steels for the 21st century power plants[J], First International Conference Super-High Strength Steels, 2-4 November, Centro Sviluppo Metallurgia, Rome, Italy, 2005:1-12
    25 Semba H., Abe F. Development of creep resistant 9Cr-3W-3Co steel containing high boron for USC boilers[C], First International Conference Super-High Strength Steels, 2-4 November,Centro Sviluppo Metallurgia, Rome, Italy, 2005.
    26 Masuyama F. Steam plant material development in Japan, 6th Liège COST Conference, Materials for Advanced Power Engineering 1998[M], Liège,Belgium, September 1998, Forschungszentrum Jülich GmbH, Germany 1998.
    27 Fabritius H. Entwicklungsstand von warmfesten und korrosionsbest?ndigen St?hlen für die Erd? und Erdgasindustrie[C], Mannesmann forschungsbericht, 1973: 610-615.
    28 Husemann R U. Werkstoffe und Werkstoffentwichklung für die Komponenten Membranw?nde undüberhitzerrohre für zukünfitige Dampferzeuger, Proceedings of TAM-Fachungszentrum Kohlekraftwerke im Jahre 2000/2015 [C], Germany 1995.
    29 D.V. Thornton, K.H. Meyer. European high temperature materials development in advanced heat resistant steels for power generation [C], R. Viswanathan and J.W. Nutting, Ed., IOM Communications Ltd., London, 1999: 349-365.
    30 Scarlin B and Stamatelopoulos G N. New boiler materials for advanced steam conditions[C], Proceedings of the 7th Liège COST Conference on Materials for Advanced Power Engineering 2002, PartⅢ, Liège Belgium, Forschungszentrum Jülich, Germany, 2002, 1091-1108.
    31 Minami Y, Kimura K, Tanimura M. Creep rupture properties of 18 Pct Cr-8 Pct Ni-Ti-Nb and Type 347H Austenitic Stainless Steels[J], Journal of Materials for Energy Systems, 1985, 7(1): 45-54.
    32 Masuyama F. Steam plant material development in Japan, 6th Liège COST Conference, Materials for advanced power engineering 1998, conference proceedings, Liège, Belgium, September 1998, Forschungszentrum Jülich GmbH, Germany, 1998:1807-1812.
    33 S. Kjaer, F. Klauke, R, Vanstone, A Zeijseink. The advanced supercritical 700°C pulverized coal-fired power plant[J], VGB PowerTech, 2002, 82(7): 46-49.
    34 Minami Y, Tohyama A and Hayakawa H. Properties and experiences with a new austenitic stainless steel for Boiler Tube Application[C], 7th Liège COST Conference Materials for Advanced Power Engineering 2002, Septemper 2002, Liège Belgium, J. Lecomte-Beckers et al. , Juelich GmbH, Forschungszentrum, Juelich, 2002:1445-1452.
    35 Krainer H. 50 Jahre nichtrostender Stahl[J], Stahl und Eisen, 1962, 82:1527-1529.
    36 Mitchel W M. 18-8 and related stainless steels[J], Metals and Alloys, 1940, January, 14.
    37 Suzuki T. Historical Invention of Stainless Steels (in Japanese), AGNE Technical Center, Tokyo, 2000:110-115.
    38 Y. Tsuda, R. Ishii, M. Yamada, etc. Proc. Int. Conf. Power Engineering-1997[C], SME, Tokyo, 1997:131-138.
    39 Sawaragi Y, Ogawa K, Kan S, etc. Development of the economical 18-8 Stainless Steel having elevated Temperature Strength for Fossil Power Boilers[J], Sumitomo Search, 1992, 48 (1):50-58.
    40 Yoshikawa K, Fujikawa H, Teranishi H, Yuzawa H and Kubota M. Fabrication and properties of corrosion resistant TP347H stainless steel[J]. Journal of Materials Engineering, 1988, 10(1): 69-83.
    41 U. K. Mudali, P. Shankar, D. Sundararaman and R. K. Dayal: Mater. Sci. Technol., 1999, (15):1451-1453.
    42 Fujio Abe, Torsten-ULF Kern, R. Viswanathan. Creep-resistant steels[M]. CRC Press Boca Raton Boston New York Washington, DC, Woodhead publishing limited, Cambridge England,2005:26-31.
    43马春.我国超临界、超超临界锅炉用管发展现状.上海情报服务平台,2007:53-69.
