用户名: 密码: 验证码:
生物质催化热解炭化的试验研究与机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物质固体废弃物量的增多,土壤污染和退化问题的日益严峻,合理开发和利用生物质资源,研发新型有效的土壤修复剂已成为当前紧迫的研究课题。生物质炭对增加土壤碳库贮量、提高土壤肥力以及维持土壤生态系统平衡意义重大,日益受到全世界的关注。热转化技术是实现生物质利用的最有效途径,催化热解被认为是改变生物质热解条件和热解产物分布与性质的最有效方法。本文对生物质(水稻秸秆和竹废料)的催化热解炭化试验和机理展开了系统的研究,主要研究内容及成果如下:
     1、对生物质原料的理化性质进行了分析,结果显示:竹废料有相对较高的纤维素和木质素含量,水稻秸秆则含有更多的半纤维素;工业分析显示竹废料的挥发份含量约为86%,水稻秸秆的灰分含量较大为15%;两种原料中的N、S的含量均是微量的。
     2、以生物质三种组分为原料进行热重试验,考察了七种添加剂(KOH、TiO2、 CuCl、CaCl2、FeCl2、KCl和NaCl)和升温速率对热解特性的影响,并求取了热解动力学参数。结果显示:半纤维素的热解起始温度最低,纤维素的最大热解速率最高:KOH可显著增大纤维素和木质素热解固体产物的得率;CuCl主要是可降低木聚糖热解温度,增大木聚糖热解速率;CaCl2可降低木聚糖和木质素热解温度,而FeC12可降低聚糖热解温度。随热解升温速率的增大,热解曲线逐渐向高温区移动,失重速率增大。
     3、以水稻秸秆和竹废料为原料进行热重试验,考察了KOH、TiO2和加热速率的影响,并求取了热解动力学参数,同时采用TG-FTIR分析了两种原料热解过程中挥发性产物的析出特性。结果显示:竹废料热解的起始温度较低,热解速率较快;水稻秸秆热解的固体得率大,而竹废料热解的气液得率高。竹废料热解反应的表观活化能在172.04-233.48KJ/mol之间,水稻秸秆热解反应的表观活化能在152.05-233.46KJ/mol之间。KOH可改变生物质热重曲线,TiO2对失重曲线的影响不明显;两种生物质热解的挥发性产物主要为CO2、H2O、CO、CH4、烷烃和脂类、C-O-C化合物和醛以及有机酸,竹废料的挥发性产物量较大。
     4、以水稻秸秆和竹废料为原料,在自制的热解反应器上进行热解炭化试验,结果显示:竹生物质炭的得率在28-35%之间,水稻秸秆炭的得率在41-52%之间,常规热解法较适宜于生物质热解制炭;随着热解温度的升高,炭得率逐渐减小;添加Ti02可略增大生物质炭的得率;而KOH的添加量较低时,可促进炭的得率,当添加剂的量大于30%的生物质量后,生物质炭得率反而下降,低温热解添加剂对炭的得率影响较大;两种添加剂均抑制液态产物的生成,但KOH能提高竹废料热解气的得率。
     5、采用仪器或化学的方法,分析了生物质炭的理化性质,得到如下结论:随着热解温度的升高,生物质炭中碳元素含量增大,而氢和氧元素含量降低,而且竹生物质炭的碳元素含量远远高于水稻秸秆炭的;生物质炭均含有多种矿物质元素,水稻秸秆炭中矿物质元素含量均较高;两种生物质炭均显示出碱性,随热解温度的升高,碱性增强,Ti02可降低生物质炭的pH值,而KOH则相反;生物质炭表面含有多种官能团,包括O-H、C-O、芳香环的C=C等,随热解温度升高炭中的脂肪族官能团消失,而芳香族官能团增大,当添加KOH后炭中出现了无机的碳酸根官能团;水稻秸秆炭的表面疏松多孔,温度越高,生物质炭的表面越疏松,孔也越明显,Ti02可促进炭表面的裂解程度;Ti02在生物质热解前后晶型不变,而添加KOH的生物质炭中含有无机和有机钾盐,因此KOH与生物质热解产物发生了化学反应,同时K具有催化作用。可见KOH催化生物质热解可得到一种富钾生物质炭土壤修复剂材料,而Ti02与生物质热解可得到一种含光催化剂的生物质炭基环保材料。
     6、生物质热解气中有4种主要成分,H2、CO、CH4和C02,在低温热解时CO2的含量最高;热解温度升高,CH4的含量明显增大,可燃性气体含量增大;添加KOH可显著提高H2的得率,可进一步处理获得H2,因此热解气的品质得到了提高。
     7、水稻秸秆生物油的化学组成主要由酮类、酚类和烷烃类、糠醛、糠醇和脂构成;竹生物油的主要组成是酚类化合物,还有酮类和烷类化合物,以及少量的醇、酸和脂类物质。两种添加剂都提高了生物油中酚类物质的相对含量。
     利用本文提出的思路,即选择合适的添加剂及添加量和生物质原来共热解可以获得不同类型的生物质炭复合材料,同时热解条件和副产物的成分也可以得到显著改善。
As the increasing in quantity of solid biomass waste, soil pollution and degradation problems increasingly serious, reasonable development and utilization of biomass resources, research and development of new effective soil restoration agent have become the current urgent research subject. Biochar to increase soil carbon library, improve soil fertility and maintain soil ecosystem balance is of great significance, therefore is becoming more and more attention all over the world. Thermal conversion technology is the most effective way to realize the biomass utilization,and catalytic pyrolysis is regarded as the most effective method of change of biomass pyrolysis conditions and pyrolysis product distribution and properties, the mechanism of catalytic pyrolysis and carbonized technology of biomass (rice straw and bamboo waste) were systematically researched in this paper, the main research contents and results were as:
     1.The physical and chemical properties of biomass materials were analyzed, the results showed that bamboo waste have relatively high content of cellulose and lignin, and more hemicellulose in the rice straw. The industrial analysis showed that volatile content of bamboo waste is about86%, and ash content of rice straw is15%. Two kinds of raw materials in the content of N, S are trace.
     2. Three components of biomass as raw material to carry out thermogravimetric experiment, and the effects of seven additives (KOH, TiO2, CuCl, CaCl2, FeCl2, KCl and NaCl) and heating rate were investigated, and calculated the pyrolysis kinetics parameters. Results show that the pyrolysis rate of cellulose is highest, and lignin pyrolysis is relatively slow. The initial pyrolysis temperature of hemicellulose is lowest. KOH can significantly increase the yield of solid products of cellulose and lignin pyrolysis, CuCl mainly can reduce xylan pyrolysis temperature and increase xylan pyrolysis rate, CaCl2can reduce xylan and lignin pyrolysis temperature, and FeCl2can decrease the glycan pyrolysis temperature. With the increase of heating rate, the pyrolysis curve moves to the high temperature and weight loss rate increased.
     3. The rice straw and bamboo waste as raw material, the effects of KOH, TiO2, and heating rate have investigated by thermogravimetric experiment, and calculated the pyrolysis kinetic parameters, at using TG-FTIR to analyse the characteristics of volatile products of pyrolysis separation of the two kinds of raw materials. Results show that: the initiation temperature of bamboo waste pyrolysis is lower and pyrolysis rate is faster. The yield of solid production of rice straw pyrolysis is high, and the yield of gas and liquid of bamboo waste pyrolysis is high. The apparent activation energy of pyrolysis reaction of bamboo waste is between172-233KJ/mol, and rice straw is between152-233KJ/mol. KOH can change thermogravimetric curve of biomass. The volatility of pyrolysis products of two kinds of biomass are mainly for CO, CO2, H2O, CH4, alkanes and lipid, C-O-C compounds and aldehydes and organic acids, volatile products of bamboo waste is high.
     4. The rice straw and bamboo waste as raw materials, pyrolysis carbonization experiment was carried out on self-made pyrolysis reactor. The results showed that the yield of bamboo biochar is between28-35%, and the yield of rice straw charcoal is between41-52%, conventional pyrolysis way more suitable for biomass carbonization. With the increase of pyrolysis temperature, carbon yield decreases. Adding TiO2can slightly increase the yield of biochar, and a small amount of KOH can promote the yield of biochar, the yield of biochar decline when the content KOH is higher than30%. Pyrolysis temperature is lower, the greater the influence of additives on the yield of biochar. Two kinds of additives are inhibiting the production of liquid products, but KOH can improve the yield of gas of bamboo waste pyrolysis.
     5. The following conclusion is obtained by analyzing the physical and chemical properties of biochar:with the increase of pyrolysis temperature, the carbon content of biochar increases, and the content hydrogen and oxygen is reduced, and carbon content of bamboo biochar is much higher than rice straw charcoal. Biocharl contain a variety of minerals, the content of mineral elements in rice straw charcoal were higher than in bamboo charcoal; Both kinds of biomass carbon shows alkaline, TiO2can reduce biomass charcoal pH, and KOH is opposite. Biochar contain a variety of surface functional groups, including O-H, C-O, aromatic ring of C=C, etc., the aliphatic functional groups is lost gradually and aromatic functional groups is increasesed as the temperature rise of carbonization,. There were inorganic carbonate roots in biochar when adding KOH, Rice straw charcoal surface is porous, and the surface of the biochar is loose with the higher the temperature, the holes are more apparent, TiC^can promote the degree of cracking on the surface of the biochar. Pyrolysis process did not affect TiO2crystal structure, biochar contain inorganic and organic sylvite by adding KOH. That KOH catalytic biomass pyrolysis can get a rich potassium of biochar soil restoration agent, TiO2catalytic biomass pyrolysis can get a kind of biochar environmental protection material containing photocatalyst.
     6. There are four major constituents of biomass pyrolysis gas H2, CO, CH4and CO2, the highest content of CO2with low pyrolysis temperature. With pyrolysis temperature increasing, the content of CH4and combustible gas increased obviously. Adding the KOH can significantly increase the yield of H2, so the quality of the pyrolysis gas get improved.
     7. Chemical composition of rice straw bio-oil is mainly composed of ketones, phenols and alkane, furfural, furfural alcohol and fat. Bamboo bio-oil is the main composition of phenolic compounds, and ketones, alkanes compounds, and a small amount of alcohol, acid and lipid. Both additive improves the bio-oil phenolics relative content.
     Using the proposed ideas, namely, choosing the appropriate quantity additives and biomass pyrolysis can obtain different types of biochar composite products, at the same time, the conditions of pyrolysis and quality of by-products can be improved significantly.
引文
[1]袁振宏,李学凤,蔺国芬.我国生物质能技术产业化基础的研究[A].