    44李以善,张明贤,张庆强等.超超临界锅炉用材料的金属监督[J].中国特种设备安全. 2005,24(7): 10-14.
    45 Y. Tsuda, R. Ishiii, M. Yamada, T. Azuma, Y. Tanaka and Y. Ikeda: Proc. Int. Conf. Power Engineering-'97, Vol. 2, JSME, Tokyo, 1997:131-139.
    46 A. TOHYAMA, Y. MINAMI. Advance heat resistant steels for power generation.1999, London, IoM Commuications Ltd. 1999: 496-506.
    47 Y. Sawaragi, K, Ogawa, S. Kato. A. Natori and S. Hirano: Sumitomo Search[J], 1992, (48):50-58.
    48 Y. Minami, K. Kimura and M. Tanimura: ASME Int. Conf. New Development in Stainless Steel Steel Tech., Detroit , Michigan,1984:52-57.
    49 M. Tamura, N. Yamanouchi, M. Tanimura and S. Murase: 1985 Expo. and Symp. Industrial Heat Exchanger Tech., Pittsburgh, PA, 1985:23-28.
    50 Y. Sawaragi and K. Yoshikawa: Tetsu-to-Hagané[J], 1986, S672 (72):15-19.
    51 Ishituka T, Mimura H. Development of New 18Cr-9Ni austenitic stainless steel boiler tube[C], 7th Liège COST Conference Materials for Advanced Power Engineering 2002, Septemper2002, Liège Belgium, J. Lecomte-Beckers et al. (eds), Juelich GmbH, Forschungszentrum, Juelich, 2002: 1321-1327.
    52 G. Pilloni, E. Quadrini, S. Spigarelli, Interpretation of the role of forest dislocations and precipitates in high temperature creep in a Nb-stabilised austenitic stainless steel[J], Matls.Sci.&Eng A. 2000, 279: 52-60.
    53 E. Evangelista et al. Cold work effect on particle strengthening in creep of an AISI 347 stainless steel[C], Materials for Advanced Power Engineering, ed. D. Courtsouradis et al. Holland, Klewer Academic 1994: 485-493.
    54 J.K.L. Lai, A. Wickens Scripta Metallurgica[J], 1979, 13:1197-1201.
    55 K.S. Min, S.W. Nam. Journal of Nuclear Materials[J], 2003, 322: 91-95.
    56 Salzgitter. Mannesmann Stainless Tubes[M]. Boiler Grade DMV, Berlin, 2004:23-45.
    57 K. Natesan, W. Podolski. Materials Performance in fluidized-bed air heaters, Argonne National Laboratory. December, 1991:121-126.
    58 R. Viswanathan, K. Coleman, J. Shingledecker, etc. Boiler materrials for ulatrasupercritical power plants. Third Quarterly Report for FY 2005 April 1 - June 30, 2005. U.S. DOE NO.: DE-FG26-01NT41175, OCDO NO.: D-00-
    20. USC Materials - Quarterly Report April - June 2005: 8-11.
    59 J.M. Sarver, J.M. Tanzosh. An Evaluation of the Steamside Oxidation of Candidate USC Materials at 650℃and 800℃[C], in Proc. of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants, Hilton Head Island, SC, 2004, ASM International,2004:123-131.
    60 H. Thier, A. B?umel, E. Schmidtmann: Arch. Eisenhüttenwes[J]., 1969, 40: 333-335.
    61 D. J. Powell, R. Pilkington, D. A. Miller. The Precipitation characteristics of 20-25Nb stabilised stainless steel[J], Acta Met. 1988,36 (3):713-724.
    62 H. Teranishi, et al. Fine-grained TP347H steel tubing with high elevated temperature strength and corrosion resistance for boiler applications, Sumitomo Search, 1989, 38 (5):63-64.
    63 D. J. Baxter and K. Natesan, The oxidation-sulphidation behaviour of Fe-Cr-Ni-Nb alloys at elevated temperature corrosion[C], Erosion, Wear of Materials at Elevated Temperatures, Houston, USA, NACE, 1986: 309-323.
    64 R. W. Swinderman and P. J. Maziasz, The mechanical and microstructural stability of austenitic stainless steels strengthened by MC-forming elements[C], 5th Int. Conf. On Creep of Materials, Ohio, USA ASM, 1992:33-42.