    [2]Burhenne, L, Messmer, J, Aicher, T. The effect of the biomass components lignin, cellulose and hemicellulose on TGA and fixed bed pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2013,101:177-184.
    [3]雷学军,罗梅健.生物质能转化技术及资源综合开发利用研究[J].中国能源,2010,32(1):22-29.
    [4]She DK, Gua S, Bridgwater A V. Study on the pyrolytic behaviour of xylan based hemicellulose using TG-FTIR and Py-GC-FTIR[J]. Journal of Analytical and Applied Pyrolysis.2010,87:199-206.
    [5]彭云云,武书彬.TG-FTIR联用研究半纤维素的热裂解特性[J].化工进展,2009,28(8):1478-1484.
    [6]Orfao J, Antunes F, Figueiredo J. Pyrolysis kinetics of lignocellulosic materials-three independent reaction model[J]. Fuel 1999; 78:349-58.
    [7]晏群山,彭云云,武书彬.蔗渣热解中纤维素与半纤维素的相互作用[J],化工进展,2011,30(2):442-448.
    [8]赵辉,大型海藻生物质热解动力学及热解液化工艺研究[D].中国科学院研究生院博士学位论文,2011.
    [9]Klass D L. Biomass for renewable energy, fuels, and chemicals. San Diego[m], Academic Press,1998.
    [10]James D, John S. Ableative fast pyrolysis of biomass in the entrained flow cyclone reactor at SER I [C], Solar energy research institute. June, 1982.
    [11]Tolvanen, H, Kokko, L, Raiko, R. Fast pyrolysis of coal, peat, and torrefied wood:Mass loss study with a drop-tube reactor, particle geometry analysis and kinetics modeling[J]. Fuel,2013,111:148-156.
    [12]Zhou Q, Sheng G. Pyrolytic and kinetic characteristics of the thermal decomposition of perilla frutescens polysaccharide[J]. Plos one,2012, 7(12):52-59.
    [13]Gao L, Zhao X, Cui Z. The study on kinetics of LRC mild pyrolysis[J], 29th Annual International Pittsburgh Coal Conference,2012,3:2217-2223.
    [14]Muller-Hagedorn M,Bockhorn H, Krebs L, et al. A comparative kinetic study on the pyrolysis of three different wood species[J]. Journal of Analytical and Applied Pyrolysis,2003,68-69:231-249.
    [15]王鹏,文芳,边文,等.煤与生物质共热解特性初步研究[J].煤炭转化,2008,31(4):40-44
    [16]王新运,陈明强,王君等.生物质热解动力学模型的研究[J].化学与生物工程2009,26(7):61-64.
    [17]Svenson J, Pettersson J B C, et al. Fast pyrolysis of the main components of birch wood [J]. Combustion Science and Technology,2004 (176): 977-990.
    [18]陈明强,齐雪宜,王君,等.棉秆催化热解特性及动力学建模研究[J].燃料化学学报,2011,39(8):585-589.
    [19]Sinha V R, Mittal B R, Bhutani K K, et al. Colonic drug delivery of 5-fluorouracil:An invitroevaluation[J]. International Journal of Pharmaceutics,2004,269(1):101-108.
    [20]文丽华,王树荣,骆仲泱,等.生物质的多组分热裂解动力学模型[J].浙江大学学报(工学版),2005,39(2):247-252.
    [21]Diblasi C, Branca C. Kinetics of primary product formation from wood pyrolysis[J]. Industrial and Engineering Chemistry Research.2001,40:5547-5556.
    [22]Kuwata K, Saito Y, Shida S, et al. Intercalation of wood charcoal with sulfuric acid[J]. Journal of wood science,2009,55(2):154-159.
    [23]Keniciro T, Tatsuya H, Thaung 0, et al, Modeling of heterogeneous chemical reactions caused in pyrolysis of biomass particles[J]. Advanced Powder Technology,2007,18 (6):825-840.
    [24]Antal M J. Effects of reactor severity on the gas-phase pyrolysis of cellulose and kraft lignin-derived volatile matter[J]. Industry Engineering Chemistry Product Research and Development,1983,22:366-375.
    [25]Antal M J, Overend R P, Milne T A, et al. A review of the vapor phase pyrolysis of biomass derived volatile matter [J]. Fundamentals of biomass thermochemical conversion,1985:511-537.
    [26]Anup K S, Parthapratim G, Tripurari G, et al. Modelling of pyrolysis of coal biomass blends using thermogravimetric analysis[J]. Bioresource Technology,2008(99):8022-8026.
    [27]Wang Q, Li H, Chen L, et al. Onodispersed hard carbon spherules with uniform nanopores[J]. Caibon,2001,39(14):2211-2214.
    [28]Li S, Xu S, Liu S, et al. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas[J]. Fuel Processing Technology,2004,85 (8-10):1201-1211.
    [29]Malek J. Kinetic analysis of crystallization processes in amorphous materials[J]. Thermochimica Acta,2000,355(1-2):239-253.
    [30]鲍士龙,陈网桦,陈利,等.2,4-二硝基甲苯热解自催化特性鉴别及其热解动力学[J].物理化学学报,2013,29(3),479-485.
    [31]邹冲,张生富,温良英.无烟煤燃烧过程的热分析动力学研究[J].煤炭学报,2011,36(8):1370-1374.
    [32]李小民,李永平,邓权威,等.麦秆热解机理研究[J].中国科技大学学报,2012,42(4):318-324.
    [33]王健,张守玉,郭熙等.平朔煤和生物质共热解实验研究[J].燃料化学学报,2013,41(1):67-73.
    [34]Zhu L, Wang H Q, Cai J. Thermoravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis[J]. Fuel Procedssing Technology,2006,87(11):963-969.
    [35]黄河洵,陈汉平,王贤华,等.微波诱导市政污泥热解实验的热重分析[J].燃烧科学与技术,2012(04):295-300.
    [36]沈伯雄,曹新新.基于双组分模型的棉秆催化热解动力学方法研究[J].太阳能学报,2011,32(7):1052-1057.
    [37]陈秀峰,马晓茜,陈春香.微藻微波催化裂解研究及动力学分析[J].燃料 化学学报,2012,40(3):315-320.
    [38]钟仙芳,刘春波,王昆淼,等.生物质烟梗热解和燃烧特性研究[J].生物质化学工程,2013,47(39):39-44.
    [39]袁振宏,吴创之,马隆龙,等.生物质能利用原理与技术[m].北京:化学工业出版社,2005:289-293.
    [40]翟秀静,刘奎仁,韩庆.新能源技术[m].北京:化学工业出版社,2005:266-271.
    [41]潘丽娜.生物质快速热裂解工艺及其影响因素[J].应用能源技术,2004,2:7-8.
    [42]米铁,陈汉平,高斌,等.生物质的流化床热解实验研究[J].华中科技大学学报(自然科学版).2009,9(33):71-74.
    [43]刘荣厚,牛卫生,李天舒等.生物质快速热解组要参数对产物得率及其分布的影响[J].农业工程学报,2003,(9):204-207.
    [44]Cetin E, Moghtaderi B, Gupta R, Wall T F. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars [J]. Fuel,2004,83(16):2139-2150.
    [45]Li S, Xu S, Liu S, Yang C, Lu Q. Fast pyrolysis of biomass in free fall reactor for hydrogen-rich gas[J]. Fuel Processing Technology,2004, 85(8-10):1201-1211.
    [46]Gonzalez A, Penedo M, Mauris E, et al.Pyrolysis analysis of different Cuban natural fibres by TGA and GC/FTIR[J]. Biomass and Bioenergy,2010,34, (11):1573-1577.
    [47]Dai X, Wu C, Li H B, Chen Y. The fast pyrolysis of biomass in CFB reactor [J]. Energy & Fuels,2000,14(3):552-557.
    [48]马承荣,肖波,杨家宽.生物质热解影响因素分析[J].环境技术,2005,5:10-12.
    [49]赵希强.作物秸秆的微波热解特性研究[D].山东大学博士学位论文,2010.
    [50]Sun S, Tian H, Zhao Y, et al. Experimental and numerical study of biomass flash pyrolysis in an entrained flow re-actor [J]. Bioresource Technology, 2010,101:3678-3684.
    [51]李志合,易维明,柏雪源,等.闪速热解挥发实验中玉米秸颗粒滞留时间的确定[J].东理工大学学报(自然科学版),2004,18(1):10-13.
    [52]Tsai W T, Lee M K, Chang Y M. Fast pyrolysis of rice husk:Product yield sand compositions[J]. Bioresource Technology,2007,98(26):22-28.
    [53]Ioannidou A, Zabaniotou E, VAntonakou K M, et al. Agricultural residues as precursors for activated carbon production-A review[J]. Renewable and Sustainable Energy Reviews,2009,13:750-762.
    [54]王君,陈明强,张明旭,等.三种生物质的热解动力学研究[J].哈尔滨工业大学学报,2009,41(7):180-183.
    [55]Ersan P. Catalytic pyrolysis of biomass:Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst [J]. Energy,2010,35: 2761-2766.
    [56]Torren R. Carlson, Geoffrey A, et al. Aromatic production from catalytic fast pyrolysis of biomass-derived feedstocks[J]. Topics in Catalysis,2009,52:241-252.
    [57]Shrestha G, Samuel J, Traina, et al. Black carbon's properties and role in the environment:a comprehensive review [J]. Sustainability,2010, 2(1):294-320.
    [58]生物炭.http://baike. baidu. com/view/2952926. htm.
    [59]Qiu Y, Zheng Z, Zhou Z, et al. Effectiveness and mechanisms of dye adsorption on a straw-based biochar[J]. Bioresource Technology,2009, 100 (21):5348-5351.
    [60]Kasozi G N, Zimmerman A R, Nkedi-Kizza P, et al. Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars) [J]. Environmental Science and Technology,2010,44 (16):6189-6195.
    [61]Hossain, M K, Strezov, V, Chan, K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of environmental management,2011,92:223-228.
    [62]Khan M A, Kim K W, Wang M Z, et al. Nutrient impregnated char coal: an environmentally friendly slow release fertilizer[J]. Environ mentalist,2008,28(3):231-236.
    [63]Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011,102(3):3488-3497.
    [64]Cao X D, Ma L N, Liang Y, et al. Simultaneous immobilization of lead and atrazine in contaminated soils using dairy manure biochar[J]. Environmental Science and Technology,2011,45(11):4884-4889.
    [65]Inyang M, Gao B, Pullammanappallil P, et al. Biochar from anaerobically digested sugarcane bagasse[J]. Bioresource Technology,2010,101(22): 8868-8872.
    [66]罗煜,赵立欣,孟海波,等.不同温度下热裂解芒草生物质炭的特征分析.农业工程学报,2013,待刊.