    65 P. J. Maziasz et al. Stainless steel foil with improved creep resistance for use in primary surface recuperators for gas turbine engines[C], Conf. Proc. Gas Turbine Materials Technology, Ohio, ASM Int. 1999: 70-78.
    66 N. G. Needham and T. Gladman. Creep Mechanisms, Final Report on ECSC Project 6210.MA/8/801, British Steel Corporation Sheffield Laboratories, England, 1977.
    67 ASME Code Case 2328-1, ASME Bolier and Pressure Vessel Standards Committee[S], 2002.
    68 Rudolph Blum, Rod W. Vanstone. Materials Development for boilers and Steam Turbines Operating at 700℃[C], in Proc. of the 4th International Conference on Advances in Materials Technology for Fossil Power Plants, Hilton Head Island, SC, October 2004, ASM International:57-63.
    69 David Dulieu. The role of niobium in austenitic and duplex stainless steels. Consultant[J], Science Technology, 2004, 245(12): 25-29.
    70 Kimura, H., Minmi, Y. The effect of Cu addition on the creep rupture strength of 17Cr-14Ni-Cu-Mo stainless steel. Proceedings of the International Conference on Creep, 2006:221-226.
    71 Hou Wen-Tai and R.W.K. Honeycombe, Structure of centrifugally cast austenitic Stainless Steel: Parts 1&2, Effects of Nb, Ti and Zr, Matls. Sc. & Tech. 1, 1985:385-389.
    72 R. Viswanathan, K. Coleman, J. Shingledecker, et al. Boiler materials for ultra supercritical coal power plants. U.S. DOE NO. D-00-20. USC Materials -quarterly report July-September 2006 October 20, 2006:123-129.
    73 Sawaragi. Y., Ogawa. K., Kato. S., et al. Development of the economical 18-8 stainless steel (Super 304H) having high elevated temperature strength for fossil fired boilers[J]. The Sumitomo search, 48, 1992:50-58.
    74 Tohyama, A., Hayakawa, H., Minami, Y.: Development of high strength steel boiler tube (Tempaloy AA-1). NKK Technical review, 2001(84):30-35.
    75 Shingledecker, J.P., Maziasz, P.J., Evans, N.D., et al. Alloy additions for improved creep-rupture properties of a cast austenitic alloy. Proceedings of the Conference of Creep Deformation and Fracture, Design, and Life Extension, The Materials Society, Warrendale, PA, 2005:129-138.
    76 A. Iseda, H. Okada, H. Semba, M. Igarashi. Long term creep properties of and microstructure of S30432, TP347HFG and HR3C for advanced usc boilers. Sumitomo Metal Industries, Ltd. 1996:37-45.
    77 R. Viswanathan, K. Coleman, J. Shingledecker, etc. Boiler Materials for Ultraasupercritical Coal Power Plants. U.S. DOE NO.: DE-FG26-01NT41175 OCDO NO.: D-00-20. USC Materials Quarterly Report. January-March 2006. April 20, 2006: 51-63.
    78 Schwind M., Kallqvist J., etc. Phase precipitation in stabilized austenitic stainless steels[J]. Acta Materialia, 2000, (48): 2473-2481.
    79 T.Kato et al. European Patent Application 0530735Al[M], 1992.
    80 Hau J., Seijas A. Sigma phase embrittlement of stainless steel in FCC service. CORROSION NACExpo 2006, 61st Annual Conference & Exposition, Paper No. 06578, 2006: 1-22.
    81 F. Masuyama. New Developments in Steels for Power Generation Boilers.,in Advanced Heat Resistant Steels forPower Generation[C], R. Viswanathan and J.W. Nutting, Ed.; IOM Communications Ltd., London, 1999: 33-48.
    82郑炀曾,赵国安.热变形条件下金属的力学行为与组织变化[J].机械工程材料, 1981, 5: 27-31.
    83 M. J. Luton, J. J. Jonas. Model for High Temperature Deformation Based on Dislocation Dynamics[J], Rate Theory and A Periodic Internal Stress. Acta Metallurgica, 1970, 18(5):511-517.
    84 M. J. Luton, C. M. Sellars. Dynamic Recrystallization in Nickel and Nickel-iron Alloys During High Temperature Deformation[J]. Acta Metallurgica, 1969, 17(8): 1033-1043.
    85赵品,谢辅洲,孙文山.材料科学基础[M].哈尔滨:哈尔滨工业大学出版社, 1999: 155-156.