    [67]周岩.基于生物质催化热裂解的炭活化及利用研究[D].浙江大学硕士论文,2013.
    [68]Kleiner K. The bright prospect of biochar [J]. Nature Reports Climate Change,2009,3(6):72-74.
    [69]王涛.整包秸秆的微波热解特性研究[D].山东大学博士论文,2008.
    [70]万益琴,王应宽,刘玉环,等.玉米棒芯的连续微波裂解制取生物油[J].中国农学通报,2009,25(24):559-564.
    [71]Funke A, Ziegler F. Hydrothermal carbonization of biomass:a summary and discussion of chemical mechanisms for process engineering [J]. Biofuels Bioproducts & Biorefining-Biofpr,2010,4(2):160-177.
    [72]Titirici M M, Antonietti M. Chemistry and materialaoptions of sustainable carbon materials made by hydrothermal carbonization[J]. Chemical Society Reviews,2010,39(1):103-116.
    [73]Rousset P, Figueiredo C. Pressure effect on the quality of eucalyptus wood charcoal for the steel industry:A statistical analysis approach [J]. Fuel Processing Technology,2011,92 (10):1890-1897.
    [74]Wu W, Yang M, Feng Q. Chemical characterization of rice straw derived biochar for soil amendment[J]. Biomass and Bioenergy,2012,47:268-276.
    [75]Titiladunayo I F, Mcdonald A G, Fapetu 0 P. Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process[J]. Waste and Biomass Valorization,2012,3 (3): 311-318.
    [76]Dilek A. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake[J]. Bioresource Technology,2013,128:593-597.
    [77]Lee Y, Euma P, Ryu C, et al. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae[J]. Bioresource Technology,2013, 130:345-350.
    [78]Keri B, Cantrell, Patrick G, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology,2012,107:419-428.
    [79]Marta G M, Pilar R.Angela M, et al. Characterization of Biomass Chars Formed under Different evolatilization Conditons:Differences between Rice Husk and Eucalyptus[J]. Energy and Fuels,2008,22:1275-1284.
    [80]廖艳芬,王树荣,骆仲泱,等.金属离子催化生物质热裂解规律及其对产物的影响[J].林产化学与工业,2005,25(2):25-30.
    [81]陈明强,齐雪宜,王君,等.棉秆催化热解特性及动力学建模研究.燃烧化学学报,2011,39(8):585-589.
    [82]赵希强,宋占龙,刘洪贞,等.农作物秸秆微波热解特性试验.农业工程学报,2009,25(10):210-214.
    [83]Nader M, Pulikesi M, Thilakavathi M, et al. Analysis of bio-oil, biogas, and biochar from pressurized pyrolysis of wheat straw using a tubular reactor[J]. Energy and Fuels,2009,23:2736-2742.
    [84]Asadullah, M, Zhang, S, Min, Z, et al. Effects of biomass char structure on its gasification reactivity [J]. Bioresource Technology,2011,101:7935-7943.
    [85]Yao Y, Gao B, Inyang M, et al. Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential[J]. Bioresource Technology,2011,102:6273-6278.
    [86]Titiladunayo I F, McDonald A G, Fapetu 0 P, et al. Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process[J]. Waste Biomass Valor,2012,3, (3):311-318.
    [87]Keri B C, Patrick G H, Minori U, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology,2012,107:419-428.
    [88]Major J, Rondon M, Molina D, et al. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol[J]. Plant and Soil,2010,333:117-128.
    [89]Singh B, Singh B P, Cowie A L. Characterization and evaluation of biochars for their application as a soil amendment[J]. Australian Journal of Soil Research,2010,48:516-525.
    [90]Ajor J, Lehman J, Rondon M, et al. Fate of soil-applied black carbon: downward migration, leaching and soil respiration[J]. Global Change Biology,2010,16:1366-1379.
    [91]Yuan J H, Xu R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic Ultisol[J]. Soil Use and Management,2011,27:110-115.
    [92]李水清,李爱民,任远,等.生物质废弃物在回转窑内热解研究—热解终温对产物性质的影响.太阳能学报,2000,21(4):341-349.
    [93]Yuan J H, Xu R K, Zhang H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011,102(3):3488-3497
    [94]袁金华,徐仁扣.生物质炭的性质及其对土壤环境功能影响的研究进展[J],生态环境学报2011,20(4):779-785.
    [95]Hu F C, Chen S W. Present situation of research on bamboo pyrolysis in Japan[J]. China Forestry Science and Technology,2001,15(3):8-11.
    [96]Fu P, Hu S, Xiang J, et al. Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions[J]. Energy and Fuels,2009,23:4605-4611.
    [97]Fuertes A B, Camps A M, Sevilla M, et al. Chemical and structural properties of carbonaceous products obtained by pyrolysis and hydrothermal carbonization of corn stover[J]. Australian Journal of Soil Research,2010, 48:618-626.
    [98]陈学榕,黄彪,江茂生.杉木间伐材炭化过程的FTIR光谱比较分析[J].化工进展,2008,27(3):429-439.
    [99]陈旭超,胡志彪,陈杰斌,等.竹炭对铜(Ⅱ)离子的吸附性能研究[J].龙岩学院学报,2007,25(6):78-80.
    [100]Mizuta K, Matsumoto T, Hatate Y, et al. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal[J]. Bioresource Technology,2004,95:255-257.
    [101]Cornelissen G, Gustafsson O, Thomas D B, et al. Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils:Mechanisms and consequences for distribution, bioaccumulation, and biodegradation[J]. Environmental Science and Technology,2005,39:6881-6895.
    [102]Kwon S, Pignatello J J. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (char): Pseudo pore blockage by model lipid components and its implications for N-probed surface properties of natural sorbents[J]. Environmental Science and Technology,2005,39:7932-7939.
    [103]Atkinson C J, Fitzgerald J D, Hipps N A. Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils:a review[J]. Plant and Soil,2010,337:1-18.
    [104]Lehmann J, Gaunt J, Rondon M. Biochar sequestration in terrestrial ecosystems:A review[J]. Mitigation and Adaptation Strategies for Global Change,2006,11:403-427.
    [105]Nguyen B T, Lehmann J. Black carbon decomposition under varying water regimes[J]. Organic Geochemistry,2009,40:846-853.
    [106]曹莹,王秀英,孟军,等.秸秆利用现状及其生物炭化前景探析.作物杂志,2012,4:9-12.
    [107]John G R, Alan K B. Pyrolysis decomposition kinetics of cellulose2based material by constant heating rate micro pyrolysis [J]. Energy & Fuel,1997,11:88-97.
    [108]Willem A J, Marion C, Knoetze J H. Vacuum pyrolysis of intruder plant biomasses[J]. Journal of Analytical and Applied Pyrolysis,2011, 92(1):184-193.
    [109]杨素文,丘克强.基于生物质真空热解液化技术的生物油制备[J].农业机械学报,2009,40(4):107-111.
    [110]Wang J, Wang G, Zhang M, et al. A comparative study of thermolysis characteristics and kinetics of seaweeds and fir wood[J]. Process Biochemistry,2006,41(8):1883-1886.
    [111]Antal, M J, Cellulose Pyrolysis kinetics:the current state of knowledge[J]. Industrial and Engineering Chemistry Research,1995,34: 703-718.
    [112]张巍巍,陈雪莉,于遵宏.生物质慢速热解工艺的新探讨[J].环境科学与技术,2008,31(2):38-42.
    [113]王琦,王树荣,王乐,等.生物质快速热裂解制取生物油试验研究[J].工程热物理学报,2007,28(1):173-176.
    [114]谭洪,王树荣,骆仲泱,等.木质素快速热裂解试验研究[J].浙江大学学报,2005,39:710-714.
    [115]辽宁金盾经济贸易公司.炭基多元高效复合肥及其工艺[P].中国专利:96115182.X,1996-11-06.
    [116]陈温福.一种炭基缓释玉米专用肥料及其制备方法[P].中国专利:200710097754.3,2007-10-17.
    [117]国家药典委员会编,中华人民共和国药典[m],化学工业出版社,2005年版,二部,p914
    [118]王述洋.生物质热解动力学建模及锥式闪速热解装置设计理论研究[D].东北林业大学博士学位论文,2002.
    [119]Isa K M, Daud S, Hamidin N, et al. Thermogravimetric analysis and the optimisation of bio-oil yield from fixed-bed pyrolysis of rice husk using response surface methodology (RSM) [J]. Industrial Crops and Products, 2011,33(2):481-487.
    [120]傅旭峰,仲兆平,肖刚,等.几种生物质热解特性及动力学的对比[J].农业工程学报,2009,25(1):199-202.
    [121]宋春财,胡浩权,朱盛维,等.生物质秸秆热重分析及几种动力学模型结果比较[J].燃料化学学报,2003,31:311-316.
    [122]Rao T R, Sharma A. Pyrolysis rates of biomass materials[J]. Source: Energy,1998,23 (11):973-978.
    [123]Orfao J, Antunes F, Figueiredo J. Pyrolysis kinetics omaterials-three independent reaction model[J]. Fuel,1999,78:349-58.
    [124]Varhegyi G, Antal J J M, Jakab E, et al. Kinetic modeling of biomass pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,1997,42 (1):73-87.
    [125]Blasi C D. Comparison of semi-global mechanism for primary pyrolysis of lignocellulosic fuels[J]. Journal Analytical and Applied Pyrolysis, 1998,47:43-64.
    [126]Rapagna S, Jand N, Foscolo PU. Catalytic gasification of biomass to produce hydrogen rich gas[J]. International Journal of Hydrogen Energy 1998,23(7):551-557.
    [127]Raveendran K, Ganesh A, Khilar K C. Pyrolysis characteristics of biomass and biomass components[J]. Fuel,1996,75 (8):987-998.
    [128]Varhegyi G, Antal J J M, Jakab E, et al. Kinetic modeling of biomass pyrolysis[J]. Journal Of Analytic and Applied Pyrolysis[J],1997, 42(1):73-87.
    [129]Blasi C D. Comparison of semi-global mechanism for primary pyrolysis of lignocellulosic fuels[J]. Journal Of Analytic and Applied Pyrolysis, 1998,47:43-64.
    [130]Chen M, Wang J, Zhang M. Catalytic effects of eight inorganic additives on pyrolysis of pine wood sawdust by microwave heating[J]. Journal of analytical and applied pyrolysis,2008,82(1): 145-150.
    [131]万益琴,刘玉环,林向阳,等.玉米秸秆的催化微波裂解及生物油成分[J].农业工程学报,2009,25(4):190-195.