    86 M. M. Farag, C. M.Sellars Flow Sress in Hot Extrusion of Commercial-Purity Aluminum. Journal of the Institute of Metals. 1973, 101(5):137-145.
    87 J. J. Jonas, C. M. Sellars,. Tegart. Strength and Structure under Hot Working Conditions[J]. Int. Met. Rev., 1969, (14):1-24.
    88董成瑞,任海鹏,金同哲.微合金非调质钢[M].北京:冶金工业出版社, 2000:11-51.
    89徐恒钧,石巨岩,阮玉忠.材料科学基础[M].北京:北京工业大学出版社, 2001: 59-76.
    90刘全坤.材料成形基本原理[M].北京:机械工业出版社2004:15-35.
    91 J. J. Jonas, H. J. Mcqueen. Plastic deformation of materials[M]. edited by R. J. Arsenault. Acdemic Press, New York, 1975:394-490.
    92 C. M. Sellars, J. A. Whiteman, Recrystalllization and Grain Growth in Hot Rolling[J]. Metal Science, 1978, 13(4):187-194.
    93 T. B. Vanghan. Deformation under hot working conditions[J]. Iron and Steel Inst., London, 1968, 1:68-78.
    94 Yada H,Senuma T and Suehiro M. Mathematical models for predicting microstructural evolution and mechanical propertyes of hot strips[J]. ISIJ int ,1992, 32(3): 423-432.
    95 Pǒhlandt K and Roll K. Upsetting Test for Determing Stress-Strain Curve in the Range of very high Strains: In Newby J R and Niemeier B A (Eds.). Formability of Metallic Materials-2000 A.D.[M]. ASTM, 1982, 211-228
    96 Pǒhland K. Formability Testing, In: Banabic D (Ed.). Formability of metallic materials[M], plastic anisotropy, formability testing, forming limits. Berlin, Springer, 2000: 60-72.
    97 Daras P, Thomas Jr. J F. In: Chait R and Papirno R (Ed.). Compression Testing of Homogenous Materials and Composites [M]. ASTM,1983, 24-28
    98 Rao K P and Hawbolt E B. Physical modelling studies using spike forging to verify analytical predictions [J]. J Mater Process Technol, 1991, 28(3): 295-306.
    99 Rao K P and Prasad Y V R K, Hawbolt E B. Hot deformation studies on a low carbon steel [J]. J Mater Process Technol, 1996, 56(1-4): 908-917.
    100 Kopp R,Heussen J M,Philipp F D, Karhausen K. Improvement of accuracy in determing flow stress in hot upsetting test[J]. Steel Research, 1993, 64(8-6): 377-387.
    101 S. VenugoPal , S.L. Mannan , Y.V.R.K. Prasad. Optimization of Hot Workability in Stainless Steel Type AISI 304L Using Processing Maps. Metallurgical Transactions, 1992, 23A:3093-3103.
    102鲍如强,黄旭,曹春晓.加工图在钦合金中的应用[J].材料导报,2004, 18(7):26-29.
    103蔡大勇.GH169及GH696高温合金热加工工艺基础研究.[燕山大学工学博士学位论文]. 2003: 76-92
    104陆金生等.钢和铁基合金的物理化学相分析[M].上海:上海科学技术出版社, 1981:56-69.
    105刘道新主编.材料的腐蚀与防护[M],西安,西北工业大学出版社,2006:75-96.
    106黄一桓.奥氏体不锈钢晶间腐蚀机理及预防措施[J].中国科技信息,2006,(16):88-90.
    107职任涛,屠欢,肖纪美.亚稳奥氏体不锈钢的晶间腐蚀行为[J].中国腐蚀与防护学报, 1992,12(2):137-144.
    108杨华春.超(超)临界锅炉材料开发的若干问题[C]. 2006年火力发电设备用材料研讨会论文集,四川成都, 2006年11月:38-44.
    109郭富强,程世长,刘正东,包汉生等.碳、铌对ASME S30432奥氏体耐热钢晶间腐蚀性能的影响[J],机械工程材料, 2007, 31 (8): 11-14.
    110杨岩.铜含量对S30432钢性能影响的研究[D],钢铁研究总院硕士学位论文, 2001:23-28.
    111 Joshi. D, Stein. DF. Chemistry of Grain Boundaries and Its Relation to Intergranular Corrosion of Austenitic Stainless Steel, 1972, 28(9): 321-330.