    [132]Menendez J A, Inguanzo M, Pis J J. Microwave-induced pyrolysis of sewage sludge[J]. Water Research,2002,36(13):3261-3264.
    [133]Menndez J A, Dominguez A, Inguanzo M, et al. Microwave pyrolysis of sewage sludge:Analysis of the gas fraction[J]. Journal of analytical and applied pyrolysis,2004,71(2):657-667.
    [134]Bao L, Zhang T. The most probable mechanism function and kinetic parameters of gibbsite dissolution in NaOH[J]. Chinese Journal of Chemical Engineering,2010,18(4):630-634.
    [135]成亮.竹类植物的生物质能源利用研究进展[J].世界竹藤通讯,2010,8(5):1-5.
    [136]张继华,秸秆发电技术前景宽广[J],苏南科技开发,2006,1:23-24.
    [137]Antal M J, Varhegyi G. Cellulose Pyrolysis Kinetics:The Current State of Knowledge[J]. Industrial & Engineering Chemistry Research, 1995,34(3):703-717.
    [138]Yan R, Yang H, Chen H, et al. Characteristics of hemi-cellulose, cellulose and lignin pyrolysis [J]. Fuel,2007,86(12/13):1781-1788.
    [139]陈秀峰,马晓茜,陈春香,等。微藻微波催化裂解研究及动力学分析[J],燃料化学学报,2012,40(3):315-320.
    [140]赵明,吴文权.稻草热裂解动力学研究[J].农业工程学报,2002,18(1):107-110.
    [141]任学勇,杜洪双,王文亮,等.基于TG-FTIR的落叶松木材热失重与热解气相演变规律研究[J].光谱学与光谱分析,2012,32(4):944-948.
    [142]Demirbas A, Arin G. An overview of biomass pyrolysis[J]. Energy Sources, 2002,24(5):471-482.
    [143]Demirbas A. Gaseous products from biomass by pyrolysis and gasification:effects of catalyst on hydrogen yield[J]. Energy Conversion and Management.2002,43(7):897-909.
    [144]Demirbas A. Biomass resource facilities and biomass conversion processing for fuels and chemicals [J].Energy Conversion and Management, 2001,42(11):1357-1378.
    [145]Yan R, Yang H P, Chin T L, et al. Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes[J].Combustion and Flame,2005,142:24-32.
    [146]Chen G, Andries J, Iuo Z, et al. Biomass pyrolysis/gasification for product gas production:the overall investigation of parametric effects [J]. Energy Conversion and Management,2003,44(11):1875-1884.
    [147]Yaman S. Pyrolysis of biomass to produce fuels and chemical feedstocks[J]. Energy Conversion and Management,2004,45:651-671.
    [148]Yang H P, Y an R, Chen H P, et al. In-D epth invest igat ion of biomass pyrolysis based on threem ajor com pon ents:hem icel lu lose, cellulose and lignin[J]. Energy & Fuels,2006,20(1):388-393.
    [149]王新运,万新军,吴凤义.生物质催化热解特性和动力学研究[J].应用化工,2010,39(3):377-379.
    [150]杨海平,陈汉平,杜胜磊,等.碱金属盐对生物质三组分热解的影响[J].中国电机工程学报,2009,29(17):70-75.
    [151]蒋剑春,应浩,戴伟娣,等.生物质流态化催化气化技术工程化研究[J].太阳能学报,2004,25(5):678-684.
    [152]王树荣,廖艳芬,骆仲泱,等.氯化钾催化纤维素热裂解动力学研究[J].太阳能学报,2005,26(4):452-457.
    [153]Pan P, Hu C, Yang W, at el. The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp. residue for renewable bio-oils [J]. Bioresource Technology,2010,101:4593-4599.
    [154]Karaosmanoglu F, Tetik E, Gollu E. Biofuel production using slow pyrolysis of the straw and stalk of the rapeseed plant[J]. Fuel Process, Technology,1999.59:1-12.
    [155]Qi W Y, Hu C W, Li G Y, et al. Catalytic pyrolysis of several kinds of bamboos over zeolite NaY[J]. Green Chemistry,2006,8,183-190.
    [156]Mohan D, Pittman C U, Steele P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy Fuels,2006,20,848-889.
    [157]Putun, A E, Apaydin E, Putun E. Rice straw as a bio-oil source via pyrolysis and steam pyrolysis[J]. Energy,2004,29:2171-2180.
    [158]Jensen A, Johansen D K, Wojtowicz M A, et al. TG-FT IR study of th e Influence of potassium chloride on wheats traw pyrolysis [J]. Energy Fuels,1998,12:929-938.
    [159]胡威胡建杭王华等,生物质炭化原料选择及需热量分析[J],煤炭转化,2012,35(3):80-83.
    [160]Zwieten L V, Kimber S, Morris S, et al. Effects of biochar form slow pyrolysis of papermill waste on agromic performance and soil fer tility [J]. Plant and Soil,2010,327(1/2):235-246.
    [161]Novak J M, Busscher W J, Laird D L, et al. Impact of Biochar amendment on fertility of a southeastern coastal plain soil [J]. Soil Sci ence,2009, 174(2):105-112.
    [162]Liang B, Lehmann J, Solomon D, et al. Black carbon increases cation exchange capacity in soils [J]. Soil science society of american journal, 2006,70(5):1719-1730.
    [163]Magrini-Bair K A, Czernik S, Pilath H M, et al. Biomass derived carbon sequestering designed fertilizers[J]. Annals of Environmental Science, 2009,3(12):217-225.