    112 V.Gertsman, M. Bruemmer. Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys[J], Acta Materialia, 2001, 49(9): 1589-1598.
    113王荣滨. 18-8型奥氏体不锈钢的晶间腐蚀[J].上海钢研, 2003(3): 19-21.
    114潘金生,等编著.材料科学基础[M],清华大学出版社,北京, 2007: 223-247.
    115野口泰隆、宮原光雄、岡田浩一.五十嵐正晃. 18Cr-9Ni-3Cu-Nb-N鋼の単軸およびねじりクリープ疲労寿命に及ぼす結晶粒径の影響[J]. Journal of the Society of Materials Science, 2007, 56(2): 136-141.
    116 Y. Sawaragi, K. Ogawa, S. Kato, A. Natori and S. Hirano: SumitomoSearch[J], 1992, 48: 50-57.
    117 G. Pilloni, E. Quadrini and S. Spigarelli. Interpretation of the role of forest dislocations and precipitates in high temperature creep in a Nb-stabilised austenitic stainless steel[J]. Matls.Sci. & Eng.A. 2000, 279: 52-60.
    118 T. Sourmail, Precipitation in creep resistant austenitic stainless steels[J]. Matls. Sc. & Tech. 2001, 17 (1): 1-13.
    119 Y. Minami, H. Kimura, and M. Tanimura. New developments in stainless steel technology[C], Metals Park, OH, American Society for Metals, 1985:231-242.
    120 R. Sumering, J. Nutting. J. Iron Steel Inst.[J], 1965, 203, 398-405.
    121 Y. Sawaragi, Y.Hayase and Y. Yoshikawa. Proceedings of International Conference on Stainless Steels[C], Chiba, ISIJ, 1991: 633-635.
    122 A. M. ElBatahgy, T. Matsuo and M. Kikuchi, Report of the 123rd Committee on Heat-Resisting Materials and Alloys[C], JSPS, 30 1989: 41-49.
    123 Y. Sawaragi, H. Teranishi, K. Yoshikawa and N. Otsuka, Tetsu-to-Hagané[J], 1984, (70), 1409-1412.
    124 M. Igarashi, H. Semba and H. Okada, Proceedings of 8th Workshop on the Innovative Structural Materials for Infrastructure in 21st Century, NIMS, Tsukuba, Japan, 2004: 194-199.
    125 H. Okada, M. Igarashi, K. Ogawa, Y. Noguchi, H. Matsuo and S. Yamamoto, CAMPISIJ[J], 2006(19): 1230-1234.
    126 H. Semba, H. Okada, M. Yonemura and M. Igarashi: Proceeding of 34th MPA-Seminar, Stuttgart, Germany, 2008: 231-247.
    127 J.J. Jonas, C.M. Sellars, W.J. Tegart. Strength and Structure Under Hot Working Conditions[J], Int Met Rev, 130, 1969, (14):1-5.
    128 S.F. Medina, C.A. Hernandez. General Expression of Zener-Hollomon Parameter as a Function of the Chemical Composition of Low Alloy and Microalloy Steels[J]. Acta. Mater, 1996, (44):137-140.
    129 Baozhong Wang, Wantang Fu, Zhiqing Lv. Study on hot deformation behavior of 12%Cr ultra-super-critical rotor steel[J]. Materials science & engineering A, 2008, 487:108-113.
    130 E. I. POLIK, J. J. JONAS. Initiation of dynamic recrystallization in constantstrain rate hot deformation[J]. ISIJ International, 2003, 43(5):684-691.
    131 Abbas Najafizadeh, Joho J. Jonas. Predicting the critical stress for initiation of dynamic recrystallization. ISIJ International, 2006, 46(11):1679-1684.
    132 Rossard C. Proc. 3rd Int. Conf. Strength Metals and Alloys. 1973, (2):175-182.
    133 Sung-Il Kim, Yeon-Chul Yoo. Dynamic recrystallization behavior of AISI
    304 stainless steel. Materials Science and Engineering A, 2001, 311:108-113.
    134 Raj R. Development of a processing map for use in warm forming and hot forming processes [J]. Metall. Trans. 1981, 12A:1089-1097.
    135 Prasad Yvrk, Gegel H L. Doraivelu S M. Modeling of dynamic material behavior in hot deformation: forging of Ti-242 [J]. Met Trans. A, 1984, 15A: 1883-1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700