    [164]Ogawa M. Symbiosis of people and nature in the tropics[J]. Farming Japan,1994,28(5):10-34.
    [165]Tang J, Zhu W, Kookana R, et al. Characteristics of biochar and its application in remediation of contaminated soil (Article in press) [J]. Journal of Bioscience and Bioengineering,2013
    [166]Sanna, A, Li S, Linforth R, et al, Bio-oil and bio-char from low temperature pyrolysis of spent grains using activated alumina[J]. Bioresource Technology,2011,102(22):10695-10703.
    [167]陈再明,陈宝梁,周丹丹.水稻秸秆生物碳的结构特征及其对有机污染物的吸附性能[J].环境科学学报,2013,33(1):9-20.
    [168]Michael I B, Christopher M W. Algal biochar-production and properties[J]. Bioresource Technology,2011,102:1886-1891.
    [169]Keri B, Cantrell, Patrick G, et al, Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology,2012(107):419-428.
    [170]高海英,陈心想,张雯,等.生物质炭基炭基硝酸铵肥料理化性质研究.干旱地区农业研究,2012,30(2):14-21.
    [171]Yao Y, Gao B, Inyang M, et al. Biochar derived from anaerobically digested sugar beet tailings:characterization and phosphate removal potential[J]. Bioresource Technology,2011,102:6273-6278.
    [172]Inyang M, Gao B, Pullammanappallil P, et al. Biochar from anaerobically digested sugarcane bagasse [J]. Bioresource Technology,2010 101:8868-8872.
    [173]Kinney T J, Masiello C A, Dugan B, et al. Hydrologic properties of biochars produced at different temperatures [J]. Biomass and Bioenergy, 2012,41:34-43.
    [174]Keri B C, Patrick G H, Minori U, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology,2012,107:419-428.
    [175]Mahtab A, Sang S L, Xiaomin D, et al, Effects of pyrolysis temperature on soybean stover and peanut shell derived biochar properties and TCE adsorption in water [J]. Bioresource Technology,2012,118:536-544.
    [176]何余生,李忠,奚红霞.气固吸附等温线的研究进展[J].离子交换与吸附,2004,20(4):376-384.
    [177]谢祖彬,刘琦,徐艳萍,等。生物质炭研究进展及其研究方向[J].土壤,2011,43(6):857-861.
    [178]Islam M N, Islam M N, Beg M R A. The fuel properties of pyrolysis liquid derived from urban solid wastes in Bangladesh[J]. Bioresource Technology,2004,92:181-186.
    [179]Karaosmanoglu F, Tetik E, Gollu E. Biofuel production using slow pyrolysis of the straw and stalk of the rapeseed plant [J]. Fuel processing technology,1999,59:1-12.
    [180]Muller-Hagedorn A, Bockhorn H. Pyrolytic behaviour of different biomasses (angiosperms) (maize plants, straws, and wood) in low temperature pyrolysis[J]. Journal of Analytical and Applied Pyrolysis,2007,79: 136-146.
    [181]Czernik S, Bridgwater A V. Overview of applications of biomass fast pyrolysis oil[J]. Energy Fuels,2004,18:590-598.
    [182]Zhang Q, Chang J, Wang T J, et al. Review of biomass pyrolysis oil properties and upgrading research[J]. Energy conversion and management, 2007,48:87-92.
    [183]孔黎红,陈明强,刘少敏,等.生物质快速催化热解制氢的研究[J].化学与生物工程,2013,30(1):43-47.
    [184]方曹明,范浩杰,王杰.生物质热解过程气体产物释放特性的研究[J].锅炉技术,2010,41(2):71-75.
    [185]王进,崔宇,王志勇,等.两种前处理方法分析竹醋液挥发性成分的比较[J].食品科学,2011,32(18):198-201.
    [186]杨巧利.生物质焦油和热解油分析方法的建立[D].郑州大学,2007.
    [187]Zhao H, Holladay J E, Brown H, et al. Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural[J]. Science, 2007,316(5831):1597.
    [188]Ferrier R J, Severn W B, Furneaux R H, et al. The products of the zinc chloride-promoted decomposition of cellulose in aqueous phenol at 350 ℃[J]. Carbohydrate research,1992,237:79-86.
    [189]Cao N J, Xu Q, Chen C S, et al. Cellulose hydrolysis using zinc chloride as a solvent and catalyst [J]. Applied Biochemistry and Biotechnology,1994, 45(1):521-530.
    [190]蔡文娟,刘耀鑫,杨天华,等.生物质催化热解油的GC-MS分析[J].沈阳航空工业学院学报,2010,27(3):71-75.
    [191]孙培勤,臧哲学,孙绍晖,等.生物质高压液化生物油的研究进展[J].现代化工,2008,28(3):22-26.
    [192]柏明娥,陈顺伟,庄晓伟.贮藏过程竹醋液组分及其含量的差异分析[J].竹子研究汇刊,2005,24(3):36-40.
    [193]方曹明.生物质催化热解特性研究[D].上海交通大学,2010.
    [194]武宏香,李海冰,冯宜鹏等.钾元素对生物质主要组分热解特性的影响[J].燃料化学学报,2013,41(8):950-957.
    [195]方曹明,范浩杰,王杰.生物质热解过程气体产物释放特性的研究.锅炉技术,2010,41(2):71-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700